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§1. Introduction.

Let p be a prime number and let % be a finite algebraic number field. Let
k, be the completion of %2 with respect to a prime divisor v of %2, and let S, be
the set of all prime divisors of £ lying over p. Let E, be the group of units
¢ of k such that ecUg for all vES,, where U is the group of principal units of
ky. Imbed E, into vEISIk U$ in the natural way and take the topological closure

E, of E, in g UP». Put Bk:ranszk—rankszk, where Z and Z, are the
v k

rings of integers and p-adic integers respectively. Leopoldt conjectured that
0,=0 for any prime number p.

Let K/k be a finite Galois p-extension with Galois group G. In [7, Corol-
lary to Theorem 27, we proved the Leopoldt conjecture for (K, p) under certain
strong conditions on k2 and the ramification of K/k. The purpose of the present
paper is to give another proof of this theorem by considering the Z,[GJ]-module
structure of the Galois group X% of the composite of all Z,-extensions of K
based on Reiner’s theorem [1, Theorem (74.3)] when K/k is a cyclic extension
of degree p and its [Corollary).

§2. The G-module structure of the Galois group of the composite of
Z ,-extensions of K.

Let M, be the maximal p-ramified abelian p-extension of 2 and let M¥ be
the composite of all Z,-extensions of .. Let L, and L¥ be the maximal ele-
mentary abelian p-extension of % in M, and M¥ respectively. Put X,=G(M,/k)
and Xf=G(M%¥/k). Then M%/k is a Galois extension and X% becomes a G-
module by or=4d76"! (€ X%), where o is a generator of G and & is an extension
of ¢ to M%. From now on, we assume that K/k is unramified at all infinite
primes of & if p=2. By [2, Theorem 3], X% is a free Z,-module of rank
(prs+1+0k), where r,=r,(k) is the number of complex places of 2. Hence by
Reiner’s theorem [1, Theorem (74.3)7],
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)] X(=Z [G]I*®RFDBZ}, (a, B, r=0) as Z,[G]-modules, and
(2) pa+(p—1+r=pr,+1+ix,

where R=Z,[{] ({: a primitive p-th root of unity) is a Z,[GJ-module by ox=
{x (x&R) and Z, is a Z,[G]-module by ocx=x (x=Z),).

LEMMA 1. Let the notation and assumptions be as above. Then
(3) a+2’=7’2+1+5k .

PrROOF. Let M’ be the maximal abelian extension of %2 in M} Put G=
GM'/K) and G*=G(M’/E). Then

C=X}/(c—1)X#

=(Z,LG/(e—DZLG)*BR/C—1R)FBZY,.
Hence

(4) G=Z2"DFE.
Hence rankZpCN} =a-+y. Since G(M’'/M¥) is the torsion subgroup of G*, we have
ranksz*:ranksz(M;"/k):rz—}—1—{—5k .

Since [G*: 5]2 p, we have rankzpézrankZpG*. Hence we obtain the equality
(3). ' Q.E.D.

Let T be a finite set of finite prime divisors of £ such that S.N\T=@.
Put t=|T| (the number of elements of T) and #’=Max(t—1, 0).

LEMMA 2. Let the notation and assumptions be as above. Moreover, assume
the following (i) and (ii):

(i) K/k is unramified outside S,\UT and ramified at T.

(ii) dimp, Xi/X%=7,+1, where F, is the field of p elements.
Then B=t'.

PrROOF. By [7, Lemma 9 (Kubota, Safarevi¢ and Iwasawa)], the condition
(ii) is equivalent to that 6,=0 and X, is torsion free. Let K, be the fixed field
by Z3*" in M’ by the isomorphism (4). Then G(K,/K)=F§, M'=(KM¥)K, and

) KiINnKM¥=K.

