Leopoldt's conjecture and Reiner's theorem

By Hiroo MIKI and Hirotaka SATO

(Received Oct. 6, 1982) (Revised Nov. 22, 1982)

§ 1. Introduction.

Let p be a prime number and let k be a finite algebraic number field. Let k_v be the completion of k with respect to a prime divisor v of k, and let S_k be the set of all prime divisors of k lying over p. Let E_k be the group of units ε of k such that $\varepsilon \in U_v^{(1)}$ for all $v \in S_k$, where $U_v^{(1)}$ is the group of principal units of k_v . Imbed E_k into $\prod_{v \in S_k} U_v^{(1)}$ in the natural way and take the topological closure \bar{E}_k of E_k in $\prod_{v \in S_k} U_v^{(1)}$. Put $\delta_k = \operatorname{rank}_z E_k - \operatorname{rank}_z p \bar{E}_k$, where Z and Z_p are the rings of integers and p-adic integers respectively. Leopoldt [4] conjectured that $\delta_k = 0$ for any prime number p.

Let K/k be a finite Galois p-extension with Galois group G. In [7, Corollary to Theorem 2], we proved the Leopoldt conjecture for (K, p) under certain strong conditions on k and the ramification of K/k. The purpose of the present paper is to give another proof of this theorem by considering the $\mathbb{Z}_p[G]$ -module structure of the Galois group X_k^* of the composite of all \mathbb{Z}_p -extensions of K based on Reiner's theorem [1, Theorem (74.3)] when K/k is a cyclic extension of degree p (Theorem and its Corollary).

§ 2. The G-module structure of the Galois group of the composite of Z_{v} -extensions of K.

Let M_k be the maximal p-ramified abelian p-extension of k and let M_k^* be the composite of all \mathbf{Z}_p -extensions of k. Let L_k and L_k^* be the maximal elementary abelian p-extension of k in M_k and M_k^* respectively. Put $X_k = G(M_k/k)$ and $X_k^* = G(M_k^*/k)$. Then M_K^*/k is a Galois extension and X_K^* becomes a G-module by $\sigma \tau = \tilde{\sigma} \tau \tilde{\sigma}^{-1}$ ($\tau \in X_K^*$), where σ is a generator of G and $\tilde{\sigma}$ is an extension of σ to M_K^* . From now on, we assume that K/k is unramified at all infinite primes of k if p=2. By [2, Theorem 3], X_K^* is a free \mathbf{Z}_p -module of rank $(pr_2+1+\delta_K)$, where $r_2=r_2(k)$ is the number of complex places of k. Hence by Reiner's theorem [1, Theorem (74.3)],

(1)
$$X_K^* \cong Z_p[G]^\alpha \oplus R^\beta \oplus Z_p^\gamma$$
 $(\alpha, \beta, \gamma \ge 0)$ as $Z_p[G]$ -modules, and

(2)
$$p\alpha + (p-1)\beta + \gamma = pr_2 + 1 + \delta_K,$$

where $R = \mathbf{Z}_p[\zeta]$ (ζ : a primitive p-th root of unity) is a $\mathbf{Z}_p[G]$ -module by $\sigma x = \zeta x$ ($x \in R$) and \mathbf{Z}_p is a $\mathbf{Z}_p[G]$ -module by $\sigma x = x$ ($x \in \mathbf{Z}_p$).

LEMMA 1. Let the notation and assumptions be as above. Then

$$\alpha + \gamma = r_2 + 1 + \delta_k.$$

PROOF. Let M' be the maximal abelian extension of k in M_K^* . Put $\widetilde{G} = G(M'/K)$ and $G^* = G(M'/k)$. Then

$$\widetilde{G} = X_K^*/(\sigma - 1)X_K^*$$

$$\cong (\mathbf{Z}_p[G]/(\sigma - 1)\mathbf{Z}_p[G])^{\alpha} \oplus (R/(\zeta - 1)R)^{\beta} \oplus \mathbf{Z}_p^r.$$

Hence

$$\widetilde{G} \cong \mathbf{Z}_{p}^{\alpha+\gamma} \oplus \mathbf{F}_{p}^{\beta}.$$

Hence $\operatorname{rank}_{\mathbb{Z}_p} \widetilde{G} = \alpha + \gamma$. Since $G(M'/M_k^*)$ is the torsion subgroup of G^* , we have

$$\mathrm{rank}_{\boldsymbol{Z}_p} G^* \! = \! \mathrm{rank}_{\boldsymbol{Z}_p} G(M_k^*/k) \! = \! r_{\scriptscriptstyle 2} \! + \! 1 \! + \! \delta_k \, .$$

Since $[G^*: \tilde{G}] = p$, we have $\operatorname{rank}_{Z_p} \tilde{G} = \operatorname{rank}_{Z_p} G^*$. Hence we obtain the equality (3). Q. E. D.

