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| Introduction

An affine symmetric space is a triple (G, H, ¢) consisting of a connected
Lie group G, a closed subgroup H of G and an involutive automorphism ¢ of G
such that H lies between G, and the identity component of G,, where G,
denotes the closed subgroup of G consisting of all the elements fixed by o.
Suppose that G is real semi-simple. We are interested in the double coset de-
composition H\G/P, where P is a minimal parabolic subgroup of G. These
double cosets are considered as H-orbits on G/P or as P-orbits on H\G.

If H is a maximal compact subgroup of G (when G is of finite center) and
o is the corresponding Cartan involution, this orbit structure is trivial in view
of the Iwasawa decomposition G=KA,N*, where P=MA,N* and H=K. If the
affine symmetric space is (GXG, 4G, o) where G is real semi-simple, 4G denotes
the diagonal of GXG and ¢ is the mapping (x, ¥)— (¥, x), then the orbit
structure can be easily reduced to the Bruhat decomposition G:wKEJW PwP. In the

case of (Gg¢, G, 0), where G, is a complex semi-simple Lie group, G is a real
form of G and ¢ is the conjugation of G, with respect to G, then the orbit
structure is studied in Aomoto and Wolf [8].

In this paper the orbit structure is determined for an arbitrary affine sym-
metric space such that G is real semi-simple.

Let (G, H, o) be an affine symmetric space such that G is real semi-simple,
and (g, b, o) the corresponding symmetric Lie algebra. Let § be a Cartan in-
volution commutative with ¢ (cf. Berger [2]), and g=t+p the corresponding
Cartan decomposition. Since the factor space G/P is identified with the set of
all the minimal parabolic subalgebras of g, the following theorem and corollary
which are the extension of and of 2.6 Theorem give a
complete characterization of H-orbits on G/P.

THEOREM 1. (i) Let B be a minimal parabolic subalgebra of g. Then there
exists a o-stable maximal abelian subspace a, of » and a positive system X* of the
root system X of the pair (g, a,) such that B is He-conjugate to R(a,, 2*) (where
H, is the identity component of H, B(a,, 2)=m+a,+n*, m=3.a,), n+:a§+ga, and
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go=1{Xeg|[Y, X]=a(Y)X for all Ye<ay}).

(ii) Let a, and af be o-stable maximal abelian subspaces of », and X+ and
2+ be positive systems of root systems 3(a,) and X(a}) respectively. If P(a,, T*)
and Play, 2'*) are H-conjugate, then a, and oy are K,-conjugate (K,=HNK).

If a, is a o-stable maximal abelian subspace of p, we can define a subgroup
W(a,, K,) of the Weyl group W(a,) by W(a,, K.)=(M*(a,)"K,)/(M(a,)NK,), where
M*(a,)=Ng(a,) and M(a,)=Zx(a,).

COROLLARY. Let {ay|icI} be representatives of the K .-conjugacy classes of
o-stable maximal abelian subspaces of p. Then there exists a one-to-one correspond-
ence between the H-conjugacy classes of minimal parabolic subalgebras of g and
i\eJI W(ay;, Ki)\W(ay;) (disjoint union). The correspondence is given as follows.

Fix a positive system X5 of X(a,;) for each i€l. Then W(a,;, K )we g Wiaps, K\

W(a,;) corresponds to the H-conjugacy class of minimal parabolic subalgebras of
g containing Play;, w'7).

In §2 the K.-conjugacy classes of o-stable maximal abelian subspaces of p
will be investigated. Let a, be a o-stable maximal abelian subspace of p such
that a,,=a,N\h is maximal abelian in p,=pN). Put q={Xeg|o(X)=—X}, and
2(ay)={a=s2(a,)|H,0,,}, where H, is the unique element in a, such that
B(H,, H)=a(H) for all Hea, (B is the Killing form of g). Let «;, i=1, -, k
be elements of X(a,,) and X,, i=1, -+, k be non-zero elements of g,,. Then
{Xap, -+, Xa,} is said to be a g-orthogonal system of 2(a,,) if the following
two conditions are satisfied :

(i) Xg,€q for i=1, -, &,

(ii) [Xay Xo;1=0 and [X,,, 0(X,,)]=0 for 7, j=1, --- k, 1#].

Two g-orthogonal systems {X,,, -+, Xq,} and {Yg, -, Y5} of 2(a,) are
said to be conjugate under W(a,, K,) if there is a we W(a,, K,) such that

k k
w(z_‘i RHai>:i§ RH;,. Then the following theorem gives a complete character-

ization of the K,-conjugacy classes of ¢-stable maximal abelian subspaces of p.
This theorem includes Theorem 6 and Theorem 7 of Sugiura which are the
fundamental theorems for the classification of conjugacy classes of Cartan
subalgebras of real semi-simple Lie algebras.

THEOREM 2. Let (G, H, o) be an affine symmetric space such that G is real
semi-simple, 8 a Cartan involution of § commutative with o, and ¢g=%t-+p the cor-
responding Cartan decomposition of g. Let a,. be a maximal abelian subspace of
p:. and a, a maximal abelian subspace of p containing a,,. Then there exists a
one-to-one correspondence between the K.,-conjugacy classes of o-stable maximal
abelian subspaces of v and the W(a,, K.)-conjugacy classes of q-orthogonal systems
of 2(ay+). The correspondence is given as follows. Let Q={Xa, -+, Xa,} be a
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q-orthogonal system of 3(a,.). Put 1= }’L;RH‘,{, a.={Hea,, | B(H, 1)=0}, o). =
3 v
a,-+ =21 R(X,,—X_.,) (a,-=a,nq), and qy=0ap,+0a;_. Then the W(a,, K.)-conjugacy

class of g-orthogonal system of X(ay.) containing Q corresponds to the K.-conjugacy
class of a-stable maximal abelian subspace of p containing ay. Moreover if X,
i=1, -, k is normalized such that 2a;(H,)B(Xs,;, X_o,)=—1, then a;=Ad(exp
(w/2)(Xa,+X o)) -+ exp (7/2)(Xap+X_a)))a, where X_o,=0(X.,).

As a consequence of [Corollary 1l of [Theorem 1 and [Theorem 2, the following
theorem gives explicitly the double coset decomposition H\G/P. Finiteness of
H\G/P is also clear (cf. [9]).

