J. Math. Soc. Japan
Vol. 36, No. 1, 1984

Complex abelian Lie groups with finite-dimensional
cohomology groups

By Hideaki KAZAMA and Takashi UMENO

(Received June 7, 1982)
(Revised Jan. 24, 1983)

Introduction.

Grauert gave an example of a pseudoconvex manifold which admits no non-
constant holomorphic functions (See Narasimhan [107]). Using this Grauert’s
example, Malgrange constructed an example of 2-dimensional pseudoconvex
manifold M whose cohomology group H(M, x©) is not Hausdorff.

On the other hand, there exists a noncompact complex Lie group without
nonconstant holomorphic functions. Such a Lie group is called an (H, C)-group
[7T) and also called a toroid group (2], [4]. The first (named) author [3]
showed that any complex abelian Lie group is pseudoconvex. The purpose of
this paper is to investigate the cohomology groups H?(G, ©), p >0 for a complex
abelian Lie group G and its structure sheaf ©.

In §1 we recall some properties of complex Lie groups and study (complex
valued) real analytic functions on complex abelian Lie groups. In §2 we con-
sider the d-problem with respect to real analytic forms on an (H, C)-group and
construct formal solutions for the d-problem. In §3, using the formal solutions
for the d-problem, we give a condition for an (H, C)-group G to have the finite-
dimensional cohomology groups H?(G, ©), p>0 (Theorem 3.1). A given (H, C)-
group G of dimension n is isomorphic to the quotient group C™/I" by a discrete
subgroup I as a complex Lie group. shows that the condition for
H?(C"/T, ©), p>0 to be finite-dimensional depends on a number theoretical
property of the discrete subgroup /' in C*. It is well-known that dim H?(T'g, O)

=(Z> for a complex torus T% of dimension n. We give another proof of this

fact for a complex torus (Corollary 3.2). Then we can regard as
a generalization of this fact. Moreover we construct the family {C"/I'(a); a<
R—Q} of n-dimensional noncompact (H, C)-groups where I'(a) is the subgroup
of C™ generated by

{ei, V—1le;, V—lestae, ; e;= 01, =, Ous), 15i<n, 1=<7<n—2}.

We show that, if a is algebraic, then dim H*(C*/[(a), ®)=n—1. Further if «
is a kind of Liouville number, then we obtain that dim HY(C"/[(«), ®)=co.
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1. Preliminaries.

In this section we recall some properties of complex abelian Lie groups and
consider real analytic functions on complex abelian Lie groups.

We recall the following theorem proved by Morimoto ([7], [8]) and Remmert
(See Kopfermann [4]).

THEOREM 1.1. Let G be a connected complex Lie group and G°:={x€G;
f(x)=f(e) for all feH G, O)}, where e is the unit element of G and O denotes
the structure sheaf of G. Then

(@) G° is a closed connected abelian complex Lie subgroup of G.

(b) Every holomorphic function on G° is constant.

() If G is abelian, then G is isomorphic to G°XC*XC™ for some [, m=0
as a complex Lie group.

A connected complex Lie group G is called an (H, C)-group if every holo-
morphic function on G is constant.

Let G be an (H, C)-group of dimension n. Since G=G° by the above theo-
rem G is abelian. Then there exists a discrete subgroup I" of C*:={!(z,, ---,
Za) ; 2;<C} such that G is isomorphic to C*/I" as a complex Lie group. The
J-th unit vector of C* for 1=;7=n will be denoted by e¢;=!(0,j, 0zj, -**, Onj)-
After a linear change of coordinates of C", we may assume that [ is the dis-
crete subgroup generated by linearly independent vectors e, -+, e, vy, ==+, v, Of
C" over R for some ¢ with 1=¢=wn; thus

