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Introduction.

Let F(q) be the finite field with ¢ elements where g is odd. Suppose that
there is given a 2nX2n symmetric matrix S whose entries are in F(g) such
that det S+#0. Let O,(S) denote the special orthogonal group with respect to S
and Sp(2m) denote the symplectic group of genus m. We consider O,(S) and
Sp(2m) as connected semisimple algebraic groups defined over F(q) endowed
with the Frobenius map F. Let M,, »(F(g)) be the set of all 2nXm matrices
with entries in F(q) and S(M,,, .(F(q))) be the space of all complex valued
functions on M,,, »(F(¢)). Then we can construct, associated with S, so called
Weil’s representation rg,,, of Sp(2m)F realized on S(M,,, »(F(q))). The repre-
sentation 7g , can be decomposed naturally according to representations of
0.(S)¥. Thus we have a correspondence from the set of the equivalence classes
of all representations of O,(S)” to that of Sp(2m)”. For a representation p of
0,(S)*, let s n(p) denote the representation of Sp(2m)* which corresponds
to p.

The purpose of this paper is to get some insight about the nature of this
correspondence in the case m=n. A natural parametrization of most of the
irreducible representations of O,(S)¥ and Sp(2n)F is available from the work of
Deligne-Lusztig [4]. In their paper, for an arbitrary connected reductive
algebraic group G defined over F(g), a maximal F-stable torus T and a character
6 of TF, a virtual representation RY of G¥ is constructed. Moreover it is
shown that any irreducible representation of G¥ occurs as a constituent of some
RS and that (—1)°®-¢RY ig an irreducible representation if # is in general
position, where ¢(G) and o(T) denote the F(g)-rank of G and T respectively.
Now let T be a maximal F-stable torus of O,(S). Then there exists a maximal
F-stable torus T’ of Sp(2n) such that T is isomorphic to T’ over F(q) as
algebraic tori. We fix the isomorphism between TF and 7'F, which is similar
to that between T,F and T, given in §2. Let 6 be a character of T¥ which

*) This work was partially supported by the Sakkokai Foundation.
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is in general position in Sp(2n) when we regard 6 as a character of 7. We
write 7g ., as ©g. Then we naturally have

CONJECTURE. (—1)¢ @16 -0¢D R8(0) (S)F) correspondsto(—1)"~¢T RE. (S p(2n)F)
via Weil's representation rsg.

In this paper, we shall settle this conjecture for some specific torus T.
To be more precise, consider a map f(x)=Trpqny/ry(Nrg2nyirgny(x)) from F(g*")
to F(g), where Trreny/re (resp. Npceny/rqny) denotes the trace (resp. the norm)
map from F(g") to F(q) (resp. from F(¢*") to F(¢™)). Then f(x) defines a
quadratic form on F(g)*® when we fix an isomorphism F(¢*")=3F(g)*" as vector
spaces over F(q). Let S be the 2nX2n symmetric matrix which corresponds
to this quadratic form. The Witt index of S over F(q) is n—1, i.e. O,(S)F is
of non-split type. Put H={x&F(¢*™)|Npznyrqn(x)=1}. Then there exist
maximal F-stable tori T, and T, of 0,(S) and Sp(2n) respectively such that 7T
and T, are isomorphic over F(q) as algebraic tori and that 7,F is isomorphic
to H. We assume that §= HV corresponds to a character in general position of
T% and ¢>3 if n=2 or 3 for some technical reasons. Then our [Theorem 2 as-
serts that (—1)""'R{, corresponds to (—1)"R%..

The method of our proof is as follows. In §2, we compute the character
of ms((—1)""*R%,) on regular elements of 77, using Gaussian sums (Theorem ).
This character formula together with the formula (7.6.2) of Deligne-Lusztig [4]
give us the information that zg((—1)""*R%;) must contain (—1)"R% as a con-
stituent for some character @ of T4 which is also in general position. From
this fact, we can prove that if dim zs((—1)**R%)=|Sp2n)"|/|TF|¢™, we may
take §’=6 (Proposition 4). In §3, we give an expression for dim zs((—1)*"'R%,)
in terms of the Green function of T, and the number A™ of unipotent elements
u of O,(S)¥ such that rank (1—u)=2r (0=r=n—1). The Green function of T,
and the number A™ are calculated in Lusztig’s paper and respectively.
Thanks to these formulas, we can prove that dim zs((—1)*"*R§)=|Sp(2n)*|/
| T5 g™

In §1, we give a simple proof of the existence of Weil's representations.
M. Saito has given a proof of the same nature verifying many complicated
relations among generators of the symplectic group. Our proof uses certain
limit argument when the base field is local. Then it is sufficient for us to
verify essentially one type of relations (i.e. relations of type (iii), cf. the proof
of Proposition 1). From Weil’s representations x in the case where the base
field is local, we obtain Weil’s representations of the symplectic groups over
finite fields or finite rings obtained from a local field, by analyzing the restric-
tion of the representations = to a maximal compact subgroup. (We should note
that our method does not apply to the case where the number of variables of
a quadratic form is odd and the base field is finite. This case is included in
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[11].

Assume that the base field is finite. If n=m=1, a complete decomposition
of Weil’s representations is contained in S. Tanaka [16] When n=m=2, a
complete decomposition of Weil’s representations is obtained by J.S. Andrade
1] [3] Thus our is a special case of their results if n=<2.
When the base field is R and the orthogonal group is compact and n=m, S.
Gelbart [5] clarifies the correspondence between representations of the orthogonal
group and the symplectic group. The result of this paper may be regarded as
an F(g)-analogue of [5], although our starting point was certain numerical data
which seem to suggest the importance of the quadratic forms of the type x —
Trpo(Ng/#(x)) in the theory of Siegel’s modular forms of genus 2, where K is
a totally imaginary cyclic quartic extension of @ and F is the real quadratic
subfield of K. The author would like to discuss this topic in his subsequent
paper. We should also mention a paper of R. Howe [6], where quite general
conjectures about correspondences between representations of “dual reductive
pairs” are formulated. The conjecture stated above would be considered as a
slightly sharpened special case of his conjecture.

The author would like to express his hearty thanks to Professor H. Hijikata
and Dr. T. Asai for many stimulating discussions.

NOTATION. For a commutative ring R with a unit, M, ,(R) denotes the
set consisting of all n X m matrices with entries in R and we abbreviate M,,, »(R)
to M,(R). For AeM,(R), Tr(A) and det A denote the trace and the deter-
minant of A respectively, and ‘A denotes the transpose of A. We denote by
GL(m, R) the group of all invertible elements of M,(R). We define an element
w(R) of GL@m, R) by w(R)=( On Ln

—1n On

and the zero matrix of M,,(R) respectively. When no confusion is likely, we
01
—1 0

Ry={xeGL2m, R)|*xwx=w}. We usually write gSp2m, R) as g—*—(f ;7),

where a,b, ¢ and d are elements of M,(R). We denote a subgroup
*
1 . -1)=2l8=Sp@m, R), a=GLom, R)} by B(R). For an algebraic group G
defined over F (q), F denotes the Frobenius map of G and G* denotes the group
formed by all fixed points of G under F. If G is connected reductive and T
is a maximal F-stable torus of G, RY denotes the virtual representation con-
structed in Deligne-Lusztig [4], where 6 is a character of TF, Since we deal
two groups simultaneously, we sometimes denote R% by R4(GF) to avoid the
confusion. For a finite group H, HY denotes the set of the equivalence classes
of all irreducible representations of H over C and R(H) denotes the Grothendieck

), where 1,, and 0, denote the identity

write w(R) as w:( ) The symplectic group over R is defined by Sp(2m,
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group of the finite dimensional representations of H over C. For p, € R(H),
we define the intertwining number <p, 7)€ Z by {p, z>=hez;1 Tr p(h) Tr 7(h)/ | H|,

where 7 denotes the complex conjugate of z. For a commutative field F and
a finite separable extension K of F, Trg,r and Ng,r denote the trace and the
norm map from K to F respectively.

§1. Weil’s representations.

In this section, we shall give an elementary proof of the existence of Weil’s
representations of the symplectic groups over local fields or finite fields or finite
rings obtained from local fields. Our proof is based on the “transformation
formula” of characters of the second degree, which is given in Weil [I7].
First we consider the case of local fields.

LEMMA 1. Let k be a local field and put B=B(k). Then we have Sp(2m, k)
=BwBwB.

ProOF. We can give a similar proof to that of [Lemma 2 of Shimura [13].