Let T be a finite set of finite prime divisors of k such that $S_k \cap T = \emptyset$. Put t = |T| (the number of elements of T) and $t' = \operatorname{Max}(t-1, 0)$.

LEMMA 2. Let the notation and assumptions be as above. Moreover, assume the following (i) and (ii):

- (i) K/k is unramified outside $S_k \cup T$ and ramified at T.
- (ii) $\dim_{\mathbf{F}_p} X_k/X_k^p = r_2 + 1$, where \mathbf{F}_p is the field of p elements. Then $\beta \leq t'$.

PROOF. By [7, Lemma 9 (Kubota, Šafarevič and Iwasawa)], the condition (ii) is equivalent to that $\delta_k=0$ and X_k is torsion free. Let K_1 be the fixed field by $\mathbf{Z}_p^{\alpha+\gamma}$ in M' by the isomorphism (4). Then $G(K_1/K) \cong \mathbf{F}_p^{\beta}$, $M' = (KM_k^*)K_1$ and

$$(5) K_1 \cap KM_{\mathfrak{b}}^* = K.$$

We see that $G(K_1/k)^p=0$ if t=0. In fact, if there exists a cyclic extension K_2 of k of degree p^2 such that $K \subset K_2 \subset K_1$, then the condition (ii) implies that there exists a \mathbb{Z}_p -extension k_∞ of k such that $K_2 \subset k_\infty$, so $K_2 \subset M_k^* K$. This contradicts (5). Let k_1 ($\subset K_1$) be an extension of k such that $G(K_1/k)=G(K_1/K)\times G(K_1/k_1)$, or the inertia field of $\mathbb Q$ with respect to k according as k=0 or $k\ge 1$, where $\mathbb Q$ is an extension of a fixed k=1. Since k=1 is ramified at k=1 and k=1 is unramified at k=1, we have k=1 and k=1 is unramified at k=1, we have k=1 and k=1 is an extension of k=1.

Hence $[K_1:K]=[k_1:k]$. Let L'_k be the maximal elementary abelian p-extension of k which is unramified outside $S_k \cup (T-\{q\})$. Then $k_1 \subset L'_k$ and $L_k \subset L'_k$. By the condition (ii), $L_k \subset M_k^*$, so (5) implies that $L_k \cap k_1 = k$. Hence

$$\lceil L_k k_1 : k \rceil = \lceil L_k : k \rceil \lceil k_1 : k \rceil \leq \lceil L'_k : k \rceil$$
.

By (ii), $[L_k:k]=p^{r_2+1}$ and $[L'_k:k]=p^{r_2+1+t'}$ by [8, Theorem 1] or [3] (see also [6, Corollary 1 to Theorem 1]). Thus $p^{\beta}=[K_1:K]=[k_1:k] \leq p^{t'}$, so $\beta \leq t'$.

LEMMA 3. Let $V \in S_K$ be an extension of a $v \in S_k$. Put $K'_v = K_v(\zeta)$ and $k'_v = k_v(\zeta)$. Let τ_v be a generator of $G(k'_v/k_v)$ and let $m_v \in \mathbb{Z}$ be such that $\zeta^{\tau_v} = \zeta^{m_v}$. Assume that $\zeta \notin k_v$. Let $x \in k'_v$ be such that $x^{\tau_v - m_v} \in k'_v$. Then $x \in N_{K'_v/k'_v}(K'_v)$.