THEOREM 3. Let (G, H, o) be an affine symmetric space such that G is real
semi-simple, 8 a Cartan involution commutative with o, and g=%t-+9 the correspond-
ing Cartan decomposition. Let a, be a maximal abelian subspace of p such that
a,+ 1S maximal abelian in ., and {Q,, ---, Qu} be representatives of W(a,, K.)-
conjugacy classes of g-orthogonal systems of 2(a,.). Suppose that Q;={Xa,, -+, Xa,t
is normalized such that 2a,(H.)B(Xq;, X_o,)=—1,1=1, -, k for each j=1, ---, m.
Put c«(Q)=exp (n/2)(Xo,+X_o,) - exp(n/2)(Xa,+X_4,). Then

(i) We have the following decomposition of G.

G=i\=Jl UvEW(api,K+)\W(api)vac(Qi)P (disjoint union)

where P=P(a,, X*), 2+ is a positive system of 2(a,), a,;=Ad (c(Q,))a,, and w, 1is
an element of M*(a,;) that represents an element of the left coset vC W(ay,).
(ii) Put Py u,=wec(Q)Pc(Q;)'wy™. Let hy, hyeH and p,, p€P. Then
hywoc(Q:)pr=hawoc(Q)p. if and only if there exists an x€HNP; 4, such that hy=
hix and that p,=c(Q:) 'wy ™ x ' wec(Q:)D:-
(iii) Let P=P(d}, 2*)=MA;N* be a minimal parabolic subgroup of G such
that ap 1s o-stable. Then

HN\P=(K,nM)A;: exp (h\n*nou®).

We call (G, H’, ¢6)) the affine symmetric space associated with (G, H, o) if
H' =K, exp (9q) (Berger [2]). Then the following two corollaries hold
2 of and [Corollary] of [Theorem 3).

COROLLARY. There exists a one-to-one correspondence between the H-conjugacy
classes of minimal parabolic subalgebras of ¢ and the H’'-conjugacy classes of
them. In this correspondence the H-conjugacy class containing B(a,, 2*) (a, is a
o-stable maximal abelian subspace of p) corresponds to the H'-conjugacy class
containing Pla,, 2).

COROLLARY. Retain the notations given in Theorem 3 and let (G, H', o6) be
the affine symmetric space associated with (G, H, a). Then we have the following
two decompositions of G.
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rCs

G:i Uvew capg, o7 app HWoc(Q)P  (disjoint union)

3

) 1UveW(api.K+)\W(api)H,va(Qi)P (disjoint union).

i}

In §3 the open orbits and the closed orbits are determined. The results
are as follows. A minimal parabolic subalgebra $(a,, 2'*) (a, is o-stable) is con-
tained in an open orbit if and only if the following two conditions are satisfied :

(i) a,- is maximal abelian in p_,

(ii) X* is gf-compatible (i.e. a€X*—3*(a,,) © dbla)s X+ — 3 (a,.)).

The number of open orbits is | Ws(a,)|/| W(a,, K,)|, where W,(a,) is the subgroup
of the Weyl group W(a,) defined by W, (a,)={we W(a,)|w(ay+)=0a,+}. On the
contrary, the closed orbits are characterized by the minimal parabolic subalgebras
B(a,, 2*) of g such that a,, is maximal abelian in p, and that 2* is ¢-com-
patible. The number of closed orbits is | W,(a,)|/| W(a,, K;)|. In the correspond-

ence given in |[Corollary 2 of [[heorem 1, open orbits correspond to closed
orbits and closed ones to open ones.

§1. H-conjugacy classes of minimal parabolic subalgebras.

Let G be a connected Lie group with Lie algebra g, and ¢ an automorphism
of G. Then the following notations are used throughout this paper. Let S
be a Lie subgroup of G. Then S, denotes the set of ¢-fixed points of S, that
is S;={x=S|o(x)=x}. S, denotes the identity component of S. Let 8, and &,
be two subsets of g, and let S be a subset of G. Then 3.,(8,), Zs(8,), and Ns(&,)
denote the centralizer of 8, in &,, the centralizer of &, in S, and the normalizer
of & in S, respectively. More precisely,

3(8)={Xe& |[X, Y]=0 for all Ye3,,
Zs(@)={x=S|Adx)Y=Y for all Y35},
and Nis(3,)= {x& S| Ad(x)3,=3,}.

An affine symmetric space is a triple (G, H, o) consisting of a connected
Lie group G, an involutive automorphism ¢ of G, and a closed subgroup H of
G such that (G,),CHCG,. We assume in the following that G is real semi-
simple.

Let (G, H, ¢) be an affine symmetric space such that G is real semi-simple.
Then (G, H, o) gives rise to a triple (g, §, ¢) in a natural manner, where g and
) are the Lie algebras of G and H respectively, and the automorphism ¢ of g
is the one induced by the automorphism ¢ of G. Such a triple (g, b, ¢) is called
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a symmetric Lie algebra. Put q={Xeg|o(X)=—X}. Then g is decomposed to
g=b+q (direct sum).

There exist Cartan involutions commutative with ¢ (Berger [2]). Let 0 be

one of them, and g=f+p be the corresponding Cartan decomposition. Then we
have

g=t.+t +p,+p_ (direct sum),

where 1, =tNY, L_=tq, pr=pND, and p_=pna.

REMARK. The existence of Cartan involutions commutative with ¢ is also
proved by of this paper, and all such Cartan involutions are determined
in Lemma 4l

Let K denote the analytic subgroup of G corresponding to f. Put K,=KNH,
H'=K,expp_, and Y=%f,4+p_.. Then (g, ¥, ¢6) is a symmetric Lie algebra. In
the Cartan decomposition G=Kexpp, K and exp) are o-stable. So we have
G,o=K,expp. and (Gup)o=FK,)expp-. Since K, is a subgroup of K and
(Kg)pyCK.CK,, it follows that H’ is a subgroup of G and (G,¢)CH CG,g.
Thus (G, H’, ¢6) is an affine symmetric space. (g, %, ¢6) is called the symmetric
Lie algebra associated with (g, 9, ¢) and (G, H’, ¢0) is called the affine symmetric
space associated with (G, H, o) ([(Z]).

Let g=f+)p be a Cartan decomposition of g, a, a maximal abelian subspace

of p, and X* a positive system of the root system X of the pair (g, a,). Then
the subalgebra

P=P(a,, 2*)=m-+a,+n*
is a minimal parabolic subalgebra of g, where m=j(a,), n* :ag+ga, and g,=
{Xeg|[H, X]=a(H)X for all H=a,}. And the subgroup

P=P(a,, X*)=MA,N*

is a minimal parabolic subgroup of G, where A, and N* are the analytic sub-
groups of G corresponding to a, and n* respectively, and M=~Zg(a,). Since all
the minimal parabolic subalgebras are conjugate under Ad(G), they are obtained
in this way. So are all the minimal parabolic subgroups.