n q
I'={Y me:+ Dy 3 MEZ, 1<i<n-+q}.
=1 j=

We put “(vyj, -+, vaj) :=v;, Rev;:="Revyy;, ---, Rev,;) and Imv;:="Imuv,;, -,
Imv,;), 1=7=q. Since Imv,, -, Imv, are linearly independent over R, we may
assume det[Imv;;; 1=/, 7=¢]+0 and then Imuv,, ---, Imv,, e, :-*, ¢, are linearly
independent over R. We put v;:=+'—1e¢j;, g+1=;7=<n. Then C™ is spanned by
{ei, -+, en, v, ==+, v} over R. We put [vy]:=[vy, -+, val, as;:=Rewv;; and §;;
:=Imuv;;, 1=4, j<n. Since the nXmn-matrix B8:=[f;;] is nonsingular, we have
the inverse matrix 7=[7,;]:=8"% Since v,=+v—le;, ¢+1=<j=<n, we have a;;

=0, 8:;=04j 1i;=04, 1=i=n, ¢+1=j=n and Tij:“kéﬁikhj, gtl=i=n, 1=]

=<q. For z=%z, -, zn)= i}zieiEC" with z;=x;+4/—19y;, x5, y:€R, 1<i<n,
<1
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we have a unique vector {=%(t;, ---, t,,) € R*" satisfying
. 3 n
z= 2 tieyt 2ty
i=1 =1

Then we obtain a real linear isomorphism C"=z—t< R?", which induces the
isomorphisms C"/I'=R*"/I'=T"*2x R*~? as a real Lie group, where

Tn+q::{t<exp27r'\/f1tl; Ty eXpZﬂ'\/_—ltn+q>EC*n+q ’ t(tl; T tn+q)ERn+q}-

Treating real analytic functions on C*/I, we shall sometimes identify C*/I”
with T"*2xX R*~? under the above isomorphism. By the definition of the isomor-

phism C">z—te R*", we have t;=x;— Zn}(kn Al £) Vi tnsi= il?’uyj and
j= =1 Jj=
0 1/ 0 — 0
(LD 0z; = 2 (ﬁxi V-1 78};7)

L, 2@ 5 o
=3 la v} Banrug—+ Bz}

for 1=i=n.

Let t="(t,, -, tsn) €R*™ and m="(my, -+, Murg) €2  We put t'="(t, -,
tnig)y 1/ ="(tneqer, o+, tan) and {m, t) i=myty+moty+ -+ +Musgdniee Let [ be a
(complex valued) real analytic function on C®/I. Then we have the Fourier
expansion of f:

(1.2) f= X a™t")exp2zv/—1<{m, t">

mezntq
t/
for 1= t,,) =R,
We regard C*/I'=T"*7X R*~? as a real analytic submanifold of C*"*¢x ("¢
under the natural inclusion 774X R*-4¢C C**+ex Cm-4,

LEMMA 1.2. Let {a™(") ; meZ™*%} be a sequence of real analytic functions
on R % Then the following statements are equivalent.
(a) There exists a real analytic function f(t) on T"* X R""? sych that

f= 3 a™t")exp2zv—1<{m, t">

mezn+tq

,t/

for t=(\ o
(b) There are an open neighbourhood V of R* % in C*% and a holomorphic
function a%(n) in V for each meZ™*? such that af|rn-¢=a™ and to every com-

pact subset K of V correspond positive numbers C and ¢ satisfying

) e R,

sup{|af(n)|; neK}=Cexp(—e|ml),
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where |m|=+/mi+mi+ - +m%q .

PROOF. Assume (a) holds. For every point p=T"*¢X R"? there exist a
neighbourhood U, of p in C****XC"? and a holomorphic function A, in U,
such that

f 1 Upn(TntgxRR=Q) :hp | Upn(TntaxRN=0)-

From the uniqueness of analytic continuation we have h,=h, in the connected
components of U,N\U, that intersect with T"*¢XR*™? for p, g=T"*XR"™.
Thus there exist a neighbourhood V of R""¢ in C""% a neighbourhood W of
Tr*X R" ¢ in C***¢x(C™? with T™"X VCW and a holomorphic function 4 in
W which satisfies f=#A|rn+exrn-¢. For each compact subset K of V, there exists
0>0 such that h has a Laurent expansion A({, n)= 3 aR(n){T1--- {35 for

mezZn+q
& Ne{ll="C, , Crrgd 5 170<|GI <14+ X Vi,

where Vg is an open neighbourhood of K in V and aZ(») are holomorphic in
V. From the uniqueness of the Fourier expansion we have a%|zr-,=a™. On
the other hand

hs(&, p):= 3 al(y) exp2zv/—1{m, &

mezn+q

is holomorphic in

{&1, -, SnegEC™ 0 [Im&| <e} X Vi
for some ¢>0, where {(m, E)=m&,+ -+ +Mpsfniee We put
C:=sup{|af(p)|exp2aim, & ; meZ" [§;|=e/2r, EER™, nE K} <+oo.