PROOF. By taking $N_{k'_v/k_v}$ of $x^{\tau_v-m_v} \in k'^p_v$, we have $N_{k'_v/k_v}(x)^{1-m_v} \in k^p_v$. Since $\zeta \notin k_v$, we have $1-m_v \not\equiv 0 \pmod p$. Hence $N_{k'_v/k_v}(x) \in k^p_v$. By translation theorem in local class field theory, $x \in N_{K'_v/k'_v}(K'_v)$. Q. E. D.

Let L be an elementary abelian p-ramified p-extension of k and let L(T) be the maximal extension of k in L which is completely decomposed at T (if $T = \emptyset$, then put L(T) = L). Put $k' = k(\zeta)$, $K' = K(\zeta)$, $L' = L(\zeta)$, $L(T)' = L(T)(\zeta)$, $V = \{x \in k'^{\times} | \sqrt[p]{x} \in L'\}$ and $V(T) = \{x \in k'^{\times} | \sqrt[p]{x} \in L(T)'\}$.

LEMMA 4. Let the notation and assumptions be as above. Assume the condition (i) in Lemma 2. Then the following (i) and (ii) hold.

- (i) $\dim_{\mathbf{F}_n}(V \cap N_{K'/k'}(K'^{\times})/(k'^{\times})^p) \leq \dim_{\mathbf{F}_n}G(L(T)/k).$
- (ii) Moreover assume one of the following (a) and (b).
 - (a) $\zeta \notin k_v$ for all $v \in S_k$.
- (b) $\zeta \in k$ and $|S_k|$ (the number of elements in S_k)=1. Then $\dim_{F_n}(V \cap N_{K'/k'}(K'^{\times})/(k'^{\times})^p) = \dim_{F_n}G(L(T)/k)$.

PROOF. (i) If $x \in V \cap N_{K'/k'}(K'^{\times})$, then $x \in N_{K'_{Q'}/k'_{Q'}}(K'_{Q'})$ for any $\mathfrak{q}' \in T'$, where T' is the extension of T to k'. Hence $x \in (k'_{\mathfrak{q}'})^p$ for any $\mathfrak{q}' \in T'$, so $x \in V(T)$. Hence $V \cap N_{K'/k'}(K'^{\times}) \subset V(T)$. Since $\dim_{F_p} V(T)/(k'^{\times})^p = \dim_{F_p} G(L(T)/k)$, we have the assertion.

(ii) Let $x \in V$. Let τ be a generator of G(k'/k) and let $m \in \mathbb{Z}$ be such that $\zeta^{\tau} = \zeta^{m}$. Then by Kummer theory, $x^{\tau-m} \in k'^{p}$ for $x \in V$, so $x^{\tau_{v}-m_{v}} \in k'^{p}$ for any $v \in S_{k}$. Hence by Hasse's norm theorem and Lemma 3, $x \in N_{K'/k'}(K')$ if and only if $x \in N_{K'_{q'}/k'_{q'}}(K'_{q'})$ for any $q' \in T'$. This is equivalent to that $x \in (k'_{q'})^{p}$ for any $q' \in T'$, and to that $x \in V(T)$. Hence $V \cap N_{K'/k'}(K'^{\times}) = V(T)$. Since $\dim_{F_{p}} V(T)/(k'^{\times})^{p} = \dim_{F_{p}} G(L(T)/k)$, we have the assertion. Q. E. D.

LEMMA 5. Assume the condition (i) in Lemma 2. Put $p^{t*} = [L_k^* : L_k^*(T)]$. Then $\alpha \leq r_2 + 1 + \delta_k - t^*$, i.e., $\gamma \geq t^*$.

PROOF. Let K_{α} be the fixed field by $R^{\beta} \oplus \mathbf{Z}_{p}^{r}$ in M_{K}^{*} , by the isomorphism of (1). Then $G(K_{\alpha}/K) \cong \mathbf{Z}_{p}[G]^{\alpha}$ as a $\mathbf{Z}_{p}[G]$ -module. Put $V = \{x \in K'^{\times} | \sqrt[p]{x} \in A'^{\times} | x \in A'^{\times} |$