Namely, put Y:{(Z z)eSp(Zm, k)| det c:o}. Then Y is the set of A-rational

points of a Zariski open subset defined over £ of the symplectic group and

(a b)eY can be written as
c d

a b —ic™t —a 1 ¢
= w BwB.
c d 0 —c 01

By Lemma 6.1 of Shimura [12], any g&Sp(2m, k) can be written as g=y,y,
with y,, y,Y, hence our assertion.

Let ¢ be a non-trivial additive character of 2 and SeM,,(k) be a symmetric
matrix such that det S=0. We put V=M,, (k) and consider V as a locally
compact abelian group. For x=V, define an mXm-matrix Q(x) by Q(x)="’xSx.
We define a character of the second degree f of V by f(x)=¢(Tr(Q(x))) for
x€V and a self duality <,> of V by <x, yo=f(x+3)f(x)"*f(»)"* Let dx
denote the selfdual measure of V and S(V) the space of all Schwartz-Bruhat
functions on V. For @8(V), the Fourier transform @*<=S(V) is defined by

@*(x)zSV@(yXx, y>dy. For a=GL(m, k), let |a|, denote the module of the

automorphism x — xa of V. The “transformation formula” of Weil (cf. Weil
[17], p. 162, Corollary 1) can be read as follows.

(1) S@*f)(yxx, wdy=r()P*x)f(x)*  for any PeS(V).

Here 7(f)* is a complex number which depends only on f (i.e. on S and ¢) such
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that |7(f)|=1 and the convolution @xf is defined by

(2) (@+)()={0) Fy—w) du.

We assume, for simplicity, that the characteristic of %2 is not 2. We shall
associate a character w(S) of 2 to S. If (—1)*det S is a square in k*, we put
o(S)=1. If (—1)"detS is not a square in k*, define a separable quadratic ex-
tension K of £ by K=k(+/(—1)" det S). We take w(S) as the nontrivial character
of £ which is trivial on Ng,,(K™).

PROPOSITION 1. Let the notation and the assumption be as above. Put 7=
7(f) and w=aw(S). Then there exists a unique representation = of Sp2m, k) on
S(V) which satisfies the following 1)~3) for any @ <S(V).

1 5

D 7~'<0 1)@(X)=¢(Tr(b0(x)))@(X),
a 0

2) 71'( )@(x):w(deta)[al%z/z@(xa),
0 ta—l

01
3) 71'( )(D(x):r@*(x) .
-1 0

Proor. By [Lemma 1, Sp(2m, k) is generated by the elements of the form

(1) l{), (8 t2_1> and w. Hence the uniqueness of = is obvious. Put B=DB(k).

It is easy to verify that a representation of B on S(V) is defined by 1) and 2).
Therefore it is sufficient to show that the relations between the elements of B
and w are preserved by =. We first find the following relations, as in the case
of SL(2, k).

a 0 ta=1 0
(1) w( ):( )w, asGL(m, k).
0 ta™? 0 a

-1 0
@ w7 ).
0 -1

1 5 —b"t 0\/1 —b\ /1 —p71
(iii) w w= w , beGL(m, k), 'b=b.
0 1 0 —b/\0 1/ \0 1

1) From the definition of 7(f), we can verify easily that y(f) remains invariant
when we replace f by f/=¢(Tr(txtaSax)) for acGL(2n,k), if we make the obvious
modifications of the self duality and the selfdual measure according to this replace-
ment.
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We can see easily that (i) is preserved by =z if and only if
(3) w’=1

and (ii) is preserved byzz¥if and only if

(4) r*=((=1)".

By the definition of w, (3) is obvious. A verification of (iii) can be done along
the similar line to that in Jacquet-Langlands [7], §1. By the transformation
formula (1), we can obtain (iii) for 6=1,, with a little computation. To get
(iii) for any beGL(m, k) such that 'h=b, we take a character of the second
degree f/(x)=¢(Tr(bQ(x))) of V and replace the self-duality of V and the selfdual
measure of V according to the change f— f. The formula (1) holds under
this modification with another constant 7(f’). Using this formula for f/, we can
see that the relation (iii) for b is equivalent to

(5) 7(P/1(f)=w(det ),

if we assume (4). Let f, be a character of the second degree of V,=Fk?" defined

by fo(x)=¢('xSx), x=V, By of [17], we have y(f)=r(f))". We
d, J 0
can take ceGL(m, k) so that chlc= 2'-. , where d,€k* (1Zi1=m).
0 '.dm
Then we see, by changing the basis of V, the character of the second degree

f' can be written as f'(xy, X r, Xp)= f[lfo(dix), where x,€V, is identified
with the i-th column vector of x®. Therefore we get y(/)=II7r(f;), where f;

is a character of the second degree of V, defined by f,(x)=/f,(d;x). We shall
show that

(6) 7(F)=wl(dJr(fo), T(fo=ws(—1) and w=a,,

with a character w, of £*. Assuming (6), we obtain (4) and (5). To prove (6),

we decompose V, into a direct sum of 2-dimensional subspaces U;; V,= ézal U; so
Py

that we can write fo(3)=g1(y1)gx(¥2) - gn(¥2) if y=(y1, yo, =+, ¥a), ¥,;€U,,
where g; is a character of the second degree of U;, We may assume that g;
is written as g y,)=¢(y;S;v), S;EMyk), tS;=S;, detS;x0. Put g/(y)=
$(di*y;S;3). We have r(fo)=I17(g;) and 7(fi)=I17(g/). In Jacquet-Langlands
(71 §1, it is shown that ! !

2) We replace f/(x) =¢ (Tr(btxSx)) by /7 (x) =¢ (Tr (b (x¢) S(x¢))) =¢ (Tr(chbtc?xSx)).
Then we can verify that y(f/) =y(f”) if we modify the self-duality and the selfdual
measure according to the change f/ — f”.
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(7) 7(g)=wdr(gy), 1(g)’=wl-1),

where w; is a character of £ such that w/?=1. Put cuc,:f[ w;. Then by (7),
=1

the first two equalities of (6) are satisfied. We shall show that w=w, i.e.
w,=w(S). For this, we remind that w; is determined in the following way (cf.
p. 4~6 of [7]). We may write S; as S,-:(aoj 2), a, b;ek*. If —a,/b; is a
square in k*, then w;=1. If —a;/b; is not a s]quare, then w; is the character
which corresponds to the separable quadratic extension k(+/—a;/b;) of k by
local class field theory. We can verify easily that if two characters a and
correspond to separable quadratic extensions k(+/x) and k(+/y) respectively,
then af corresponds to the extension k(+/xy), where x, yek*. Hence we have
w,=w(S). Therefore the relation (iii) is verified.

By [Lemma 1|, it is clear that any relation among the elements of B and w
can be reduced to the followings;

(iv) bywb,wb;=wb,w, bye B (1=5154),

(V) wbwbyw=b,wbawbs, b;=B (1=i<5).
First let us consider the relation of type (iv). This is equivalent to wb,wb,*w™*

=b,wb,. Using the relation (i), we may assume that b4:<(1) ?), b3:<(l) is), ey

. . 1 Cy 1 - Cs _ Cs 1
t P n pranming . 1—
eM,(k), tc;=c;, i=3, 4. Since w(o 1>w(0 1>w ( 1—cye, C)eBwB,
we have det(—1—c,c;)>~0. Hence we get

1 ¢, 1 —¢, Hl4-cue)™t —cy 1 (14cuc5)7 e,
(8) w( w wi= w
01 0 1 0 1+c,es/ \O 1

and (iv) is reduced to (8) and the relation of the form () b,wb,=bswbhs, by, bs<E B.
The relation (x) can easily be reduced to the relations (i)~(iii). Suppose that

det ¢;%0. Then we have w((l) __ia)w‘le BwB and (8) is reduced to the rela-

tions of the form wb,’w=>b,’wb,’ with b,’, b,’, by’ < B.