Then we have

sup{|af(n)| ; neK}=Cexp(—¢|m|).

Suppose (b) holds. Then it is shown that
g& )= X aR(plr Gane
mezntq

converges in a neighbourhood of 7#*4X R*-? in C*"*4x ("% Since g|rn+q.rn-g
is real analytic on T"**XxX R"-9, then

f:= X a™t"exp2zv/—1<{m, t)

mezn+a

is a real analytic function on C"/I.
Suppose f is a real analytic function on C*/I. We write as in [1.2):
f= = a™t")exp2zv/—1<{m, t'>.
mezntq

We put
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™) :=a™t")exp2rx/—1<m, t'>.
Using we have

5 n
(1.3) e ’”(t):{n-lé1 7 il ;‘:1 MVjp—Mpsr)@™(E")

n N
+«/——1k=§r1r“(nmka )+ 5- atn+f)}

Xexp2zv/—1<{m, t'>, 1=i=n.

Thus f is holomorphic on C?/I" if and only if a™(”) satisfy

(1.4) (ﬁ‘i7njvji~mn+i)am<z'/):o for 1<i=q
pa
and
(1.5) ﬂmiam(z‘”)—l——l—'aa (" =0 for ¢g+1=<i<n
2 aZ‘n+1: .

for every meZ"*%.  We put
KLd .
Ko, 1= 20 mjv5—1p4g for 1=i<g¢
=1

and
K ::MaX{IKm.il ; lélélJ},

where m="my, -, Myrg) EL"L
Using and (1.5}, we prove the following proposition (cf. and [8).

PROPOSITION 1.3. Let G be a connected complex abelian Lie group of di-
mension n. Then G is an (H, C)-group if and only if there exists a discrete
subgroup I' generated by {e,, -+, en, V1, =+, Vg ; 1=qg=n} such that G is isomor-
phic to C*/I" as a complex Lie group and K, >0 for any meZ™*?1—{0}.

PROOF. Suppose G is an (H, C)-group. Since G is abelian and admits no
nonconstant holomorphic functions, we may assume that G is isomorphic to C*/I"
for a discrete subgroup /' generated by {e, -+, es, vy, =+, vy ; 1=¢=n}. Sup-
pose that there exists my="'(m}, ---, my )€ Z"*?—{0} such that K,,,=0. We put

1) :=exp 2n<k§+ it ) exp2r/ =T <m, 1)

Then we have of(t)=0. Thus f({) is a nonconstant holomorphic function on
C*/I" Conversely we suppose G=C?/I"and K,>0 for any meZ"*7—{0}. Let

f= X f™t")exp2r+/—1¢m, t">

mezn+4a
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be a holomorphic function on C*/I. By and we have a™(@")=0 for

any me Z"**—{0} and %lt ol =0. This means f is constant on C*/I.
n+i

2. Formal solutions for the d-problem on (H, C)-groups.

Throughout this section we assume G is an (H, C)-group of complex dimen-
sion n. Then we may assume G=C"/I, where I is the discrete subgroup
generated by {e;, -+, en, vy, =+, vy} and K, >0 for any me Z"*?—{0}. Let A be
the sheaf of germs of (complex valued) real analytic functions on C*/I" and A??
the sheaf of germs of real analytic (p, ¢)-forms on C"/I. We denote by
Z5(C/I, 477 the space of d-closed real analytic (p, ¢)-forms on C*/I" and by
B3(C*/I, AP:9) the space of d-exact real analytic (p, ¢)-forms on C*/I. Using
the vanishing theorem ([1] and [5]): H?(C*/I, 4)=0, p=1 and the resolution
(for instance see

0 0 d 0
0 O L)Q(),O L)40,1 Jo,n 0,

we have

Z5(Cr /15 A7)
Bz(C*/ I}, A"?)