Let g=f+p be a Cartan decomposition of g, and let BP=m-+a,+n* be a
minimal parabolic subalgebra of g obtained as is stated above. Then a subspace
a of P is called a split component of P if a=Ad(n)a, for some ne N*.

LEMMA 1. Let a be a split component of PB. If a is contained in another
minimal parabolic subalgebra P/, then a is a split component of B’.

Proor. For some Cartan decomposition g=¥-+p’ of g, B’ can be written
as P’'=m’'+a,+n*. Let H, be a regular element in a (i.e. a(H,)#0 for all
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ac3(a)). Then a is the set of all the elements X in 3 (H,) such that all the
eigenvalues of adX are real numbers ([7], p. 57). Since the eigenvalues of adH,
are all real, it follows that H,=a,+n*’ ([7], p. 57). Write H,=H,+Y (H,=uq,,
Yent’). Then H, is regular. Thus there is an neN*’ such that H,=Ad(n)H,
(4], p. 231). Since a, is the set of all the elements X in 3 (H,)=m'+4a, such
that all the eigenvalues of adX are real, we have a=Ad(n)a,. Thus ais a split
component of P, g.e.d.

REMARK. Let g=f-+p be a Cartan decomposition of g, and a, a maximal
abelian subspace of p. Let P be a minimal parabolic subalgebra of g containing
a,. Then it follows from that B=P(a,, 2*) for some positive system
2+ of 2(ay).

Fix a minimal parabolic subgroup P of G and its Lie algebra B. For every
element x of G there corresponds a minimal parabolic subalgebra Ad(x)RB. This
gives a one-to-one correspondence between G/P and the set of minimal parabolic
subalgebras of g because P is the normalizer of . Hence the problem is
reduced to the characterization of H-conjugacy classes of minimal parabolic
subalgebras of g. Then the following theorem holds.

THEOREM 1. Let (G, H, o) be an affine symmetric space such that G is a
connected real semi-simple Lie group. Let 0 be a Cartan involution commulative
with o, and g=t+p be the corresponding Cartan decomposition. Then

(i) for every minimal parabolic subalgebra B of g, there exist a o-stable
maximal abelian subspace a, of p and a positive system X% of the root system %
of the pair (g, ay,) such that B is Hy-conjugate to Pla,, 2°).

(ii) Let a, and o} be o-stable maximal abelian svbspaces of p, and let X* and
2% be positive systems of the root systems 2(a,) and 2(a}) respectively. Then if
Bla,, *) and P(ay, 2’%) are H-conjugate, a, and o are K, ,-conjugate.

To prove this theorem we prepare three lemmas.

LEMMA 2. Every munimal paraboelic subalgebra g has a o-stable split com-
ponent.

PrOOF. Let P be a minimal parabolic subalgebra of ¢ and P be the cor-
responding minimal parabolic subgroup of G. Let a, be a split component of
and let g=t-+p" be a Cartan decomposition of g such that a, is a maximal
abelian subspace of . Then we can write P=L(a,, X*)=m-+a, +n* and P=
P(a,, ¥*)=MA, N*. Since ¢ is also a minimal parabolic subalgebra of g, there
is an x=G such that ¢P=Ad(x)R. By the Bruhat’s lemma, x can be written
as x=nmy,p (neN*, peP, we W =Ny (a,)/Zk (a,), and m, is an element of
Ng. (a,) that represents w). Then

o PNP=Ad)BNP=Adn)(Ad(m,)BND) .
If we set n;= 3  gathen

ac¥+tnwI+
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Ad (my)PNP=m+a, +n.
Hence
sBAB=Ad(n)(m+a, +n).

Let H, be a regular element of a,. Then the mapping f:n— Adn)H,—H,
is an analytic diffeomorphism of N* onto n* ([4], p. 231), and Nj=expn}; is
mapped onto ny;, by this mapping. In fact, if Xenj, then

1
f(exp X)=Ad (exp X)H,—H,=[X, Hj+5LX, [X, H,]]+ - eni.

Conversely let X= > X, be an element of n* which is not contained in n},
acdt

and let B be the lowest root of *~n w2~ such that Xz;+#0. Then
flexp X)=[X, H]#£0 mod 2 g,
acXt-18)
so flexp X)en,,. Let n’N*. Then Ad(n')H, is contained in m+a, +n, if and
only if n’eN,,. It follows that every split component of L which is contained
in ¢PBNP is of the form Ad(nn')a,, n'eN;.

Let a=Ad (nn’)a,, be one of them. Since o(a) is a split component of oP
and is contained in oPNP, o(a) is a split component of P. (Lemma 1). Thus
there is a unique element n”<N,, such that o(a)=Ad (nn”)a,. The mapping
n’ — n” is a continuous involutive mapping of N} onto itself, so it has a fixed
point. In fact, if it has no fixed point, we have a two fold covering N,, — N,;/~
by the equivalence relation n’~n”. This is impossible since the Euler charac-
teristic number of Nj=R* is one. Let n; be a fixed point. Then a,=Ad(nn,)a,
is a o-stable split component contained in PB. g.e.d.

LEMMA 3. Let (g, 9, ¢) be a symmetric Lie algebra such that g is real semi-
simple, @ a Cartan involution of g, and t a af-stable subspace of §. Then there
exists an x€Ad (G) such that x0x~* commutes with ¢ and that x(t)=t.

ProOF. This lemma is proved in the same way as in p. 156 of as
follows. It is shown as in that ¢ is a self-adjoint transformation of g with
respect to the positive definite inner product By (By(X, Y)=—B(X, 8Y) for X,
Y<q). Since t is of-stable, we can take an orthonormal basis {X, ---, X,} of
g such that {X,, ---, X,.} is a basis of t and that ¢f is represented by a diagonal
matrix with respect to this basis. Put r=(¢6)? and define z* (s€R) as in [4].
Then zV4077Y* commutes with o, 7V/4€Ad(G), and V4 =t. g.e.d.

LEMMA 4. Let 6, and 0, be Cartan involutions commutative with o. Then
there exists an he Ad(H,) such that hf.h~'=0,.

PrRoOF. Put z/=06,0,. Since ¢ commutes with 4,, § and g are orthogonal
with respect to By,. On the other hand 7’ commutes with o, so /(H)=Yh and
7/()=0q. Put r=(¢’)* and define ¢* (s€R) as in [4]. Then z"*0,z""* commutes
with §,. Then it is easily shown that z/40,z~V*=6, ([4], p. 158). On the other
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hand we have r*=Ad(exp sX) for some X=g. Remark that [ X, §]C¥H, and [ X, q]Ca.
Then if we write X=X+ X, (X,€, X,=q), it follows that

[X., 11ChNa={0} and [X,, qJCqnh={0}.