LEMMA 2. A relation of the form wbyw=>bywbs, b;, bs, b€ B can be derived
from the velations (i), (ii) and (iii).
1 ¢
01

ProOF. Using (i), we may assume that blz(
have det ¢;>x0. Using (iii), we get w((l) ;I>w:b4wb5, by, b= B. Hence our rela-

) EMa®), fa=c. We
tion is reduced to b,wbs=b,wb, i.e., wbsb,"'w*=b,"'b,. Then we must have

t4-1
bsb, 1= (g ‘c(z)‘l>’ b[’bZ:(% 2) with some a=GL(m, k), hence our assertion.
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By Lemma 2, we have seen that the relation (8) is preserved by = if det c,
30. Assume that k is non-archimedean. We can easily see that for any
@ <=S(V), there exists a positive integer N such that

]. C4 1 _C3 1 C4 1 —63/
n(w)n( )n(w)n( >7r(w“1)@=7r(w)7r< )n(w)n( )ﬂ(w‘l)@
01 0 1 01 0 1

(¢! 43-1 L3 11 43—14
n((—l-cc) c )n(w)n(o(—l—cc) c)@

and

0 14c4c, 1
H(Adcues’)™t —cd I (I4cqcs’) ey
=x a(w)r (0
0 1+c.cs 0 1

if ¢i/eM,(k), tcy’=cy’ and cy’=c, mod w?", where w denotes a prime element of
k. It is easy to see that we can take ¢, so that ¢,’=c¢, mod w?, ‘c,/=c¢;’ and
det ¢,’>0. Therefore (8) is proved when % is non-archimedean. If £ is archi-

medean, we define, as usual, the L*norm ||@| of @=S(V) by IIQ)lIz:SVIQ(x)Ide.

Then we can see that the effects of both sides of (8) to @ under = can be
made arbitrarily small with respect to this norm, when we replace ¢; to a
sufficiently close ¢,’, ¢’ €M, (k), ‘c,’=c,’, det ¢;’>0 (use Plancherel’s formula to
show that [|z(w)®@| is small if |@| is). Hence the relation (8) follows.

Now let us consider the relations of type (v). Although (v) can be derived
algebraically from the relations (i)~(iv), we prefer to use the following simpler

argument. Using (i), we may assume that blz(l Cl), bzz(l 62), b5:(1 G

01 01 01/
Since we have w(l Cl)w(l 62)w<1 G w“1:< —1—cues G BwB
01 01 0 1 C1—Cstciccs —1-4+ccs ’

we have det(c,—cs;+c¢ic2¢5)30 and we see that the relation (v) can be reduced to

1 ¢, 1 ¢ 1 —cs
@ el el o )
01 01 0 1

<_t(c1—c5+510205)—1 14cqc5 ) (l (01_05+0102C5)_1(—1+C1C2))
w .
0 1

0 —(c1—c5tcic25)

Using (iii), we can see that (9) is reduced to (iv) if det ¢,2:0. If detc,=0, we
can take c,’eMp,(k), ‘c,/=c,, detc,’>0 so that ¢, is sufficiently close to c,.
Applying the same argument as above, we get (9). This completes the proof
of

REMARK 1. By of and the results of [7], §1, we see
immediately that y=y(f) is determined in the following way. In the Witt group,
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the quadratic form x — ‘xSx on k?" is equivalent to one of the followings; (i)
the norm form of the division quaternion algebra over k, (ii) the norm form
of a quadratic extension of %, (iii) axXthe norm form of a quadratic extension
K of k, where ask”, asE Ng,,(K*), (iv) the trivial form. In the case (i), r=
(—=D™. In the case (ii), y=A(K/k, ¢)™ (about A, see [7], p. 6). In the case (iii),
r=(—D™A(K/k, $)™. In the case (iv), r=L

LEMMA 3. Sp@2m, F(q)) is generated by B(F(q)) and w.

Proor. We put G=Sp(2m, F(q)) and B=B(F(q)). Define subgroups A and
N of G by A={(? .); acGLim, F@)}, N={(; 7); beMalF (), =b).
The map defined by the multiplication AXNXN — ANwNCG is an injection.
Therefore we have |BUBwB|=|A|N|+|A|N|% We have |A|=(g"—1)(¢™—q)
e (qM—g™Y), N=qmmD72, G=¢™*(g*—1)(¢*—1) -+ (¢*"—1). Hence we get |G|=
g (L= (1= - (1= and [ AIN|P=g* ™ (1—g(1—q7) -
(1—¢™). If ¢=3, we have 1—¢g )(1—¢?) --- 1—qg ™)>(q—2)/(q—1)=1/2. Hence
we get |G|/|BwB|<2 and G must be generated by B and w. Assume that
g=2. Then we have |G|/|BwB|=1+4+2"9)1+2"%) .- (142 ™)<3. Hence if B
and w does not generate G, they must generate a subgroup of G of index 2.
Since G is known to be simple if m >2, we may assume that m=<2. Then we
get |G|/|BwB|=15/8<2, hence our assertion.

Let 2, O and w be a non-archimedean local field, the maximal compact
subring of 2 and a prime element of k respectively. For a positive integer N,
let us define a congruence subgroup I'(N) of Sp@2m, O) by

a b
F(N)z{( d)eSp(Zm, D)1azdzlm mod w¥, b=c=0,, mod mN} .
C

LEMMA 4. I'(N) is generated by the elements of the form ((1) [D, b=0
mod w?, th=b, (i (1)), c=0mod w?¥, tc=c and (g ‘((1)'1)’ a=1mod w?.
.o (1+wPa wPb
PrOOF. Let 7 be an element of I'(N). We can write 7'—( Ve 1iwVd
with a, b, ¢, deM (). Put

(‘(I—HD’Nd)‘l wPb ) (l D’Nb(l—l—’(D’Nd)"l)(‘(l—}—m’Nd)'l 0 >
7= = ’

0 1+w¥d 0 1 0 1+w?d
1 0 A4+wVd) *Hwb(1+wNd)c wPb
7= and 75=7,7.= .
w¥1+w¥d) el w¥e 1+w¥d

Since reSp@2m, k), we have b(1+w¥d)*='(1+w¥d)™* *b and ‘(I+wVa)1+w¥d)
=1+w?" tch. Hence we have 7,€l'(N) and 1+wVa="1+w"d)* Q1+w?" ‘bc)
=(1+w¥d) "+ o (I+w¥d) ! the="1+w"d)+w*Yb(1+w"d) 'c. Therefore
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we get y=7r;=717.. Hence 7,=r,"'r€l'(N) and (1+w"d) *¢c must be symmetric.
This completes the proof.

LEMMA 5. Sp@2m, O) is generated by B(D) and w(D). Splm, O/w') is
generated by B(QO/w') and w(O/wt), where | is a positive integer.

PROOF. The first assertion follows immediately from [Lemma 3 and Lemma 4.
The second assertion is an obvious consequence from the first one.

Hereafter in this section, we will assume that the residual characteristic
of & is not 2. To get Weil’s representation of Sp(2m, D/w'), =1, we consider
the module V,=9/w"'EO/w 2P --- HO/w’?", where n is a positive integer and
r; (1=1=2n) is a positive integer such that »,=/. We take elements u,=(Q/w')",
1=i=2n. For y=(yy, Yo =, Yau)y ¥’ =1, 325 =, Y2’y 3:€0/W", 3,/ €D/,

vy, ¥'€V,, we define an element B(y, y’) of O/w' by B(y, y’):jé: ww v

We put V=V,". For acGL(m, O/w'), we obtain a well defined element xacV
in an obvious manner. For x=(x,, x5, -+, xn)€V, x;€V,, we define Q(x)e
M,®/wY) by (Q(x))i;=B(x;, x;), where (Q(x));; denotes the ij-entry of Q(x).
Let ¢ be a character of O/w! such that the restriction of ¢ to @' ™O/w'O is
non-trivial. We denote by S(V) the vector space of all complex valued func-
tions on V. For @=8(V), the Fourier transform @* of @ is defined by

(mZrd/2

(10) OH)=g " B OG)x 3,

where we put <{x, y>=¢(Tr(Q(x+y)—Q(x)—Q(»))) and g denotes the module
of k.

For 1=<i<2n, we take an element #,=9* so that #; mod w'=uwu; and define
~ m/l—‘rl
“ flwt-Te 0

a matrix SeM,, (k) by S= . Then the character

0 ﬁ.m@/l—mn
o(8)=a* of k* defined before does not depend on the choice of #,’s, since every
element ¥ =9O* such that u=1mod w' is a square in O*. Moreover the con-
ductor of @* is not greater than 1. Define a character w of (O/w!)* of order
2 by

1n o(u mod wh)=a*(u) for ueO*.

Let ¢ be an additive character of k such that J(u)=¢(u mod w?) for any uD.
Define a character of the second degree f of M,, n(k) by f(x):gZ(Tr(thVx)),
xEM,, (k). Then we see easily that 7(f) does not depend on the choice of
#is and ¢ (cf. Remark 1 and [7], p. 4~6). We put

(12) r=r(f).
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PROPOSITION 2. Let the notation and the assumption be as above. There
exists a unique representation m of Sp(Zm, O/w') on S(V) which satisfies the
following 1)~3) for any @ =S(V).