H¥C/T 0)=

To calculate the cohomology groups H?(G, @), we shall study d-exact forms
and d-closed forms on G.

Let ¢ be a real analytic (0, p)-form on G. Since G=C"/[ has global 1-forms

dz, -+, dz,, dz,, ---, dz, for the natural coordinate z=%(z,, ---, z,) in C*, we
. 1 _ - .
can write gzizﬁ—lsiwz’)ipgn¢i1...ipdzi1/\---/\dzip, where ¢i1~--ip are real analytic

functions on C"/I" and skew-symmetric in all indices. We expand ¢,;1...ip as in

(1.2):
Gipi, = X ali.i(t") exp2zv/ —1<m, ') .
mezntq
We put

GT.i () :=al}.. (t") exp2x v —=1m, t"
and

1

gme=L
Dl 15, Tipsn

PsydZi A AdE,

Then ¢= 2+q¢m. Suppose ¢= > @™=B7(G, A*P?). There exists a real

mezn mezn+ae
analytic (0, p—1)-form ¢= 3 ¢™ such that ¢=d¢. Then we have ¢m=5y™
mezZn+q
for any meZ"*%. We put
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1

¢ :—(p———l)llgil,w%‘p_é"

gb;’;...ip_ldz"il/\ /\déip_1
and

GPiy  (O=0Ts) (1) exp2ry/—1m, 1) .

The equation ¢=d¢ implies

(2.1) ¢%’;~-ip: 121(—”“1%’5%2 .
ip

Combining with we have for any meZm*?

Y4 q
2.2) aliy= 3 (~DM{r X700, K bty

1 0b%.;,. ip
++v/—1 Z Tcu(ﬂmzbn~~tk""p+ 2 Otnu >}’

n
where Km,L: 2 mivji—Mpyi.
Jj=1

LEMMA 2.1. Let

1
p ' 1S1,1

be a real analytic d-exact (0, p)-form on C*/I" such that
(1) @iy, is constant for any 1=iy, -, i,=n
@) if {iy L i gL, e, 1} ED, B, =0,
Then ¢=0.

¢ ¢’Ll lde’Ll/\ /\le

97

ProOOF. The proof will be by induction on p. If p=1, by we have a

real analytic function ¢(¢”) on R™*"¢ with
V=1 & 0¢h .
P . <;<
¢1 2 kzqulrkt atn+k s 1=i=n.

Since 75:=0s, ¢+1=Fk, 7=<n and ¢;=0, i1=¢+1, we obtain 9¢/0t,.;=0, i=qg+1.
This means ¢ is constant on R""% Thus ¢;=0, 1=<:/=<n. Assume that the lemma

holds for p—1, p=2. For

1
o= Bl 1511 ¢11 i, dZ N NdZ
from [2.2) there exist real analytic functions b,,..;,_, such that
o\/_¥ yJ E+1 (L abzl...l k'"lp
¢i1~~-ip T 2 (=1 l%lr”kﬂa—tn;l‘w'

Then
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n \/ 1 Bt n ab“r_.i Eipe1
B bubu= " SV 3 r (BB g )

for 1=<s=<g¢. Thus
1
<2‘818¢’Lll lp l)d‘z’bl/\ /\dz’bp 1

Ypﬂl)T15z1 Tip-1sn Q=1
are d-exact (0, p—1)-forms for 1=s<g. The induction hypothesis shows that
n q n n q

2 Bishis, i ,=0 for 1=s=q¢. Then O:sg i§1 ﬁis?’sk¢ii1...ip_1:¢kil...1p_1+i=qﬂs=1

iy =0 fOr 1=k

=1

ﬁlSTSkQSlll ip-1 for lékéq Since ¢ii1~--ip_1:0 for ZEQ"]‘I ¢k1,1
=g¢. Hence ¢=0.