Thus [X,, g]=1{0}. Since g is semi-simple, this implies X,=0. Hence V=
exp ((1/4) X)=Ad(H,). g.e.d.

Proor oF THEOREM 1. (i) A ¢-stable split component a which is obtained
in is a maximal abelian subspace of v’ for some Cartan decomposition
g=¥+p’. Let # be the corresponding Cartan involution. Then implies
that there exists a Cartan involution #” commutative with ¢ such that aCp”
(g=%"+p” is the Cartan decomposition corresponding to 6”). By there
is an h=H, such that a,=Ad (h)a is contained in p. It is clear that a, is a o-
stable maximal abelian subspace of ». Thus there exists a positive system X+
of X(a,) such that Ad(h)P=P(a,, X*) (cf. the Remark following Lemma 1l).

(ii) Let B=P(a,, 2*) and P'=P(a;, 2’*) be H-conjugate. Then there is an
he H such that Ad(h)a; is a split component of PB. Since a, is o-stable so is m.
Then

oP=m-+a,+on*=m+a,+un*
for some element w in the Weyl group W, and

BNoP=m+a,+n.

Thus we have Ad(h)aj=Ad(n,)a, for some n,=N;. Since Ad(h)a; is o-stable, it
follows that

Ad(n)a,=o(Ad(n,)a,)=Ad(an,)a, ,

hence n,=on;. Let n;=exp X, X<n). Then expoX=exp X, so ¢ X=X, X&),
and n,€H,. Putn,”*h=h'=kexp X (k€K, Xp). Then k=K, and Ad(k exp X)a}
=a,. Since Ad(exp X)H=H for every Hea; ([7], p. 28), we have Ad(k)a=a,.
Thus «a; is K,-conjugate to a,. g.e.d.
REMARK. As is proved above, two maximal abelian subspaces a, and a; of
p are H-conjugate if and only if they are K,-conjugate.
Define a subgroup W(a,, K.) of the Weyl group W(a,) by

W, K )=M*(a)NK.)/(M(a)NK.)=Nxg (0,)/Zx (),

where M(a,)=Zx(a,) and M*(a,)=Ng(a,). Then the following corollary holds.
COROLLARY 1. Let {a, |t} be a set of representatives of K,-conjugacy
classes of o-stable maximal abelian subspaces of p. Then there exists a one-to-one
correspondence between the H-conjugacy classes of minimal parabolic subalgebras
of ¢ and ig] W(ay;, K )\W(ay;) (disjoint union). The correspondence is given as
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follows. Fix a positive system X1 of 2(ay;) for each i€l. Then W(ay,, K.)we
z\EJI W(a,;, K )\W(ay) corresponds to the H-conjugacy class of minimal parabolic

subalgebras of g containing P(a,;, w'7).

ProOF. It follows from (i) of that every minimal parabolic
subalgebra is H-conjugate to one of {P(ay;, w2})|iel, we W(a,;)}. On the other
hand R(a,;, w2}) is H-conjugate to R(a,;, w'2}) if and only if i=; and w=w"w’
for some w”< W(ay,;, K.) in view of (ii) of [Theorem 1. Thus the given cor-
respondence is a bijection between ig W(ay,;, K )\W(a,;) and the H-conjugacy

classes of minimal parabolic subalgebras of g. g.e.d.

The following corollary follows easily from [Corollary 1l

COROLLARY 2. There exists a one-to-one correspondence between the H-con-
jugacy classes of minimal parabolic subalgebras of ¢ and the H'-conjugacy classes
of them. In this correspondence the H-conjugacy class containing B(a,, 2™*) (a, is
a o-stable maximal abelian subspace of p) corresponds to the H'-conjugacy class
containing P(a,, X).

ExAMPLE 1. Let G¢ be a connected complex semi-simple Lie group and G
a connected real form of G¢,. Then (G¢, G, ¢) is an affine symmetric space, where
o is the conjugation of G, with respect to G. Let go and g be Lie algebras of
G¢ and G respectively. Let g=t+p be a Cartan decomposition of g, and put
u=f++/=19. Then gc=u-++/—1 uis a Cartan decomposition of g,, and we have
ge=f++/—19+p++/=1% Let 6 be the corresponding Cartan involution. Let
’=%,++/—1 b, be a o-stable maximal abelian subspace of /—1u (§,Cp, ~/—1 H:C
+/—1%). Then )=Y,+Y, is a f-stable Cartan subalgebra of g. Thus in this case
the problem is reduced to the study of conjugacy of Cartan subalgebras of g
(cf. [6]). A minimal parabolic subgroup is a Borel subgroup in this case. For
some examples, G\G¢/B is determined in [1]. Open orbits and closed orbits are
determined in (see also §3). The associated affine symmetric space is
(Ge, K¢, 06) (K¢ is the analytic subgroup of G¢ corresponding to f¢).

ExAMPLE 2. Consider an affine symmetric space (G XG, 4G, g), where G is
a connected real semi-simple Lie group, 4G is the diagonal of GXG, and ¢ is
the mapping (x, ¥) — (¥, x). Let € be a Cartan involution of g and g=f+p the
corresponding Cartan decomposition of g. Then the mapping 6+6: ¢-+g — ¢-+g
((0+6)X, Y)=(X, 0Y) for X, Y=g) is a Cartan involution of g+g commutative
with ¢. Then g+g=4t+1+4p+5, where I={(X, —X)| Xt} and §={, — V)|
Yep}. A subspace a,+a, (a, is a maximal abelian subspace of p) is a o-stable
maximal abelian subspace of p+p. In this case all the g-stable maximal abelian
subspaces of p+p are dK-conjugate. If we identify W(a,+a,) with W(a,)+ W(a,),
then

W(a,+a,, AdK)=4W(a,).
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§2. K,-conjugacy classes of os-stable maximal abelian subspaces of p.

The results of this section are obtained by following the process in (or
7], p. 88~p. 95). The following lemma seems to be familiar. But since this
is frequently used in this section, we state it with a proof for the sake of com-
pleteness.

LEMMA 5. Let g be a semi-simple Lie algebra, 8 a Cartan involution of g, and
g=t-+p the corresponding Cartan decomposition. Let Y be a @-stable semi-simple
subalgebra of §. Then HY=HY"\I+Y"\p is a Cartan decomposition of .