 $K_{\alpha}(\zeta)$ and $V^* = \{x \in k'^{\times} | \sqrt[p]{x} \in L_k^*(\zeta)\}$. Then $V/(K'^{\times})^p \cong F_p[G]^{\alpha}$ as a $F_p[G]$ -module. By taking $N = 1 + \sigma + \cdots + \sigma^{p-1}$ of both members, $N_{K'/k'}(V)(K'^{\times})^p/(K'^{\times})^p \cong F_p^{\alpha}$, so $\dim_{F_p} N_{K'/k'}(V)(K'^{\times})^p/(K'^{\times})^p = \alpha$. On the other hand, since $N_{K'/k'}(V) \subset V^*$, we have

$$\begin{split} \dim_{\boldsymbol{F}_p} &N_{K'/k'}(V)(K'^\times)^p/(K'^\times)^p \leqq \dim_{\boldsymbol{F}_p} &N_{K'/k'}(V)(k'^\times)^p/(k'^\times)^p \\ &\leqq \dim_{\boldsymbol{F}_p} &(V^* \cap N_{K'/k'}(K'))/(k'^\times)^p \\ &\leqq \dim_{\boldsymbol{F}_p} &(G(L_k^*(T)/k) \\ &\leqq r_2 + 1 + \delta_k - t^* \,, \end{split}$$

by (i) of Lemma 4. Hence $\alpha \leq r_2 + 1 + \delta_k - t^*$, i.e., $\gamma \geq t^*$ by Lemma 1.

Q. E. D.

Another Proof of Lemma 5. We may suppose that $t^* \ge 1$. Since $G(L_k^*/L_k^*(T))$ is generated by $\{G_{\mathfrak{q}} | \mathfrak{q} \in T\}$ ($G_{\mathfrak{q}}$: the decomposition group of \mathfrak{q} for L_k^*/k) and since $|G_{\mathfrak{q}}| = 1$ or p, there exists $T_0 \subset T$ such that $G(L_k^*/L_k^*(T)) = \prod_{\mathfrak{q} \in T_0} G_{\mathfrak{q}}$ (direct product). Then $L_k^*(T) = L_k^*(T_0)$ and $|T_0| = t^*$. Take a subfield k' of L_k^* such that $L_k^* = k'L_k^*(T_0)$ and $k' \cap L_k^*(T_0) = k$. Since $\dim_{F_p} G(k'/k) = t^*$ and $k' \subset L_k^*$, there exists a Galois extension k_∞/k such that $G(k_\infty/k) \cong \mathbb{Z}_p^{t^*}$ and $k' \subset k_\infty$. Put K' = k'K and $K_\infty = k_\infty K$. Since K/k is fully ramified at T_0 , we have $K \cap k_\infty = k$, so $G(K_\infty/K) \cong \mathbb{Z}_p^{t^*}$ as a $\mathbb{Z}_p[G]$ -module. Let $K(T_0)$ be the maximal extension of K in M_K^* which is completely decomposed at K_0 , where K_0 is the extension of K_0 . Put $K(T_0) = K_0$ and since K/k is fully ramified at $K(T_0)$ and $K(T_0) = K_0$ and since K/k is fully ramified at $K(T_0)$, we have $K' \cap K(T_0) = K_0$, so $K_\infty \cap K(T_0) = K_0$. Hence

$$\operatorname{rank}_{\boldsymbol{Z}_{p}}G(T_{0}) \geq \operatorname{rank}_{\boldsymbol{Z}_{p}}G(K_{\infty}/K) = t^{*}$$
.

On the other hand, since $G(T_0)$ is generated by $\{D_{\mathfrak{q}} | \mathfrak{q} \in T'_0\} (D_{\mathfrak{q}})$: the decomposition group of \mathfrak{q} for M_K^*/K and since $D_{\mathfrak{q}}$ is a cyclic \mathbf{Z}_p -module, we have

$$\operatorname{rank}_{\mathbf{Z}_{p}}G(T_{0}) \leq |T'_{0}| = t^{*}.$$

Hence $\operatorname{rank}_{\boldsymbol{Z}_p}G(T_{\scriptscriptstyle{0}})\!=\!t^*$ and $M_{\scriptscriptstyle{K}}^*\!=\!K_{\scriptscriptstyle{\infty}}K(T_{\scriptscriptstyle{0}})$, so $X_{\scriptscriptstyle{K}}^*\!\cong\!G(K_{\scriptscriptstyle{\infty}}/K)\!\times\!G(K(T_{\scriptscriptstyle{0}})/K)$ as a $\boldsymbol{Z}_p[G]$ -module. Hence $\gamma\!\geq\!t^*$. Q. E. D.