Now suppose ¢= X ¢™"<=Z5(C"/I, A>?). We have
mezn+tq

1t Iz"'lp-H —0

opT
k+1_ ¢
E( D 5,
From we obtain

for any meZ"*e

(2 3) p§(~_l)k+l{1ér . K am . '
) k=1 / =1 ligfim, 1 il gty

J— 1 aah Tpiptl
—i—'\/—"l E f“k(7”711[111'“112"'11)4'1—*_ 2 atn-” )}

=0.

, 1p) instead of (7}, -+, 7p,+1). Then we have
1 0al.

m lazl 1,p+'\/ ]- 2 le(ﬁmlazl 1p+?_6f1 Zp )

n+

In (2.3) we take (7, ¢y, -+

q

T 2 Tu
D 7

= g( 1)k+1{75 Eruk m, la“l 2 peig +'\/ ll q+1(7fmlaul ipeip

2 atn-H
Multiplying the above by B;; and adding from ;=1 to n, we obtain
—]__ aaz';...ip )}

n q —  n
; {77 > ﬁisTliKm,zatl..-ip+\/—l l:qz%_lﬁisrli(ﬁmlail---ip 2 otoes

aam...l k...,,p )} .

=33 (-
b=

i=1 1

el oy TR
X (,mzla“l,..tk...tp%r T ot

We put
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k3
m,s$s . m
Ay v Elﬂisaulmip_l .
Thus we have
m 2 k+1 z
J— M, 84
2.4) TKos0Biy= B~z S 100, Kon 1080,

>S4
7 1 aa{’;,kzp

VL (ettt}

for 1=s=¢q. Let meZ""?—{0} and

sm):=min{s ; [Kn,:|=Kn, 1=s=¢}.
Since Kn=|Kn, sy | >0 for meZn+1—{0}, we put

m,s{m) .—_ ,m,s(m)
bil--rip_l -—ailwip_l/n'Km,s(m)

25 IRy L, S (M) o — 1 m,s(m ”
(2.5) ™3¢ )._”(“5:1—)“!_1§i1,"',2‘ip_1§nbil:hi(p‘)l(t )

xexp2ry/—1<m, t'ydZ, N NdZ,

Then, from and [2.4), we have the following
LEMMA 2.2. Let ¢= X ¢™ be a real analytic d-closed (0, p)-form on an

mezZn+q
(H, C)-group C*/I"" Take the (0, p—1)-form ¢™*™ defined by (2.5) for me Z™*?
—{0}. Then

1

Pm=0¢™ ™  for meZ"1—{0}.

In the case m=0 we get the following
LEMMA 2.3. Let

1 _ -
¢'=—"- X ad., ()dZ N ANdEy

Pl o154, ipsn

be a real analytic d-closed (0, p)-form on an (H, C)-group C*/I. Then there
exist a unique (0, p)-form

) 1 _ _
/C:,pg!lgn,;ipgnCil“'ipdzil/\m/\dzif’
and a (0, p—1)-form
1
- Ay o MNAZ . A e 5.
¢= (p—D! lgil,"'»Li‘p—1§nb11"'Lp‘1(t )ddll/\ A dzlp‘l

on C*/I" such that (1) ¢"=%-+0¢, (2) for any 1=iy, -, 1,50, ¢iy.s, 15 constant
and (3) if {iy, -, i3 g+L, -, n} =D, cips, =0
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PROOF. The uniqueness of X immediately follows by Lemma 2.1. We shall
show the existence of X and ¢. We set

[:=max{i, ; 1=i,=n, 1=k=p and 6131...ip$0}-

The proof will be by induction on /, /[=p with a fixed p=1. In the case /=p,
we have ¢°=al,.,(t")dZ;A\---ANdZ,. Since 0¢°=0, 0a},..,/0Z,=0 for r>p. If
p=gq, by (1.3} 04a};..,/0z,=(~/—1/2)0a%,..,/0tn;»=0 for g+1=r<n. This means
a%s.., is constant. If p=¢+1, we put

—— (ta+p
d12‘--p—1 i=—24/—1 So a(1)2~--;u(tn+q+17 y tarp-1 T tavprn, 0, ton)dT .