ProoF. Let B, and By be the Killing forms of g and § respectively. Then
B, is negative definite on f and positive definite on p. Let {X,, ---, X,} be an
orthonormal basis of f with respect to —B, such that {X,, ---, X} is a basis of
9t Let {Y,, ---, Y.} be an orthonormal basis of p with respect to B, such
that {Y,, ---, Y,} is a basis of h)n\p. Then if Xehn¥f, ad X is represented by a -
skew-symmetric matrix with respect to the basis {X,, ---, X,, Yy, -+, Y} of g
([4], p.- 215). So is ad X|y, the restriction of ad X to . In the same way if
Yehy, then adY|y is represented by a symmetric matrix. Put ad X|y=(a,;)
and ad Y|y3=(b;;). Then

s+t

s+t
By(X, X)=tr(ad X|s")= X a:;0;=— 2 a;/°
i, j= T, j=
s+t
and BI)(Y, Y)Z.Zlbijz'
i, 5=

If X0, then ad X|y#0 since ) is semi-simple, so By(X, X)<0. If Y0, then
By(Y, Y)>0. This implies that h=H~t+Hp is a Cartan decomposition of B.
g.e.d.
The fundamental tool of this section is the following.

MaximMuM PRINCIPLE ([7], p. 90, and [5], [Theorem 1). Let g be a semi-simple
Lie algebra, and let t, and t, be subalgebras of g generating tori T, and T, in
Int (g). If there exists a compact subgroup L with Lie algebra [ in Int (g) such that

[Ck(ty), t]1CI
for all k=L, then there exists an element k2, L such that

[ko(h); t,]1=0.

Let (G, H, o) be an affine symmetric space such that G is real semi-simple,
and (g, 9, o) the corresponding symmetric Lie algebra. Let # be a Cartan in-
volution of g commutative with ¢, g=f-+p the corresponding Cartan decomposi-
tion, and K the analytic subgroup of G for &. Put K.=KNH and K,=Ad(K.),.
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Let a, be a o-stable maximal abelian subspace of p. Write a,=a,.+a,. (a,.=
aNb, a_=a,Nq).

LEMMA 6. ~/—1a, +/—10,: and «/—10a,- generate tori in Int(gc).

PrROOF. Let T, T: and T. be the analytic subgroups of Int (g¢) correspond-
ing to ~/—14a,, ~/—10,+ and /-1 a,., respectively. We have only to prove that
T, T. and T. are closed subgroups of Int (g¢) since the analytic subgroup U of
Int (g¢) corresponding to u=f+./—19 is compact. It is proved for 7 in [5]
Extend ¢ to the automorphism of Int(gc). Then T is o¢-stable. Put Th=
{xeT|o(x)=x}. Since T4, is a closed subgroup of T and coincides to 7, in a
neighborhood of the origin, T, is also closed. In the same way it is proved
that T_ is closed. g.e.d.

LEMMA 7. All the o-stable maximal abelian subspaces of p such that the .
(resp. p_)-parts are maximal abelian in p, (resp. p_) are mutually K’ -conjugate.

PrROOF. Since §=t,+p, is f-stable, § is a reductive subalgebra of g ([5], p.
42). So %=[H, §] is semi-simple and f-stable. Then H=Hh\f+h\p=Ft+P is a Cartan
decomposition of § (Lemma 5). Let ¢ be the center of Y. ¢ is #-stable and is
written as ¢=c,+¢,. Then every maximal abelian subspace of p, is the sum of
¢, and a maximal abelian subspace of §. Since all the maximal abelian subspaces
in p are conjugate under K (the analytic subgroup of Int(gs) corresponding to
¥), so are those in p,. Hence all the maximal abelian subspaces in p, are con-
jugate under K7.

Given a, and a; which satisfy the condition of the L.emma, we can thus as-
sume that a,;=0a};. +/—1a,- and 4/ =] aj_ generate tori in Int (g¢) and
ZK,JF(aM) is a compact subgroup of Int(g.). If keZK,Jr(aM), then

[v=10a-, K(v/~1a)]Ct,,

and
[aye, [/ =1 05—, R(+/~1 a-)]1]
:[I:ap+) ab—]; k(aé—)]—*_[ab—; I:ap+: k(aé—)]]
={0} .
Therefore [+/—1 ay-, B(/—1-)]C3;,(a,+). Applying the Maximum principle,
there exists a ky&Zg (a,+) such that

(V-1 p—, ko('\/:I aé—)]:[ap-; ko(ap-)]1=1{0} .

On the other hand [a,,, ko(a;-)]={0}. It follows that k. aj-)=a,- because a, is
maximal abelian in ». Thus a, and a; are K’-conjugate. - qg.e.d.

REMARK. If q, is a maximal abelian subspace of p such that a,n\p, (resp.
a,\p-) is maximal abelian in p, (resp. p.), then it is easily shown that a, is
g-stable.
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LEMMA 8. Let a, and a; be o-stable maximal abelian subspaces of p. If ap . C
0y, then there exists an element keZK,Jr(a;Jr) such that k(a,.)Ca;-. Moreover if
Qp+ =0y, then k(a,.)=aj_.

Proor. If keZg (a;), then

[k('\/_‘l ab—)7 \/jl G{;._]Cf.'. ’
and

Lape, [R(V =1 0-), /=1 0-1]
=[Lap., k(ay-)], o J+[k(ay-), [aps, ;1]
={0} .

Thus [k(~/—10,-), /—10a;-1C3.(a74). Applying the Maximum principle, there
exists a kOEZK;(af,.,.) such that

Lho(ay-), ax-1=1{0} .
On the other hand [k(a,.), a;, 1= {0}, hence we have

kola, )Caj- . g.e.d.

DerINITION. Fix a ¢-stable maximal abelian subspace a, of p such that a,.
is maximal abelian in p,. Then a o-stable maximal abelian subspace a’ of p is
said to be standard if a},Ca,; and a}_Da,..

It follows from Lemma 7 and Lemma 8 that every K.-conjugacy class of
o-stable maximal abelian subspaces of p contains a standard one.

LEMMA 9. Let a,, o} and af be o-stable maximal abelian subspaces of p where
ay+ 1S maximal abelian in p.. Suppose that aj,Ca,y, af 4 Cayy, a,-Cal, and a,-Caf _.
Then a;, and of are K,-conjugate if and only if oy, and of . are conjugate under
W(a,, K.).

Proor. If ¢}, and af, are conjugate under W(a,, K.), it follows from
8 that a; and af are K. .-conjugate.

We will prove the coverse assertion. Suppose k’aj=qa}, k’=Ad (K,). Then
k'ay.=ay,. Let k, be an element of ZK;(a{,’J,. Then

kR (/—1 ap+), V=1 ap+]Cf+ ’

and

[a£’+, Lk (A/—1 a»+>, \/:I ap+:|]
=[la}., kb (ay.)], ape]+-LkiE (ay), [afs, ap 1]
={0} .