1 b

1Y) ﬂ(o 1)@(X)=¢(Tr(bQ(X))@(X),
a 0

2) 71'( )(D(x)za)(deta)@(xa),
0 ta™t

01
3) 7r< )¢<x)=r@*(x),
-1 0

where w is a character of (O/w')* defined by (11) and 7 is a complex number
defined by (12).

PrOOF. Let # be the Weil representation of Sp(2m, k) associated with S
which is realized on S(M,, »(k)), whose existence is shown in [Proposition 1|
Put V=M,, (k). Let us define a subspace W of S(V) consisting of all func-
tions @ =S(V) which satisfy the following conditions (i) and (ii).

(i) The support of @ is contained in M,, (D).

(ii) If (x4 and (xf;) €My, (D) satisfy x;;=x}; mod w”t for any ij-entries,
then @((x,;))=0((xi,))-

First we will verify that W is invariant by Sp(2m, ). To see this, it is
oY) beMu @) =0,
(¢ .).) a=GLm, ©) and w by We take an eclement O W, Put
U(x)=¢(Tr(b*xSx)@(x). It is clear that the support of ¥ is contained in
M, n(0). If x=(x;;) and x’'=(x{;) € M,,, n(D) satisfy x;;= x/;mod w™ (for Vi, V),
then we have ‘xSx='x'Sx’mod w'’. Hence we get Tr(b'xSx)=Tr(b'x'Sx")
mod w'. Therefore we have ¥&W. Next put ¥(x)=a*(det a)@(xa) for ac
GL(m, ). It is obvious that ¥ satisfies (i) and (ii). We consider the case

S~ ~ . . A T~
()= 0, 3dy, where (> s the self-duality of ¥ defined by (x, 9=

enough to show that W is invariant by the actions of (

J(Tr(2:xSy)) and dy denotes the selfdual measure on V. We see that if x,;
= x;mod w"i for x=(x;;) and x’'=(x})EMyn n(D) (for Vi, ¥7), we have {x, y>=
<m> for any yeM,,, ,(). Therefore ¥ satisfies (ii). Define a submodule M’
of My m(0) by M'={x=(x;;)EM,,, n(O)] x;;=0mod w™ for Vi, V;}. Let {y,} be
a complete set of representatives of M,, ,(0)/M’. We have S D (y)
~ —~— ~ A~ Man,m ()

{x, ydy= ;SMIQ(kax, yitordv=3 D(yp)x, yk>§M,<x, v>dv. We can easily

Ve
see that the map v — {x, v) defines a non-trivial character of M’ if x&M,,, (D).
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Therefore @*(x)=0 if x&M,,, (D) and (i) is verified.

. 1 . . .
It is clear that (0 ?), b=0mod w"' acts trivially on W. Since the conductor
of @* is not greater than 1, ¢ :0-1>» a=1mod w' acts trivially on W. Hence
0 ‘a

1 . .
(C g):w((l) i)w“ also acts trivially on W if ¢=0mod w'. By [Lemma 4, I"(})

acts trivially on W. Therefore the restriction of # to W defines a representa-
tion 7’/ of Sp(2m, O)/I'(l) = Sp2m, O/w?). Let ¢ be the natural isomorphism
from W to S(V), i.e. «(@)(x;;) mod w™)=D((x;;), (x:)EMyp, n(D), P=W. By
shifting the structure, we obtain a representation = of Sp(2m, O/w?) on S(V).
We can see easily that the volume of M,,, ,(O) measured by dy is equal to
q(m?")/z. Then it is clear that = satisfies 1), 2) and 3) and the “Fourier trans-
form” @* of @=S(V) is given by [10). The uniqueness of = is obvious by
This completes the proof.

§2. A computation of characters on regular semisimple elements.

For a 2nX2n non-singular symmetric matrix S with entries in F(q), let
O(S) denote the orthogonal group with respect to S. Hereafter we assume
that ¢ is odd. We put 0,S)={g=0(S)|det g=1}. We consider O,(S) and
Sp(2m) as connected semisimple algebraic groups defined over F(q) with the
Frobenius map F, where m is a positive integer. Let S(M,, »(F(q)) be the
vector space of all complex valued functions on M,,, .(F(g)). We put &(S)=1
if the Witt index of S is n (i.e. (—1)*detS=(F(9)*)?) and &(S)=—1 if the Witt
index of Sis n—1 (i.e. (—1)"detS«(F(g)*)»)®. Let ¢ be a non-trivial additive
character of F(q). We put V=M,, (F(q), <{x, y>=¢(Tr(2'xSy)) for x, yeV
and @*(x):q‘m"yélv@(y)u, y>. Then, by there exists a unique

representation © of Sp@m)F = Sp(2m, F(q)) realized on S(M,,, »(F(q)) which
satisfies the following 1)~3) for any @ =S(M,, ~(F(q)).

1 b
1) n(o 1>@(x):¢(Tr(b‘xSx))@(x) R
a 0
(13) 2) n( )(D(x):@(xa) ,
O ta—-l

01
3) n( ) 0)@(x):(e(S))"‘<D*(x).

3) This choice of &(s) follows from the fact that A(K/k,¢)=—1 if K is the
unramified quadratic extension of a non-archimedean local field £ and ¢ is an additive
character of k£ such that w9 is the largest ideal on which ¢ is trivial.
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We denote 7 as m=ms, . Let p be a representation of 0,(S)" whose re-
presentation space is W. It is obvious that =g, , can be extended to the re-
presentation zg, »,w of Sp(2m)F realized on the space of all W-valued functions
on V in such a way that zg ., w satisfies (13) for any W-valued function @ on
V. Let W(p) denote the space of all W-valued functions @ on V which satisfy
that @(gx)=p(g)@(x) for any g=0,(S)" and any x=V. We have

PROPOSITION 3. The space W(p) 1S Ts, m,w-lnvariant.
o)) and =)0
belongs to W(p) if 0= W(p), where 7=nrg ».w. Hence our assertion follows by

Let =g n(p) denote the representation of Sp(2m)F realized on W(p). We
are interested in the correspondence p — 7g, n(p) from the set of equivalence
classes of all representations of O,(S)* to that of Sp(2m)F. This correspondence
can be extended to a Z-linear homomorphism 7y, , from R(O,(S)F) to R(Sp(2m)F)
by 7s. m(zl: a;p)= 2:.4 a;7s, m(01), PiE(O1(S)F)\/, a;EZ.

Let ¢ be an isomorphism F(¢®") =5 F(q)*® as vector spaces over F(g) and
S denotes the 2nX2n symmetric non-singular matrix with entries in F(q)
defined by

(14) TrF(qn)/F(q)(Nﬂan)/F(qn)(x)):tf(x)Sl(x) .

It is known that the Witt index of S is n—1 i.e. O(S)¥ is of non-split type
(cf. Lemma 2.2 of Milnor [107]). We put H={x=F(¢*")| Nrc2n)irgn(x)=1}.
We will give explicit embeddings of H into O,(S)¥ and Sp(@2n)F. First H can
be embedded into O(S)F in an obvious manner, since H makes the quadratic
form x — Trpgny/rp(Nrqenyirgny(x)) on F(g®*) = F(¢)*" invariant. By an inspec-
tion, we can see that the image of H is contained in O,(S)’. For an embed-
ding into Sp(2n)F, let us write F(¢**)=F(q")(«v/d ) with d=F(q"). Let ¢ be the
non-trivial element of Gal(F(¢*")/F(q™)). Define an alternating form f(x, y) on
F(@®™)XF(@™) by f(x, )=Trpqnyirp((xy°—x°9)/24/d). It is clear that H
makes f invariant. We write x=x.+x,v/d, Y=+ Y./ d With x,, x5, V1, Y2
€F(¢"). Then we have f(x, ¥)=Trrqn/rp(x1¥:—x:y,). Define a symmetric
matrix S,eM, (F(q)) by Trpgmrgp(xy)="t(x)Se(y) for x, yeF(q"™), where ¢,
denotes an isomorphism F(¢") = F(¢)" as vector spaces over F(q). Let ¢ be
the regular representation of F(¢") into M,(F(g)) with respect to the basis of
F(g™) which determines the isomorphism ¢,. For a+p+/d €H, (a, f=F(q™)), put

d 0 0 .
ga, ‘B):CE‘;; :gg) )), Then we get ‘g(a, ﬂ)(_go ﬁ)g(a, ‘B):(_go i) Since

Proor. We can verify immediately that 71'((1) i)Q), T

4) Since S and aS are equivalent for a=F(q)*, the equivalence class of =g, , does
not depend on the choice of ¢.
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tr St 0 0 Spo/Sz*t 0 0 1, Se 0 St 0
(y 1><~s0 ) (o 1>:(~1n o")=w, we have (7 st By )=
(S(,'L'(O()SE1 Sez(Bd)
(BST? @
_)(Sor(a)Sg1 Ser(Bd)

(ST (@)
T, of Sp(2n) which splits over F(g?*) such that 7Y is equal to the image of H.
Let T, be an F-stable maximal torus of O,(S) such that 7% is equal to the
image of H. Thus we get a natural identification of 7% with T%. Hence we
may identify (T%)V with (T%)V, using this isomorphism.