Then
5((—1)1’"16112...1,_1(151/\-"/\d§p_1):a(1)2‘..pd§1/\--'/\d§p:¢°.
Thus the lemma is proved for /=p. Now assume the lemma is proved for /—1,

[>p. We write

0 5 AN Ad3.
Z _l_lail‘“ipdzil/\ /\dz,p

N 7(1@(151‘&“%%1«1 a?iz'"ipdzl/\ déh/\ oA déip )

Since d¢°=0,

aa‘iiz...i
(%) —2 =, for [+1<r=<n.
0z,
If I=gq,
aa?iz...i ,\/___Al aa?i o
Y4 2"p
, A =0 f 1=<r<n.
oz, 5 otn. or gtlzr=n
This means al;,.. , are constant. And thus
i, al... dz;, N---Ndz;
Pl oisiTipsi-r TTRTTH ‘p

1

=@ — 2. : z . e =,
=9 (p—D! lsiz,"'.zipsbla”?"lf’dzl/\dzlz/\ /\dzlp
is a J-closed (0, p)-form satisfying the induction hypothesis; then the lemma is

proved for [=q. If [>¢q, we put

2 n+l!
eiz...ip(t”) 3:7';50 a(l)iz-~~ip(tn+q+ly oy tngio1, Ty Invrsn, 0, len)dT

and

1
"

—_—e — . . ” _. e —.
= =11 1§i2,-§pgz_1e””'lp<t )dZi, A NdZy, .
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We have by (%) aeiz...ip/az,zo for [+1=r=<n, and
_7aei2"'ip __,\/_’1 aeiz...ig_

[ —1 = =q°

5z 32 T iy, -

Thus the form ¢°—3dw is d-closed and satisfies the induction hypothesis. Then
the lemma is proved for all /.

Summarizing Lemmas 2.1, and 2.3, we have the following
PROPOSITION 2.4. Let
b= SR af)exp2uV/—Im, thdE A AdE,

D) 154, ipsn peznte

be a d-closed real analytic (0, p)-form on an (H, C)-group C*/I. Put

sbm,s(m) = 1 2 (

o (p—1)1 1s4y,+77p- 150\ d

21 Biscny@Tipip_ /) TKm, s(m))

exp2xv/—1<m, t'>dZ, N NdZ,_,

for me Z"*9— {0}, where s(m):=min{s ; |Kn,s|=Kn, 1=s=q}. Then there exist
a unique (0, p)-form
1

A= F 151:1,;131)&1 c,-l...ipdzil/\ A dzip

and a real analytic (0, p—1)-form
S U
(p_l)' 186y, ip-15n ipipoy
on C*/I" such that
L ¢=X+3¢0+ > 5¢m,s(m)

mezZntid—{(o0}
(2) Ciymip is constant for any 1=i,, -, 1,=gq.

(") dZs A NdEs

REMARK. Proposition 2.4 implies that for any ¢=Z5(C*/I, A"?), p=1 the
o-equation

d=0¢ mod{1St > gqc,-l...ipdé'il/\---/\di'ip ; cil...ipeC}

i1, ip

has usually a formal solution ¢.

3. (H, C)-groups which have finite-dimensional cohomology groups.

We find a condition for an (H, C)-group G to have the finite-dimensional
cohomology groups H?(G, ©), p>0 as follows.

THEOREM 3.1. Let C*/I" be an (H, C)-group where I is generated by {e,, -+

’

n
€n, V1, =, Vgt and let Kp si= 2 mMujs—mMnss, 1S55s=q and Ky :=max{|Kn | ;
j=1
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1=s=q} for meZ"*% For any ¢>0 if there exists a positive number C such that

exp(—e|m|)=CK, for any meZ"*%—{0},

then
g >p>
dim H?(C"/ T 0):{ (p) 9=p=l
0 p>q.