Thus [k1k' (V=1 04), /=1 0y4+1C3,(a7+). Applying the Maximum principle, there
exists a k=7 K;(a;’,k) such that

[kok'(v/ =1 054), v/ =1 0,:]1=1{0} .
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Hence k,k’(a,4)=0,, because a,, is maximal abelian in p,. On the other hand,
we have

kok/(ap)=0ay 4 .
It follows from that there is a k,&Zx.(a,+) such that
kokok!(ay)=a, ,

S0 kykok’ e Ad (M*(a,)NK,). Since k.kk’/(aj4)=0a],, ay+ and aj, are conjugate
under W(a,, K,). g.e.d.

We will show in the latter half of this section when a subspace of a
maximal abelian subspace a,. of p, is the p,-part of some g-stable maximal
abelian subspace of p. Fix a maximal abelian subspace a,, of p, and a o-stable
maximal abelian subspace a, of p containing a,., Let H, be the unique element
of a, such that B(H,, H)=a(H) for all Hea,.

LEMMA 10. Let a, be a standard o-stable maximal abelian subspace of p. Put
t={Hea,,|B(H, a,,)=0} and Z()={ac|H,s1t}. Then t= >, RH,.

Proor. Note that “esw

3a(0pe oy )=m-ta,+ X g,,

ac2(x)

and c¢;Cag(afF-a,-). If 122 223 RH,, then there is a non-zero element H,ct
ac2(x)

such that a(H,)=0 for all a=23(x). Hence
[H, a;]JC[H,, 33(a§a++ap—>]: {0} .

This implies that H,=aqa;,. Then we have H,=a,\t={0}, a contradiction.
q.e.d.
DEFINITION. For a subspace t of a,., put J(t)={asd|H,=1r}. Then a

subspace t of a,, satisfying t= %} RH, is called a root space of ay,.
acz(r)

Let tCa,, be a root space and put t'={Xea,|B(X, 1)=0}. Let g(r) be the
subalgebra of g generated by %} 04, and ¢ the center of 3,(t’). Then
ace ()

3(t)=c+g(x) (direct sum),

where ¢(r) is semi-simple ([7], p. 66). Since g(r) is o-stable and #-stable, we
have

g(1)=H1)+p()=L()+ () +p. (1) +p-(r)

where f(t)=tng(t), and so on. Since t is a maximal abelian subspace of (t)
contained in p,(¥) (7], p. 67), and since g(r)=¥r)+p(r) is a Cartan decomposi-
tion of g(t) (Lemma b)), we have
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g()=m()+r+ X .,
acl(r)
where m(t)=3_¢,(¥).

Let a=X(a,,). Then 0g,=ga, SO W€ can Write §,=G8a++8as Ga+=8aND
Ga-=8aM0.

DEFINITION. Let {X,,, -, X.,} be a set of non-zero root vectors of g such
that X, ,€g., and a;€2(a,:). Then {X,,, -+, X,,} is said to be a g-orthogonal
system of X(a,,) if the following two conditions are satisfied :

(i) Xa;€8a,- for i=1, -, &,

(i) [Xep Xa,1=0, [Xay, 6(X.)]=0 for 1, j=1, -, k, i#].

LEMMA 11. Let X be a root system of the pair (g, ay). Let Xo€84, X545,
and X_,=0(X,) (a, B€X). Suppose that X,+0, Xz+0,

(adX,)*Xz+0  for k=1, --,s,
(ad X)) X;=0,
(adX_)* X0  for k=l -, —7,
and (adX_ )" Xp=0.
Then

(1) [Xoa [Xe X;11=077)

2 Aa(Ha)B(Xa, X—a>Xﬁ'

. (Ha)

(ii) —2%(71;)~:r+s.
Especially,

(iii) If (a, B)<0, then [X,, Xz1#0.

(iv) If (&, B)=0 and [X,, X51+#0, then [X_,, Xgl#0 (where (a, 8)=B(H,,
Hg)=p(H.)).

PrOOF. Note that [X,, X_,]=B(X,, X_o)H, (7], p. 66). Then the proofs
of (i) and (ii) are the same as those of theorems on complex semi-simple Lie
algebras ([4], p. 143~145). (iii) and (iv) follows from (ii). g.e.d.

It follows from (iii) of that if {X,,, .-+, X4,} is q-orthogonal then
(as, aj)=0 for i+#j.

LEMMA 12. Let (g, Y, ¢) be a symmetric Lie algebra such that ¢ is semi-
simple, 6 a Cartan involution commutative with o, and g=t-+p the corvesponding
Cartan decomposition of §. Suppose that there is a maximal abelian subspace a,
of p contained in p,. Then the following two conditions are equivalent:

(i) There exists a maximal abelian subspace of P contained in p_;

(ii) There exists a g-orthogonal system {Xa,, -, Xap} of 2(a,) (k=dima).

Proor. (ii) = (i). Since X,,—X_.,=p- and
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[Xai_X—ai’ Xaj_X—aj:]ZO f()r an 1," ]:]_’ e, k’

the subspace of p. spanned by {X,,—X_,,li=1, -+, k} is a desired one.
(i) = (il). For every positive integer m, define a proposition (P,,) as follows.
(Pn). If p_ contains an abelian subspace of dimension m, then there exists
a g-orthogonal system {X,, ---, X,,} of 2(a).
For every g-orthogonal system Q={X,,, -, X, } of X(a,), define a real

number f(Q) by AQ)= g(ai, ;). We will prove (P,,) (m=Fk) by induction.

(P). As p_+ {0}, there is an e« such that g,_+ {0}. Take a non-zero
element X,=g,-. Then {X,} is a gq-orthogonal system.

(Pn-1) > (P,). Consider the set of all the q-orthogonal systems of X(a,) con-
sisting of m—1 root vectors. Then we can choose a g-orthogonal system @@=
{Xap, -+, Xa,,_,} such that f(Q) attains the maximum value.

As is proved in all the maximal abelian subspaces of p_ have the
same dimension. So we can take an m-dimensional abelian subspace t of p.
containing {X,,—X_,,|1=1, ---, m—1}. Every element Y of t is written as
Y:go(Yﬁ—Y_ﬁ), Ysegs-, Y_3=06(Ys). Then we have

(A) 0= Xey=Xoap Y1= 2 ([ Xep V][ X-apy V]
—[:Xai’ Y-ﬂ]_l_l:X—ap Y—-ﬁ])

for every i=1, ---, m—1. Put Zl———{an’]HaeEl)lRHai}. As the rank of the
semi-simple subalgebra generated by 2 g, is m—1 (7], p. 67), t is not con-

aely

tained in 3 g,. Thus there is an element Y&t such that Yg+#0 for some
anl

peX+—21.