We see that G(K,/k)?=0 if t=0. In fact, if there exists a cyclic extension K,
of k of degree p? such that KC K,C K;, then the condition (ii) implies that
there exists a Z,-extension k. of % such that K,C k., so K,CM¥K. This con-
tradicts (5). Let &, (CK;) be an extension of £ such that G(K,;/k)=G(K,/K)X
G(K,/k,), or the inertia field of O with respect to & according as {=0 or =1,
where £ is an extension of a fixed q=T to K,. Since K/k is ramified at q
and K,/K is unramified at Q, we have G(K,/k,)=(p) and KN\k,=Fk, so K;=Kk,.
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Hence [K,: K]=[k,: k]. Let L; be the maximal elementary abelian p-extension
of £ which is unramified outside S,\J(T—{q}). Then k,C L, and L,CL; By
the condition (ii), L,CM¥, so (5) implies that L,N\k,=k. Hence

CLiky: k1=[Ly: kLR, : RI=S[L: k],

By (ii), [Le: k]=p"™** and [L}: k]=p™**** by [8, Theorem 1] or [3] (see also
[6, Corollary 1 to Theorem 17). Thus pf=[K,: K]=[k,: E]J<p"¥, so B=t.
Q.E.D.

LEMMA 3. Let VESg be an extension of a veS,. Put Kj,=K,{) and ky
=k (). Let 7, be a generator of G(ky/ky) and let m,cZ be such that {v={™.
Assume that (&R, Let xEky be such that xv"™eky?. Then x&Ngy i (Ky).

PROOF. By taking Ny, /s, of "™ &k;?, we have N, 2, (x)' ™ k%, Since
C by, we have 1—m,50(mod p). Hence Ny, /i (x)EkR%. By translation theorem
in local class field theory, x €Ny, s (Kv). Q.E.D.

Let L be an elementary abelian p-ramified p-extension of 2 and let L(T) be
the maximal extension of k2 in L which is completely decomposed at T (if T=0,
then put L(T)=L). Put k'=k(Q), K'=K({), L'=LE{), L(T)Y=L(TXY, V=
{(xek™|¥x €L’} and V(T)={xek| ¥x €L(T)"}.

LEMMA 4. Let the notation and assumptions be as above. Assume the condi-
tion (i) in Lemma 2. Then the following (i) and (ii) hold.

(1) dimp (VANg: 5 (K")/(R")P)=dimp G(L(T)/ k).

(ii) Moreover assume one of the following (a) and (b).

(@) (&ky, for all veS,.
() =k and |S;| (the number of elements in S,)=1.
Then dinﬂpp(VmNK:/kr(K,x)/(k,X)p):dimeG(L<T)/k>.

PROOF. (i) If x€VANg,p(K™), then x&ENg, 4, (Ky) for any ¢'<7T7,
where T’ is the extension of T to k’. Hence x<(k§)? for any q'€T’, so x&
V(T). Hence VN\Ng./pw(K*)CV(T). Since dimp,V(T)/(k")?=dimp ,G(L(T)/k),
we have the assertion.

(ii) Let x=V. Let ¢ be a generator of G(k’/k) and let me Z be such that
{r={™. Then by Kummer theory, x*™<k’? for x€V, so x™ ™ck,? for any
veS,;. Hence by Hasse’s norm theorem and Lemma 3, x<=Ng. . (K’) if and
only if xeNK&,,k&, (K¢) for any ¢’eT’. This is equivalent to that x<(ks)? for
any q’7T’, and to that xV(T). Hence VNNg. /u(K”)=V(T). Since dimpp
V(T)/(k"x)pzdimppG(L(T)/k), we have the assertion. Q.E.D.

LEMMA 5. Assume the condition (i) in Lemma 2. Put p"=[L¥:L¥T)].
Then a<ry,+1+40,—1t*, i.e., y=t*.