ProoF. We identify C*/I" with T"*?x R"-? as a real Lie group as in §2.
We put
s(m):=min{s ; |Kn ;| =Kn, 1=s=q}

for meZ"*7—{0}. We take

¢_ 1 2 < ¢i1...,~pd§¢1/\---/\déipEZa-(C“/F, uqo'p)
psn

Copl s

>

with the Fourier expansions
Piri,= me;ﬁw af:...,(t") exp2ry/—1(m, ')

By there exist a neighbourhood V of R" % in C""? and holomorphic
functions A%y in V for all meZ®*? such that a:‘il...iplkn—q:a{';...ip and to
every compact subset K of V we have positive numbers C and e satisfying
s%p]a%l...tpl.§Cexp(—s|m|) for any meZ™*tand 1=54y, -+, i,=<n. Since Kn, sim

#0 for any me Z**?— {0} by Proposition 1.3, we put
n
;‘nil"'ip-l = izzlﬁis(m)aﬁiilmip_l/ﬂKm,s<m>

and b,’-’}...ip_l :ZbQZ-l.“ip_l}Rn—Q. From the assumption of the theorem there exists
.. e
a positive number C’ such that exp(—§|7n[ )gC’le,m)] for any meZ"ti—

{0}. Thus we have

SUp |61, | SC O3S  Bulexp (=5 ml )

K

for any meZ"*?—{0}. This means by

Pipipa= B bl (1) €XD 2zv/—1<m, t')
is real analytic on C"/[. By Proposition 2.4 we have a real analytic (0, p—1)-
form

O—A 1 0 ” > e =
¢) a (p_l)' il,--gzip_lbilmip-l(t >d211/\ /\dz-b'p_l

on C*/I" with
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1 - —
¢—_5(¢0+ (»—1) !'i1-"§p—1¢il"'ip‘1dzi1/\'"/\dzipﬂ)
B 2 CiyignipdZy N--NdZ; ), where g5y, €C.

1541<igm<ipsa

Hence dim H?(C*/T, O):(;) if g=zp=1 and dim H?(C"/I, ©)=0 if p>q.
It is well-known that dim H?(T%, O)z(;;) for any complex torus T% of di-

mension n. This fact is obtained by the theory of harmonic integrals (See [9]).
By we give another proof of the fact not using the theory of
harmonic integrals.

COROLLARY 3.2. Let T% be a complex torus of dimension n. Then
. n oo [T
dim H*(T¢, ©)=( p). |
PROOF. We may regard T% as an (H, C)-group C*/I, where I"is the sub-
group generated by {e;, -+, ey, vy, ==+, Va}. We put

:={§Jlmi(vu, s, Vi)t imm‘ez ; for any meZ*—{0}},

where ‘e;=(0i;, -+, 0in). Since (vi, '+, Vin), ‘e;, 1=¢, y=n are linearly inde-
pendent over R, then 0¢S and S is a discrete subset of C*. Then

o :=min {v]u [+ - Fua|? ; (uy, =+, us)=S}>0.

n n
Since (Km.l,- Tty Kmn):(;;‘l MiVj1—Mat1, j—zl mjvjn"mzn)es for mEZZn_{O}’

Kp=max{|Kn,| ; 1<s=n}=p/+n >0 for any meZ?*"—{0}. This shows that
{Kn} satisfies the assumption of [Theorem 3.1l

Finally we give in the following an example of an (H, C)-group G with the
infinite-dimensional cohomology group HYG, ©). To give the example we need
to topologize H?(G, ©). Let A(R) be the vector space of (complex valued) real
analytic functions on R. We regard R as a closed real analytic submanifold of
C under the natural inclusion. We take a compact subset K of R and an open
and connected neighbourhood U; of Kin C for 1=<j=co satisfying U,;;,&U; and
OU ;=K. Let A(K) be the vector space of real analytic functions in a neighbourhood

of K in R. We denote by 4(U,) the space of bounded holomorphic functions on
U, for j=1. Put ||f| :=sup{|f(z)| ; z€U;} for f=4(U;). This norm makes
JU; into a Banach space. By the inductive limit A(K)=indlim £(U;) we
regard JA(K) as a (D, F, S)-space. The restriction mapping: JA(K;)— A(K,),
K,C K, induces the projective limit A(R)=projlim A(K). It is known that the
above locally convex topology on A(R) is complete and semi-Montel. Similarly
we can make the vector space H(G, A7%) of real analytic (p, ¢)-forms on an
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(H, C)-group G into a complete and semi-Montel locally convex space. Thus the
closed subspace Z3(G, A% of HYG, AP?) is also a complete and semi-Montel
locally convex space.