If [Xa, Ys1=0 and [X,,, Y_]=0 for all i=1, ---, m—1, then {X,, -,
Xeap-p Ysb is g-orthogonal. This implies (P,). Thus we can assume that
[X., Ys1#0 or [X,,, Y_g]+0 for some i. Changing the order of the roots, we
have only to consider the case [ X,,, Y_g]#0. In the right hand side of (A),
the only non-trivial terms contained in g,;-s are —[X,,, Y_gland —[X_,,, Y]
if 3'=2a;,—p>0 (—[X,,, Y_p] and [X_,,, Y. ] if f’<0). Thus changing the
order of the roots if necessary, we can assume [X.,, Y_z]=—[X_,, Yz 1. In
particular, g'e2.

It is easily seen that 8 and B’ are not proportional. If (3, 5/)>0, then
B'—pel. If we set y=p"—ay, then B’'—p=2y. (Fig.1). Then we have 2 p0r>

T T T . 2(87, 2r) 2r, BN
- 5 - Since (2—‘5’55~ and 2 g,)—
integers and since

-or /£ B0r< Suppose that 2 §'0r<

are



346 T. MATSUKI

B a; B
B8 @i B B o B
I 1 0
0 T 2r 0
Fig. 1 Fig. 2 Fig. 3

28, 2r) 20, B) 2B, )
@r,2r) B, 8) (B, 80T

<2,

it follows that

A8, 2) 2, 8)
er.on - @ ey Tl

T and |§1=vZl7|. Similarly if £B0r>—5, then £ 7=

and |Bl=+/217]. In both cases we have (8, 8/)=0, a contradiction. We also
have (8, p/)<€0 in the same way. Hence (8, 8/)=0. Then the two cases are
possible (Fig. 2 and Fig. 3).

The root system of Fig. 2 only occurs in the root system of the type G..
Thus the simple ideal of g containing X,, is either the complex simple Lie
algebra of the type G, or the normal real form of the type G,. Since f+a,€2,
[Xa,, Y51+#0 in both cases. It follows from (A) that there exists a 7= 2 such
that [X,,, Ys1=[X_., Ys]. But 87=p+2«a; cannot be a root, hence this is a
contradiction.

Therefore we have only to consider the case of Fig. 3. If [Xaj, Y_51#0

Thus /£ p'0r=

for some j+i, then L[BOaj:f—Z— as is stated above. Since £ a;0a;= it fol-

T
_2_;
lows that 0, a;, «; and j lies on the same plane. This is impossible because
B2, HenceA[Xaj, Y_1=0 and similarly [X,, Y3]=0 for jsi. Therefore
'={Xay s Xay " Xap_pp Y} (Xa, is excluded) is g-orthogonal and f(Q") > /(Q).
This contradicts the assumption that f(Q) attains the maximum value. Thus
we have proved (P,,). g.e.d.
DEFINITION. Two g-orthogonal systems {X,,, -+, X,,} and {Y;, -+, Vp,}
of 2(a,;) are said to be conjugate under W(a, K,) if there exists an element
we W(a,, K,) such that

w( % RH..)= 3 RHj,.

The following theorem includes Theorem 6 and Theorem 7 of [5].
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THEOREM 2. Let (G, H, o) be an affine symmetric space such that G is real
semi-simple, 6 a Cartan involution of § commutative with o, and g=%t-+p the cor-
responding Cartan decomposition of g. Let a,. be a maximal abelian subspace
of p. and a, a maximal abelian subspace of p containing a,.. Then there exists
a one-to-one correspondence between the K.-conjugacy classes of o-stable maximal
abelian subspaces of p and the W(a,, K.)-conjugacy classes of q-orthogonal systems
of 2(ay+). The correspondence is given as follows. Let Q={X,,, -+, Xa,} be a

k
q-orthogonal systems of 3(ay.). Put t= ZIRH,,i, ap={He<a,, | B(H, t)=0}, aj-=a,_
. <
—I—ER(X%——X_M), and ay=aj,,+a,.. Then the W(a,, K,)-conjugacy class of q-

orthogonal system of 2(a,*) containing Q corresponds to the K .-conjugacy class

of o-stable maximal abelian subspace of p containing o). Moreover if X, i=

1, -, k is normalized such that 20 (Hu,)B(Xa; X_a)=—1, then a,=Ad (exp—g—
T

(Xa1+X-a1) <=+ €XP —Z—(Xak+X—ak)>a?'

Proor. Let {X,,, -+, X,,} be a gq-orthogonal system of 3(a,.). Then the
a, given in the statement of is a standard o-stable maximal abelian
subspace of p (Cemma 12).

Conversely let a}, be a standard os-stable maximal abelian subspace of p. Put
t={He<a,,| B(H, aj,)=0}. Since a}_C3,(ap++0a,-)Np-=c\p-+p_(x), and since cp-
=a,-, ¢(r) satisfies the condition (i) of It follows from (ii) that

k
there exists a q-orthogonal system {X,,, -, X,,} of 2(a,;) such that r= ZlRHai.

Then the first statement follows from The last statement is clear

@7 ». 29). g.e.d.

As a consequence of [Corollary 1| of [Theorem I and [Theorem 2, the follow-
ing theorem gives explicitly the double coset decomposition H\G/P.

THEOREM 3. Let (G, H, o) be an affine symmetric space such that G is real
semi-simple, § a Cartan involution commutative with o, and g=ft-+p the cor-
responding Cartan decomposition. Let a, be a maximal abelian subspace of b such
that a,y is maximal abelian in p,, and {Q,, -+, Qu} be representatives of W(a,,
K.,)-conjugacy classes of q-orthogonal systems of 2(a,.). Suppose that Q;=
{Xayy s Xa,} is normalized such that 2a(Ha)B(Xa; X 2))=—1, 1=1, -, k for

each j=1, -, m. Put c(Qj>:exp'§(Xal+X_al)---exp%(xaﬁ){_ak). Then

(i) we have the following decomposition of G
G:iQUvewcapi.K+)\W<api>vac(Qi)P (disjoint union)

where P=P(a,, %), X% is a positive system of 2(ay), ay;=Ad (c(Q,)a,, and w, 1is
an element of M*(a,;) that represents an element of the left coset vC W(ay,).
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(i) Put Py o,=wec(Qi)Pc(Q)'wy™'.  Let hy, hyeH and p,, p,€P. Then
hiwoo(Q)pr=hawyc(Qu)p, if and only if there exists an x€ HN\P,, ,,, such that h,=
hix and that p,=c(Q:) 'w,™ ' x  wuc(Q)pse

(iii) Let P=P(a}, X*)=MA,N* be a minimal parabolic subgroup of G such
that ay is o-stable. Then

HN\P=(K,N\M)A;: exp (§nu*non®).