LEMMA 6. If n is an element of T%, then the set of all elements of TY which
are conjugate to n in Sp2n)’ is given by {y, 7% 9%, =,y Y. If 5 is an
element of T7%, then the set of all elements of T4 which are conjugate to 7 in
O,(S)F is given by {9, p%, p%, - =" %},

Proor. First we consider the case of the symplectic group. Assume that
peT¥ corresponds to k= H. Then all eigenvalues of 5 are given by £, 0=
i=2n—1. If »’eT¥ corresponds to £’ H and %’ is conjugate to 3 in Sp(2n)~,
we must have x’=x? for some i, 0=i<2n—1. This shows that 7’=7%. Hence
it is sufficient to show that 7 and 7? are conjugate in Sp(2n)”. Fix an isomor-
phism ¢: F(¢*") = F(¢)*" and an alternating form f on F(g)*"XF(g)** defined
by f(e(x), (¥)=Trrqnyrp((xy°—x°y)/v/"d) with oEGal(F(¢*")/F(q")), o=1.
Define A€GL(2n, F(q)) by Ac(x)=c(x%), x=F(¢°"). We can take pcF (¢*")* so
that (upe)'=~/d /(v ) since /T /(v d V€ F(g"). Define peGL2n, F(q)) by
ge(x)=c(px). Then we have ((Ag)'ntAp)c(x)=(a A ' plA)c(px)=(a"'A™'n9)
(pix) =g A (e 2x ) =p (e px))=c(ex)=7((x)) for any x&F(¢*"). Hence
we get (Az)'p?Ag=y. On the other hand, we can verify easily that f(Ag«(x),
Apie(y)=7((x), «(y)) for any x, yeF(¢*"). Therefore we see that Az belongs
to the symplectic group with respect to f. From this, we see easily that y
and 7? are conjugate in Sp(2n)".

)es p(2n)F. We embed H into Sp(2n)F by this map: a+8+/d

>. We can see that there exists an F-stable maximal torus

Now let us consider the case of the orthogonal group. We define a non-
degenerate symmetric bilinear form g on F(g)**XF(¢)*" by g((x), c(y)=
Trroenyrp(xy?). Then we see that O(S) is isomorphic over F(g) to the
orthogonal group with respect to g. Let AeGL(2n, F(q)) be the matrix defined
as above. Then we have g(Aw(x), Ac(»)=g((x9, ((¥y))=Trren)rep(xy°))=
g(e(x), «(y)) for any x, y=F (¢**). Hence A=O(S)*. We get A 'n?A=y for any
n€T4 in the same manner as above. Therefore » and 7? are conjugate in
O(S)F for any p&T%. Since A2p®A’=y, n and 7% are conjugate in O,(S)".
Then, to prove our assertion, it is sufficient to show that » and 7? are not
conjugate in O(S)F if pxy%l If A"%ytA’=y with A’€0,(S)", then A’'A
centralizes 7. From 7379 we see that » is a regular element of a maximal
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torus even in GL(2n, F(g)). Using this fact, we see easily that A’"*A must
belong to T%. Hence it is sufficient to show that A< O0,(S)F i.e. det A=—1.
Choosing a suitable basis of F(¢?"), we can see that A is represented by a
cyclic permutation matrix of length 2n. Hence we get det A=(—1)*""1=—1
and complete the proof.

Let X be a character of 7% which is in general position. By Deligne-
Lusztig [4], there [exists an irreducible representation (=1)"'R%, of O,(S)".
Let teT% be a regular element. Then by Theorem 4.2 of and
we have

Trace (— 1) Ry (f)=(—1)"" % 1)

THEOREM 1. Let S be the 2nX2n symmetric matrix defined by (14). Put
t=ng . 1f1=TY is a regular element, then

Trace 7((—1)" Ry, O:SMNO=(—D" & 1.

Proor. Let g0=<: ‘g) be an element of Sp(2n)F which satisfies that det 7

—ty-1 __a)w<1 771

*0. Since g=(" G

>, g, is conjugate in Sp(2n)’ to g,=

(~‘r'1 0)(1 ‘1(e+707)
0 —7r/\0 1
0.(S)¥ with a representation space W. We put V=M,, .(F(¢)). By a direct
computation, we have

(15) ﬂ(p)(gl)@(x)=(—1)"(1'"2¢(Tr(7'15+ar“)Q(x))y§V Oy —x77% ¥,

)w. Let p be a finite dimensional representation of

for @eW(p), where Q(x)=*'xSxeM,(F(qg)).

A standard basis of W(p) can be given as follows. Let {x;} be a complete
set of representatives of the orbits of O,(S)¥ in V. For xe€V, put Z(x)=
{g€0,S)¥|gx=x}. For x; let {v;;} be a basis of the vector subspace of W
which consists of all vectors which are fixed by Z(x,). Define an element @}
of W(p) by
p(@vy; if x=gx;, ge0(SF,

@(x)—:{
0 if x£0,(5)Fx;.

Then we can verify easily that the @{’s make a basis of W(p). From (15), we
obtain

m(p)(g)Pi(xy)
=(—1"gVH(Tr (7 0+arHQ(xy)) 3 plgXl—x7" gx | Z(x)| vy

201 (SHF

(16)
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Therefore we get

Trace n(p)(go)
an =(—D"¢ X B HTro+arQ(xy)

T 2€01(HF
-Trace p(@){—x:'77% gx )| Z(x )| .

For £=0,(S)¥, let {£} denote the conjugacy classes of O,(S)¥ which contains &
and Z(§) denotes the centralizer of § in 0,(S). We can divide the right hand
side of into the contributions of the conjugacy classes of O,(S)¥. Thus
we get

(18) Trace 7(p)(go)=(—1)"g™"* Z Trace p@I©)/ 12|,

{} runs over the conjugacy classes of O,(S)¥, where

(19) I(é)z%}vgb(Tr (r-*o+arHQM))X—xr 1, &x>.
Since <—xir7%, Ex>=¢(—Tr(2r *xStx)), we have

(20) 1(§)=x§¢[Tr {r~04+ar)xSx—2r 1*txS&x}].

The map x — Tr{(y '0+ar )'xSx—2r-1*xS&x} defines a quadratic form on V =3
F(g*"*. We will describe the symmetric matrix in M,;,:(F(g)) which corre-
sponds to this quadratic form. Let us identify each column vector of an element
of M,,, ,(F(q)) with an element of F(q)**. Then M,, ,(F(g)) can be identified
with F(¢)*"QF(q)" by (aE;))—(0, -, a, -+, 0RO, -+, 1, -, O F(¢*"QF ()",

where a€F(q) and E;; denotes the rrzlatrix in which o]nly the ij-entry is non
zero and equals 1. Let eeM,(F(¢) and peM,,(F(g)) be symmetric matrices
and consider the quadratic form x — Tr(e’xux) on M,, ,(F(¢)). Then, by an
easy calculation, we can see that the symmetric matrix p#®e corresponds to
this quadratic form. Therefore we have

2D [&)= 3 ¢(xTx),

where V'=F(q)*"’, and T=S® {(ay'-+7710)+ay 1+7"10)} /2— {SE+4(SE)} /2R
(r '+ € Mye(F (g)).

Let %, denote the quadratic residue character of F(g)* and define the Gauss

sum G(Xo, ¢) by Gy, )= e%%)XXO(x)gb(x). It is well known that G, ¢)*=
Xo(—1)g and that ‘

(22) xe%)(q)glr(a xB)=2(a)G(Xy, ¢) if acF(g)*.