THEOREM. Let K/k be a cyclic extension of degree p and let T be a finite set of finite prime divisors of k such that $S_k \cap T = \emptyset$. Assume the following (i), (ii) and (iii).

- (i) $[L_k^*: L_k^*(T)] = p^t$, where t = |T|.
- (ii) $\dim_{F_n} X_k / X_k^p = r_2 + 1$.
- (iii) K/k is unramified outside $S_k \cup T$ and ramified at any $g \in T$.

Then $X_K^* \cong \mathbb{Z}_p[G]^{r_2-t'} \oplus R^{t'} \oplus \mathbb{Z}_p^{t'+1}$ with $t' = \operatorname{Max}(t-1, 0)$.

PROOF. (I) The case where t=0. By Lemma 2, $\beta=0$. Hence by (2)-(3), we obtain $(p-1)\alpha=(p-1)r_2+\delta_K$ and $r_2\leq\alpha\leq r_2+1$. Hence

(6)
$$\alpha = r_2$$
, $\gamma = 1$ and $\delta_K = 0$, or

(7)
$$\alpha = r_2 + 1, \quad \gamma = 0 \text{ and } \delta_K = p - 1.$$

Suppose (7). Then $X_K^* \cong \mathbb{Z}_p[G]^{r_2+1}$ by (1). L_K^*/k is a Galois extension and $G(L_K^*/K) \cong \mathbb{F}_p[G]^{r_2+1}$. Since $H^2(G, \mathbb{F}_p[G]^{r_2+1}) = 0$, the exact sequence

$$0 \longrightarrow G(L_K^*/K) \longrightarrow G(L_K^*/k) \longrightarrow G \longrightarrow 0$$

is split, so $G(L_K^*/k) = G \ltimes G(L_K^*/K)$ (semi-direct product). Let L'/k be the maximal abelian extension in L_K^* . Then

(*)
$$G(L'/k) \cong G \times (\mathbf{F}_{p}[G]/(\sigma-1)\mathbf{F}_{p}[G])^{r_{2}+1} \cong G \times \mathbf{F}_{p}^{r_{2}+1}.$$

Since K/k is p-ramified, so is L'/k. Hence (*) contradicts the condition (ii). Thus we obtain (6), and $X_K^* \cong \mathbb{Z}_p[G]^{r_2} \oplus \mathbb{Z}_p$ by (1).

(II) The case where $t \ge 1$. By (2)-(3), we obtain $(p-1)(\alpha+\beta-r_2)=\delta_K$, so $\alpha+\beta \ge r_2$. On the other hand, by Lemmas 2 and 5, $\alpha+\beta \le r_2$. Hence $\alpha+\beta=r_2$, $\delta_K=0$ and $\alpha=r_2+1-t$, $\beta=t-1$ and $\gamma=t$. Q. E. D.

COROLLARY (a special case of [7, Corollary to Theorem 2]). Under the same notation and assumptions in Theorem, the Leopoldt conjecture is valid for (K, p).

References

- [1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- [2] K. Iwasawa, On \mathbf{Z}_{l} -extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326.
- [3] T. Kubota, Galois group of the maximal abelian extension over an algebraic number field, Nagoya Math. J., 12(1957), 177-189.
- [4] H. W. Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math., 209(1962), 54-71.
- [5] H. Miki, On the maximal abelian *l*-extension of a finite algebraic number field with given ramification, Proc. Pre-conference of Intern. Symp. on Algebraic Number Theory, December 1975 Kyoto.
- [6] —, Magoya Math. J., 70(1978), 183-202 (this is the details of [5]).
- [7] —, On the Leopoldt conjecture on the p-adic regulators, preprint.
- [8] I. R. Šafarevič, Extensions with given points of ramification, I. H. E. S. Publ. Math., 18(1963), 71-95 (= A. M. S. Transl. Ser. 2, 59(1966), 128-149).

Hiroo Miki

Department of Mathematics Faculty of Science Tokyo Metropolitan University Setagaya-ku, Tokyo 158 Japan Hirotaka Sato

Department of Mathematics Faculty of Science Tokyo Metropolitan University Setagaya-ku, Tokyo 158 Japan