EXAMPLE. Let a=R and I’ the discrete subgroup of C* generated by e;=
t(alb R 5n1)) ezzt(512’ Tty 677,2), Tty en:t(alm Tty 51!71); 1)1:'\/_—181, tty Un-2:
~—len_, and v,_;=+/—1e,_,-+ae,. By the definition of K, ; we have

{ ms'\/v:j.“'"‘mn-;.s lés__<;’i'l'—'2
m,s— _
Mpe1V —1 Mg —Mapny s=n—1.
By Proposition 1.3 C*/I'" is an (H, C)-group if and only if a is irrational. Now
suppose « is irrational and algebraic. Then by Liouville’s theorem there exist
M>0 and a positive integer / such that ‘a—%’ >M]/|q|' for any p, g Z with

q+0. Since szlsmsaxlle,s[gmin {1, |mpa—msgn-1|} = min {1, M/|m, |}, m,
8an-

#0, for any ¢>0 there exists C>0 such that CK,,=exp(—e|m|) for any me

Z*-1—{0}. By Theorem 3.1 we have dim H?(C"/I] O)=<n;1), 1=p=n—L
Next we choose a sequence {ro, ¥y, ¥, -+ ; 7o<t1<ry<---} of integers such
that 7,:=0 and
7r127+14(log 10)'1/@2\/(10”)%(]% 107%-75)2
£=0,1,2, . We put a:=§)10-ff,
0 1=i<n—1 and n+1=:i=2n—2
mP =1 107 i=n
S e
and m® :=(m®, ---, m{P_,) for k=0, 1, 2, ---. Then
Kpr=|mPa—mf|=| 3 1007| <10 Tssvisexp (—k*m® ).
We put
exp(—| k| |m® | =2amPtsn)/ K, x>
oM7) = if m=m® for some £=0
0 if mg&{m™® ; k=0, 1, 2, ---}.

From (1.3) we have
o(p™t") exp2x+/—1{m, t’>):7[712—11Km,s¢m exp2z+/—1<¢m, t'>d3,.
Let
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exp(— k| |m® | =2zmPw)/ K,
PR w) = if m=m® for some £=0
0 if me&E{m™® 5 k=0, 1, 2, -}
for weC. Then ¢¥|r=¢™, where t,,=Rew. Since |K,, ;|=<K,, we have
123 Ko7 | <z(n—1)exp(— | | |m® | +22mP |£0]) ,
=1
where t,,=Rew. By we have the real analytic (0, 1)-form
d:= 2 dgmexp2rv/—1{m, t'))

mezn-1

on C*/I. 1t is easy to check

¢=1im 3 X ¢mexp2zv/—1dm, t'3)B5(C" /T, A™Y),

N-ow |misN

where Bz(C*/I, A%Y) is the closure of B3(C™/I, A"*) with respect to the locally
convex topology of H°(C"/I, A%'). Suppose ¢=B5(C"/I, A**). Then there
exists a real analytic function

1= 3 ™" exp2xv/—1<{m, t'>

mez2n-1

such that ¢=dA. This means

o(A™ exp 2nv/ —1<{m, t'>)=3(p™exp2rx+v/—1<{m, ).

Since H(C"/I, ©)=C, there exists a constant ¢=C such that 2°=c+¢° and A™

=¢™ for any meZ*1—{0}. Hence ¥m1m§wzm exp2rz+/—1<{m, t'> is not con-

vergent on any real analytic function. It is a contradiction. Thus Bz(C*/I, A%Y)
is not closed in Zz(C*/I, A%**) and H*C"/I, ©) is infinite-dimensional.
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