Now let us specialize to the case p=(—1)""'R%(0.(S)"). Assume that a’
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+pB’s/d €H corresponds to a regular element ¢ of TY, where a’, B’ F(qg").
Put 1=(" B). Then we have a=Sc(a)S,™, d=cl(a), p=Se(8'd), r=<(§)Si"

We can verify easily that Syz(x) is symmetric for any xF(¢"). Therefore we
get {ay ' +770)+4ar +179)} /2=Sur(a’ B+ (Ser(a’ B ))=2Ssx(@’f'Y)  and
Y =S0(B) T HSer(B) ) =2S,z(8’)"". Hence we have T=S®2S,c(a’f’ ™)
—SE+ED/2@2S5,7(f’)". Let §=su be the Jordan decomposition of & with s
semisimple and u« unipotent. We know that Trp(§)=0 if s is not conjugate
to an element of T4 (cf. [4]). Therefore, replacing & by its conjugate if neces-
sary, we may assume that s=7T%. Let us assume that s corresponds to an
element s;+s,4/d (s, s:€F(q™) of H. We will show that if s;>a” for any
neGal(F(¢")/F(q)), then det T=0. It is clear that rank T=rank(l,,Qz(a’)—
(E+&1Y/2Q1,). We note that z(a’) can be diagonalized over the algebraic
closure F(g) of F(q) to the form

/

0 .a,qn-l

When we triangulize & over F(q), it takes the form

S1+se/ d -
(siF+524/d )" *

@

0 . (51"}‘32\/7)‘12"—1

Therefore rank 7'<2n? is equivalent to that 2a’=2s]o for some %,=Gal(F(q")/
F(g). If a’=s} for some 5,=Gal(F(¢™)/F(qg)), we have B'=+si° since a'>—p%d
=s,"—s,’d=1. This implies that a’+pf's/d =(s;+s:4/d)? for some neGal
(F(¢*™)/F(q)). From we see immediately that I(§)=X,(det TG, ¢)2”2 if
det T=0.

We will show that if a’=s7® with some 7,€Gal(F(¢")/F(g)), then u=1.
If a’=sl>, we have a’+p'+/d =(s:+5s:4/d)? with some neGal(F(g*")/F(q)).
Since a’+p’+/d corresponds to a regular element ¢ of T4, we see easily that
(@+8 v d)x(+p'+d) for any i, 0=i<2n—1 by Lemma 6. Hence all eigen-
values of s must be different each other and we get u=1.

Therefore we may concentrate in the computation of I(§), when &£=T4¥.
For the convenience of the computation, let us identify M,,, ,(F(q)) with (F(¢*"))",
identifying each column vector with an element of F(¢*"), and write x<(F(¢*"))"
as x=(x;, x5, =+, xn), x;€F(¢*"). Let ¢ be the generator of Gal(F(¢*")/F(q™)).
Then the nXn-matrix Q(x)="'xSx is equal to (Trreeny/rp(x:x9)/2). Assume
that £§=T% corresponds to x=H. Then we have 2:xSEx=(Trpceny/rp(K? X%
+kx,;x5)/2). Hence we obtain
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(23) 1(5):I,Z_;r¢[Tr((r"5+ar‘1)(Trqun>/m>(xix?)/Z))

—Tr (T_I(Trﬂqzn)/F(q)(ﬂgxixg‘{'ﬁxix}z)/z))] ’ where V'=F(g*")".

Let us write k=g;+x,+/d Wwith £, £,€F(¢q™) and define a non-trivial character
¢’ of F(g™) by ¢'=¢s°Trpenypy>- Then (23) can be written as

(24) 1¢6)= P P'LTr{r @ +7ar™)/2)(Trpegzns ipgny(x:x5))

—E1(TTpegzny sreqny(X:29))} ]
= Zr)r G'ITrr N O@+7rar=/2—ky Li)(Trrqens irny(x:ix9))] -
rev’
Using a=S,z(a’)S5", r=7(p")S:* and o=c(a’), we get (0+rar™')/2=z(a’). We
put x;=y;++/d z; with y;, z,€F(q"). Let us define an n><n matrix A by A=
2Syr(a’ B~ —k,Sor(8'7Y) and a 20X 2n-matrix 7 by T= ( ) Put A=(a,)),

0 —dA
where a;; denotes the ij-entry of A. Then we have

Tr(A TI'F(qu/.’(qm(xix?)/:z):Tf (A(yiyj_dzizj»:é? % ai(Veyi—dz,z,;) .

Therefore we get

(25) I©= 3 ¢'U'xTx].
Replacing T by 'gTg with some geGL(2n, F(g)), we can bring 7T to the form
by, . 0
T= ta
—dh,
0

T—dt,
First we consider the case where rx(a’+'+/d ) for any 5n<Gal(F(q™)/F(q)).
Then we have #,%0 (1=:i=<n) and using we get

I©=TI ) &(—dt.x?)

i=1 J:GF ) =1 xeF(qn
= [T, ¢) IL A~ dt)G(E, ¢)

=A== 1" C(F, ¢y =E(= D= D" U= D) =(~ D",
where % denotes the quadratic residue character of F(¢™)*.
Next assume that k=(a’+ ’+/ 4 ) with some » =Gal(F(¢°*")/F(g)). Put rank T

=2]. Then by a similar computation to the above one, we get I(§)=
(—1)g*"*-*, We have [=rank A=rank (z(a’)—&,-1,). Since F(g)(a’)=F(q™), all
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eigenvalues of z(a’) are different each other. Hence we have [=n—1. There-
fore we obtain

Trace ﬂ(p)(t)Z(—l>"q""2[§’ (—1)"g™ Trace p(€)/1Z()"|

+2 (—D*g™*** Trace p(§)/12E)" |1,

where 27 extends over conjugacy classes of O,(S)f whose semisimple parts
correspond to (a’-+8'+/d)? with some yeGal(F(¢**)/F(¢g)) and X’ extends over
conjugacy classes of O,(S)* which do not appear in >)”. Since p does not
contain the trivial representation, we have g}JTrace &)/ 1Z(E)F | =0, where {£}

extends over all conjugacy classes of O,(S)”. Hence we obtain Trace z(p)()=
—{Z” (g"+1) Trace p(€)/|Z(6)F|. Suppose that & corresponds to (a’+p'+/d)?
£}

with some »&Gal(F(¢*")/F(¢)). Then & must be a regular element of T4. By
such & fall into two O,(S)"-conjugacy classes; one corresponds to
(@' + B+ d)*, 0<i=n—1 and the other corresponds to (a’+8'+/d)***" Since
& is regular, we have Z(§)=T, and |Z(§)F |=|T%|=|H|=q"+1. Hence we obtain
Trace n(p)#)=—(Trace p(&,)+ Trace p(§,)), where &, corresponds to a’-8'+/d
and &, corresponds to (a’+j’+/d)% Using (15), we obtain finally

Trace a(p)(=—| (— D" (E 1"+ 1)) | =(- " "E xes)

and complete the proof of [Theorem 1.

We call an element k< H regular if F(q)(x)=F(¢*®). Then k= H is regular
if and only if 3£ for 1<i<2n—1. Assume that t=T% corresponds to r<H.
By Lemma 6, ¢ is a regular element of Sp(2n) if and only if & is regular. We
define a subset H’ of H as follows. Let », be a positive integer such that r,
divides n and n/r, is an odd integer greater than 1. Let H(»,) be the set
{xeF(g*)| Np2 0y pegoy(x)=1}. From x7°*'=1, we get x"*'=1, for x=F(q).
Therefore we have H(ro))SH. We put H'={+1}\U(JH({,), where r, extends

7o

over all positive integers such that n/r, is odd and n/r,>1. Then we have

LEMMA 7. An element k= H is not regular if and only if k= H'.

PrROOF. It is obvious that any element of H’ is not regular. Assume that
< H is not regular and k3 =+1. Then we have F(q)(x)=F(q™), m|2n, m<2n.
Hence we get x4~ !=1 and £#?"*'=1. Let U be the greatest common divisor of
q"+1 and ¢™—1. Then we have £/=1. We may assume that U>2. Let r be
the least positive integer such that ¢"=1mod U. We have ¢™=1mod U and
¢g"=—1mod U. Hence we must have r|m. Put n=ur+r, with 0=Zr,<r, u=0,
7o, ueZ. If r,=0, we get 2=0mod U and this contradicts the assumption U >2.
Therefore we have ¢"°=—1mod U, 0<r,<r. This implies ¢**=1 mod U, 0<2r,
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<2r, hence r=2r,. It is obvious that r, is the least positive integer such that
g°=—1mod U. Therefore we get r,|n and n/7, is odd. If r,=n, we get r=
2r,=2n, hence r is regular. Therefore we have #n/r,>1 and complete the
proof.