PrOOF. Let K, be the fixed field by R*PZ% in M%, by the isomorphism
of (1). Then G(K,/K)=Z,[G]* as a Z,[G]-module. Put V={x=K"™|Vx
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K,Q)} and V*={xek”|¥x €L¥}. Then V/(K'*)»=F,[G]* as a F,[G]-
module. By taking N=1+¢+ --- +0?! of both members, Ng., (V)(K"™*)?/(K'*)?
=F3%, so dimppNK,,k.(V)(K’X)P/(K’X)P:a. On the other hand, since Ng. (V)
CV* we have

dimp Ng. /w0 (VYK )P /(K")P=dimp Ng. 2 (V)(R™)?/(R")?
=dimp (V*N\Ng. /2 (K")/(R7)?
=dimg (G(LKT)/k)
Srot140,—t*,

by (i) of Hence a=r,+1+0d,—t* i.e., r=t* by Lemma I.
Q.E.D.
ANOTHER PROOF OF LEMMA 5. We may suppose that t*=1. Since G(L¥/L¥T))
is generated by {G,|q=T}(G,: the decomposition group of q for L¥/k) and since
|G, =1or p, there exists T,CT such that G(L¥/ L;!‘(T))zqgqu (direct product).

Then L¥T)=L¥T,) and |T,|=t*. Take a subfield 2’ of L¥ such that L}¥=
k'L¥T,) and B’'NL¥T,)=Fk. Since dimeG(k’/k)zt* and k’'CL¥, there exists
a Galois extension k./k such that G(k./k)=Z% and k'Ck.. Put K'=k’K and
K.=k.K. Since K/k is fully ramified at T,, we have KN\kw=~k, 50 G(K./K)
=Z% as a Z,[GJ]-module. Let K(T,) be the maximal extension of K in M%
which is completely decomposed at T';, where T is the extension of T, to K.
Put G(Ty)=G(M%/K(T,). Then K(T,)/k is a Galois extension. Since 2’\L¥T,)
=k and since K/k is fully ramified at Ty, we have K'N\K(T,)=K, so K.N\K(T,)
=K. Hence

rankZpG(TO)grankz_pG(Km/K):t* .

On the other hand, since G(T,) is generated by {D,|lqeT¢}(D,: the decomposi-
tion group of q for M%/K) and since D, is a cyclic Z,-module, we have

ranksz(To)§ | T4 =1*.

Hence ranksz(To):t* and M%=K.K(T,), so X¥=G(K./K)XG(K(T,)/K) as
a Z,[GJ-module. Hence y=t*. ' Q.E.D.

THEOREM. Let K/k be a cyclic extension of degree p and let T be a finite
set of finite prime divisors of k such that S;N\T=@. Assume the following (i),
(ii) and (iii).

(i) [L¥: LKT)]=p', where t=|T|.

(i) dimp Xe/Xf=r,+1.

(ili) K/k is unramified outside S,\JUT and ramified at any q<T.
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Then Xk=Z ,[G]*"@QR"PZ,* with t’=Max (t—1, 0).

PrROOF. (I) The case where t=0. By 5=0. Hence by (2)—-/3),
we obtain (p—1)a=(p—1)r,+0x and r,<a=r,+1. Hence

(6) a=r,, 7=1 and 6x=0, or
) a=ry+1, =0 and dx=p—1.

Suppose (7). Then X%¥=Z,[G]?* by (1). L%/k is a Galois extension and
G(L%/K)=F,[G]*. Since H¥G, F,[G]?*")=0, the exact sequence

0 —> G(LE/K) —> G(LA/k) —> G —> 0

is split, so G(L%/k)=G X G(L%/K) (semi-direct product). Let L’/k be the maximal
abelian extension in L%. Then

O G(L'/R)=GX(F[G1/(6—1)F,[G])s* =G < F 2+,

Since K/k is p-ramified, so is L’/k. Hence (x) contradicts the condition (ii).
Thus we obtain (6), and X%k=Z,[G]DZ, by (1).

(I) The case where t=1. By (2)—(3), we obtain (p—1)(a-+p—7r:)=0x, SO
a+B=r,. On the other hand, by Lemmas 2 and 5, a-+j3=r.. Hence a-+f=r.,
0x=0 and a=r,+1—¢, 8=t—1 and r=t Q.E.D.

COROLLARY (a special case of [7, Corollary to Theorem 27). Under the same
notation and assumptions in Theorem, the Leopoldt conjecture is valid for (K, p).
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