Now let us investigate the relation between n(p), p=(—1)""'R%,(0,(S)") and
(—D)"R% (Sp(2n)F), where X is a character of 71 which is in general position.
By [4], (7.6.2), we have
(26) Trz(p))= X 60@)<=(p), R},

oe(r{)V
if t€T7 is a regular element. Let H, denote the set of all;regular element of
Hi.e. H=H—H'. From (26) and [Theorem 1, we have

27 2:2;01 X([zqi)zeglv 0(E)<7{(p), (_1>nR%1>

if k= H,, where we identified (T{)V with HV.

LEMMA 8. We exclude the cases n=2, ¢q=3 and n=3, g=3. Let X be a
character of T%. Assume that X is in general position in Sp(2n)F when we regard
X as a character of T%. Then the representation n((—1)""'R%,(0:(S)F)) contains
(—D"R% (Sp(2n)*) as a subrepresentation, where X' is a character of TY which
is in gemeral position in Sp2n)F.

PrROOF. The case n=1 is well known (cf. [16]). We assume that n>1.
Put p=(—1""'R%,(0,S)) and assume that <{z(p), R} >=0 if =(TT)V is in
general position. For 1=:i=2n—1, let x¢* denote the character of H such that
2w =2u?), ueH (we identify (T5V with (75 and HV). Suppose that

"% (k) =0 for any xe H,. Then we have |H,|= 3 3 22 () 1-(x) < 2n—1)| H'|.
i=0 KESH'! i=1

We will show below the inequality

(28) @Cn—DI|H'|<|H,|,

and let us assume for a moment. Then we must have <{x(p), (—1)"R§ >0
for some §=(TY)V from [27). Let 6, be a character of T4 for which [<{zn(p),
(=D"R%,>| takes the maximum value. Then, from we get

|| -<a(o), (— 1" REp= 3 (E 1606w

Hy

— 3 00T (®)<w(p), (—1"RE))

0x01

- 3B om0 ).
=01

KSH'

Taking absolute values of the both sides, we get
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| H; | [<z(p), (—1)"R1)| éZnIH’lnLgEZHVIH/I [<{n(p), (=D)"RE 1.

o
It is easy to see that the number of characters of T4 which are not in general
position is equal to |H’|. Hence we must have |H.|=2n|H'|+|H'|(|H'|—1).
We will show that

(29) |Hy | >2n | H |+ H'|?.

We note that implies [28). If n is a power of 2, shows that
| H'|=2. Then, except for the case n=2, ¢=3, follows immediately since
we have 3">4n45 if n=3. Let n=2°p#pg=... pZm be a factorization of =
into primes with odd primes p; (1=i<m). Then, by we have |H'|

< _‘Z“,l(q””’i—i—l). If n=3, then we have |H'|=g¢+1, hence reduces to the
inequality ¢°*>¢*+9¢-+7 which holds if ¢=5. Therefore it is sufficient to show

(30) ¢+1>@n+1) B @ D+(E @),

when n=5. If 2n+12§£ (g™'?i+1), the reduces to

@3 3" +1>22n+1)
and we can immediately verify for n=5. Hence we may assume that
2n+1< g(q"“’iﬁ—l) and reduces to

2

(32) " +122(3 (gV7i+D)
Since p;=3, we have m=<[log, n] and reduces to
(33) q"+1=(32/9)-[log, n]*¢*™/*
and obviously reduces to the inequality

(34) 3"3>4llog, n]? for n=5.

We can easily verify (34). Hence we get and complete the proof.

PROPOSITION 4. Let the assumption on n, q, and X be as in Lemma 8. Assume
that dim z((—1)" ' R%(0,(S)"))=dim(—1)"R% (Sp2n)"). Then x((—1)""'R%,(0:(S)))
and (—1)"R% (Sp(2n)F) are equivalent.

Proor. By (=D 'R%,(0,(S))) contains (—1)"R% (Sp(2n)F) as
a subrepresentation, where X’ is a character of 7% which is in general position
in Sp(2n)*. Since dim x((—1)*"'R% (0(S)"))=dim(—1)" R} (Sp@2n)F), x((—1)" 'R},
(04(S)")) must be equivalent to (—1)"R% (Sp(2n)F). Therefore we have
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2n-1 i 2n-1 i .
(35) ) X(k?)= i_ZJl X' (&%) if k€H,.

i

3

[]

If x’=x2 for any 1<i<2n—1, we get
(36) |H|=@n—1)|H'|

in a similar way as in the proof of We may assume that n=2, since
the case n=1 was settled in [16]. Then we can verify the inequality |H,|>
(4n—1)|H"| except for the cases n=2, ¢=3 and n=3, ¢=3 by a similar method
to the proof of Therefore we must have X’'=x¢" for some i, 1<i<
2n—1. Then R% (Sp(2n)F) is equivalent to R% (Sp(2n)"), hence our assertion.

REMARK 2. Let the assumptions be as in The equivalence
of 7(p), p=(—1)""'R%,(0,(S)") and (—1)"R% (Sp(2n)*) follows immediately if we
could show that x(p) is irreducible. However, for general n, a direct proof of
the irreducibility seems rather difficult to obtain. We shall compensate this
defect by showing dim n(p)=dim(—1)"R%,(Sp(2n)F) in the next section.

§3. The dimension of 7 (p).

Let S be a 2nX2n symmetric matrix with entries in F(g) such that detS
x0. For a positive integer m and a finite dimensional representation p of
O,(S)¥, =s,m(p) denotes the representation of Sp(2m)* which is defined in §2

(cf. [Proposition 3). For g=0,(S)F, let Sx(g) denote the set of all elements x
of M,, »(F(q)) such that gx=x. Then S,(g) makes a vector space over F(q).

We have
(37 dim S, (g)=m(2n—rank(1—g)).
PROPOSITION 5. Let the notation be as above. Then we have
H — m(2n~rank(1-2)) F
dim 75 n(0)=__ 2, , Trace p(g)g /10:(S)71 .

PROOF. Put V=M,, (F(g). For x&V, put Z(x)={g=0,(S)F|gx=x}. Let
m(x) denote the multiplicity with which the trivial representation occurs in the
restriction of p to Z(x). We have
(38) m(x)= 3 Trace p(g)/|Z(x)|.

gEZ(x)

A standard basis of the representation space W(p) of x5, m(p) can be given in
a similar way as in the proof of [Theorem 1. Namely let {x;} be a complete
set of representatives of the orbits of O,(S)¥ in V. For x;, let {v;;} be a basis
of the vector subspace of W (i.e. a representation space of p) which trans-
forms according to the trivial representation of Z(x,). Define @] of W(p) by
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o(gw;; it x=gx;, g€0,5),

¢{(x)={
0 if x&0,(5)x;.

Then we can verify easily that the @J’s make a basis of W(p). Therefore
we get

dim s, n(p)= 3 m(x)= T m(x)|Zx)|/|0xS)|

_ 1 Z(x)| Trace p(g)\__
= B 10, TS 12D 1 Troce @)/ 1045

€Z(x

=( X > Trace p(g))/10(S)F|

2€01(SHF xSy (2)

= > Trace p(g)|Sn(g)|/10.(S)].

£€01(HF

Using we obtain the desired expression for dim zg, n(p).
We denote by %, the representation of 0,(S)" on S(V) given by (nn(g)@)(x)
=®@(gx) for @=S(V). We obviously have 77m=371®771®---®721.

m-times

PROPOSITION 6. For any irreducible representation p of O,(S)*, the dimen-
sion of ms, m(p) is equal to the multiplicity with which p occurs in 9p.
PrRoOF. We can see easily that

(39) Trace nm(g)=1Sn(8)|, g€0.(S).
By [(37) and Proposition 5, we have
(40) dim 7. m(p)=__ 2, Trace(p@71)(8)/10«S)| .

Therefore dim zg, n(p) is equal to the multiplicity with which the trivial re-
presentation of O,(S)" occurs in p@7nn. By the orthogonality relation of ir-
reducible characters, we can see that this multiplicity is equal to the multiplicity
with which 7 occurs in 7,, where 7 denotes the complex conjugate of p.
Since p and 7 occur in 3, with the same multiplicity, we get our conclusion.

PROPOSITION 7. Let S be the matrix given by (14). Let X be a character of
T% which is in general position and put p=(—1)""'R%(0,(S)F). Then we have
dim zg, n(0)=2X' Trace p(u)(gm™ @ renk-u0 —1)/|0(S)F|, where X' extends over
u€0,(S)¥ which is unipotent.

PROOF. For g=0,(S)F, let g=su be the Jordan decomposition of g with
s semisimple and u unipotent. We have Trace p(g)=0 if s is not conjugate
to an element of T%. If s is conjugate to an element of 7% which is ‘not 1,
we have S,.(g)=1{0}, since all eigenvalues of s are different from 1. Therefore,

by we have
dim 75, m(0)=2" Trace p(u)g™ "2k /|0 (S)F | + 27 Trace p(g)/|0:(S)"| ,
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where >)” extends over g<0,(S)" which is not unipotent. By gegs) Trace
0(g)=0, we obtain the desired formula.

Hereafter we take the matrix defined by as S. The function u—
Trace R%,(u) from unipotent elements of O,(S)" to C is so called the Green
function of the F-stable maximal torus T, which is independent of the choice
of X. For our specific torus T, (the Coxeter torus), the Green function is com-
puted explicitly by Lusztig [8]. Since the Witt index of S is n—1, rank (1—u)
is even if u=0,(S)¥ is unipotent. Put 2r=rank(l—u). Then the formula (38. 1)
of can be read as follows. .

(41) Trace p(u)=(—1)"(g*—1)(g*—1) --- (¢"""**—1), 0=r=n—1, p=(—1)""'R%,.
(This formula should be read as Trace p(u)=(—1)""* if r=n—1).

Let us denote by A™ the number of unipotent elements of O,(S)¥ such that
rank(1—u)=2r. By Theorem 3.1 of Lusztig [9]%, A™ is given by the follow-
ing formula.

qrz-r<q2n__1)(q2n—2__1)2(q2n—4_1)2 (qzn—2r+2_1)2(q2n—2r_l)
(@—D(@*—1) - (¢F—1) )

(This formula should be read as AyP=1, AP=(¢*"—1)(¢*"2—1)/(¢*—1)
if r=0 or 1).

By and the desired relation dim 7 g, ,(p)=dim(—1)"R% (S p(2n)")
reduces to the following. (Note that dim(—1)"R%,(Sp2n))=|Sp2n)*|/|T%|q",
cf. Theorem 7.1 of [4]).

42) Ar=

(43) :g (P—=D(g*—1) -+ (g2 =)= )T A (gm0 —1)
=(g*—1)(¢g*—1) - (" *—1)(g"— D1 0.(S)"] .
(¢®—D(g*—1) -+ (¢***—1) should be read as 1 if n=1).

We have

(44) 104(S) | =" ™(g" + (= D(g*—1) -+ (¢*"*—1).

We shall prove and the formula

(45) :1;)1 (q2_1)<q4_1) <q2n—27—2__1)(_1)rA;n)(qm(2n—2r)__1):0 if 0§m§n—l ,

using Lusztig’s formula (42).
PROPOSITION 8. The formulas (43) and (45) hold.

5) This literature was kindly communicated to the author by Professor N. Kawa-
naka.
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Proor. First we shall prove (45). For this purpose, we will solve (45) and
verify that the “solution” A{® are given by (42). Put B®=(¢*—1)(¢*—1) --
(@ —1)(—1D"A™. Then (45) is equivalent to

(46) 1:201 B;n)qm(Zn—zn___nAj: B;n) (Oémgn——l) .

By (7.11.4) of [4], we get
n-1 n- )
= BO=(=1 0S| TS =(= 1" I (g —1)

The non-vanishing of the Vandermonde determinant implies that B®, 0<;<
n—1 can be uniquely determined by [46). For an indeterminant x, let us con-
sider a simultaneous equation

47 CPxm+CP 2™+ oo +CWxm=] for 0Zm=<n—1.

Write C»=C®(x). Then we have
(48) Br=| (=D T - D] e

Multiply the formula for m—1 by x™ and subtract for m from it
(1=<m=n—1). Then we get '

(49) EIC%"’xim(x"‘i—l)zx”—l for 1<m<n—1.

Therefore we have

(50) CP=Crr(x"—1)/(x""—Dx* if 1=i<n—1.

By we get

(51) B®=—BrP¢ g D -1(¢*"—1)/(¢*—1) if 1=r<n—1.
Hence we obtain a recurrence formula

(52) AP=ATP¢ P =D =D/(¢"=1) if lsr=n-—-1,

for the “solution” A™ of (45). We shall show that

(53) \ CP(x)y=(=1r 1= wiomre,

Let D, (0=<i=<n—1) be the solution of

(54) Dy+Dix™4Dyx?™+ oo 4Dy x™P D= xmn O=m=n—1).

is obviously equivalent to Dy=(—1)*"1x™*-»/2, Multiply for m—1 by
x™"! and subtract for m (1=m=n—1). Then we obtain D,=Djx (1—x)/
(x™'—1), where D,/ (0=<i<n—2) are given as the solution of
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%) S Dim=xmt (1=m=n-l).

Multiply for m—1 by x™"? and subtract for m 2<m=<n—1). Then
we obtain D,=D,"x"*(1—x*%)/(x*"*—1), where D,” (0<i<n—3) are given as the
solution of

2 o T

1=0
Repeating this process, we get Dy={x"'(1—x)/(x" '— 1} {x*(1—x%)/(x"2—1)}
{x'3(1—x3)/(x”‘3—-1)} e {7 (1— x ) /(x—1)} xn(n—l)___(_1)n—1x(n—1)n/2. There-
fore we obtain [53). By [48), we see immediately that APP=1 if AP (1=<r=<
n—1) satisfy (45) for 0=m=n—1. From the recurrence formula we see
easily that the “solution” A™ (1=r=n-—1) is given by (42). Therefore (45)
holds.
Now we shall show [(43). We see that is equivalent to

(57) :':i: B;n)qn(Zn-zr):qnz—n(an_1)(q2n—2_1)2<q2n-4_1)2 ee (q2_1)2
DR (g ) - (g D).

We put In———:g)ol B®™grn-2n and for the solution C{ of we put ],,(x):é_l‘,
Cpx™., We multiply for n—1 by x™ and subtract /,(x). Then we get
(58) 1= Ja(X)=(x"—1)Jn-1(x) .
From we have
(59) L=~ T @] /(@D
Therefore we obtain
Lnsi/(=D"g™**™(g*—1)(g*—1) -+ (¢*"—1)
=g — (M — DL /(1) gV M (= 1)(g 1) - (¢*m 1) .

We use an induction on n i.e. assume that I, is given by the right hand side
of Then we get [,.=(—1)"g"**"**g*—1)(¢'—1) - (¢*"— 1)+ ¢*"(g*"—1)
(q2n+2_1)1n:qn(n+1) (q2_1)2<q4_1)2 ves (qzn_l)z(q2n+2_1)+(_1)n qn(n+1) (q2__1) (qd_l)
-+ (¢**—1). Since the case n=2 can be verified immediately, [43) follows. This
completes the proof.

THEOREM 2. We exclude the cases n=2, ¢=3 and n=3, q=3. Let X be a
character of T{ which is in general position in Sp(2n)F, when regarded as a
character of Ti. Then ms .(p) is equivalent to (—1)"R% (Sp2n)F) for p=
(=D *R5,(0(S)").
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PrOOF. By and 8, we have dim 7 ¢, ,(p)=dim(—1)"R%,. Hence
our theorem follows from

PROPOSITION 9. Let X be a character of T which is in general position in
O.(S). Then ns, n(p), p=(—1)""'R%, is the zero representation of Sp2m)’ for
I=m=n—1

ProoOF. By and (45), we have dim zg, »(0)=0 for I=m=<n—1,
hence our assertion.

COROLLARY. Let the notation be as in Proposition 9. Take the natural
action of OS)F on F(q)*™ as linear transformations. Let vy, vy, -+, v be any
vectors of F (@)™ and put Z(vy, v +++, va)={2€0,(S)F| gvi=v;, 1=1<m}. If
m=n—1, the restriction of p to Z(vi, vy **+, Un) does not contain the trivial
representation.

REMARK 3. If m<n/2, follows only from
Since dim 9,=¢*"™ and dim(—1)""'R%, ~ g’ " (g — o), we get (45) if m<n/2
and ¢ is sufficiently large (use the fact that there exists ¢"+0(¢™®) characters
in general position of T79%). Since A®™ is a polynomials in ¢, which can be
verified without using (42), we must have (45) for any odd ¢. This argument
also applies to an arbitrary torus. Namely let T be a maximal F-stable torus
of O,(S) and X be a character in general position of T7¥. Then we see that
s, m(R%(0,(S)F) is the zero representation of Sp@2m)F if m<(n—1)/2 and ¢ is
sufficiently large. It might not be too reckless to conjecture that zg, ,,(R%(0,(S)F)
is the zero representation if m<n and X is in general position. We leave this
question for future investigations.
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