PrOOF. The statement (i) follows easily from [Corollary 1| of [Theorem I
and (ii) is clear. (iii) is proved as follows.
Note that

G. NP, 2H)=C,NPlay, 2*)NoPla), X*).
Since M and A, are og-stable, we have
P(a}, X))o P(ay, 2H)=MA(N*NaN*).

Let meM, as A;,, neN*noN*. If o(man)=man, then o(m)=m, o(a)=a and
o(n)=n. Hence

GoNP(a, =M, A (N*NaN*NG,) .
Since oP(a},, 37)=P(a}, wX™*) for some we W(a,),
N* Mo N* NG e=NiNG,=exp (D)
as is shown in the proof of (ii) of [Theorem 1. Hence
G,NP(a;, 2*)=M, A, exp (" Non*Nb).

Since H~\P(a,, 2*) is a union of some connected components of this, there is a
subgroup M; of M, such that (M,),CM,cCM, and that

HN\P(cj, 2*)=M; A} exp (m"non*tND).

It is easy to see that M,=MnK,. g.e.d.

COROLLARY. Retain the notations given in Theorem 3 and let (G, H’', o0).be
the affine symmetric space associated with (G, H, ¢). Then we have the follow-
ing two decompositions of G.

G:—_iy1 Urvew g, & oW pp HWo((Q) P (disjoint union)

m . - . .
= z=U1 \Jvew g & 5o Gppp ' wo(Q)P  (disjoint union).

LeMMA 13. Let B(a,, 2™*) be a mintmal parabolic subalgebra of § such that
a, is o-stable. Then
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(i) 5+%Ba, 27)
=m+a,+ X gt IN@ato8)+ 2 Gas-

asXtyglt as(X-Ne X))~ (apy)~ acX (apy)~

(ii) dim g—dim (9-+B(a,, 2*))

_1 5 dimg,+ 3 dimg,..

2 ac(Z+tNgZt)-(ap)t acapdt
ProOF. Note that

H+Blay, 21)=h+B(a,, 2)+oBlay, 27)
=h+m+ta,+nt4ont.

Since m, a, and g,+0g, are g-stable,

f):f)ﬂm“i‘f)f\ap—*- 2 f)m(ga"i“aﬂa)"i— 2 Ga+ -

acd-Z(ayy) ael(ay)

Then the statement (i) follows from those two equations. (ii) follows from (i).
q.e.d.

ExAMPLE 3. Let

G=SU(p, 2)={XeSL(n, C)|'XEX=E},
1 . )]

where n=p+2 and E= 1 1.

Then the Lie algebra g of G is

g={XeM@®, C)|'XE+EX=0, tr X=0}

={L§ i][Aeu(m, Deu®), BEM(p, 2, C), tr A+tr D:o}.

Put

r:{[? DO] Acu(p), Deu), tr A+trD:o},

and

p:{[; ij ’BeM(p, 2, C)}.

Then g=I+p is a Cartan decomposition. Suppose p=4. Then
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hy
0
he
ap_—'—
hy
0
P

is a maximal abelian subspace of p. Let «; denote the linear form on a, defined by

hb hZERJ

hy

;. “"9;11;-

hy
e

Then the root system 2 of the pair (g, a,) is
S={*ta;, ta, Ttarta, +2a;, +2a,}.

And the root spaces are

‘0 t{)) 0 1
e, =| =D 0 0 D 0| peMp—21,0);,
o0 t{f 0

8, ={| 0 —F 0 0 F ||FeM(p—2,1, C)},

N

X —X
[ 5"z ]
ga1+a2= Xa1+a2,.‘c= 0 ‘XECJ’
X —X
]\ —Xx x J
y Y7
-y y
Qas-a, =) Xag-ap y= 0 }yeC ,
Y -y .
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[

Goay= 0 ‘te\/—lRJ,

(e

and so on.
Let % be a subalgebra of g defined by

—laF-m+la —1=
x| 0 ] x [0)
0 \ * 0 |« 1
h={|— —legy  where 0<m<p—2,
O * | 0 | %,

and q a subspace of g defined by
-—1-|.-m+1—.

0 \ 0

* ‘ %

q= k ‘

1 0| = 1 0 ‘ % K

x| 0 | * | 0.

Let ¢ denote the mapping X+Y — X—Y (Xe), Yeq) of g onto g. Then (g, b, o)

is a symmetric Lie algebra, and a, is contained in §. Put

1

Xal.k: —1 1 1 Egaly

and

2

1
Xaz,k‘—:' -1 1 Egaz.

1

Then {X,, s Xa, ;} is a q-orthogonal system of X(a,) for 0<i=m<j=p—2, and
{Xaitag o» Xaj-ap o} 1S also a g-orthogonal system for a non-zero complex num-
ber x.

It is easily shown that
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Uy
Uy

M(a)= A AsU(p—2), us, u,=UQ), u,tudetA=1},

Ug

and representatives of W(a,) in M*(a,) are given by

/ 1 1 S|
AR A
Iy, Ip-s ’ Ip-s s Ip-, ’
1 —1 } —IJ
I | N | G
1 1 1
1 ] 1 ]1
Ep-—Z ’ Ep—z ’ Ep—Z s
1 J —1 l 1
—1 1 —1

where

={(4, ByeU(p—m—1, 1)xU(m-+1, 1)|det A det B=1} .
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Since G, is connected, H must be equal to G,. Then (G, H, ¢) is an affine
symmetric space. It is easily shown that representatives of W(a,, K,) in
M*(a,)NK, are given by

1 1 1
1 1 1 H
I, I , Epes , Eps } :
1 1 —1 J
| 1

Hence
{0; {Xalyi}; {Xazyj}; {Xa1+a2.x}; {Xal.ir Xaz,j}}

are representatives of W(a,, K,)-conjugacy classes of g-orthogonal systems of
2(a,), where 7 is an integer such that 0<i=m, j is an integer such that m<j=<
p—2, and x is a non-zero complex number. It follows from [Theorem 2 that
there are 5 H-conjugacy classes of o-stable maximal abelian subspaces of p.
Calculating matrices, it is shown that | W(a}, K,)| =4 for every o-stable maximal
abelian subspace a; of ». Since | W(a;)| =8, thus there are exactly 10 H-orbits
on G/P (Corollary 1| of [Theorem II).

Let Qi=10), Qu={3Xu,}, Q=[5 Xepnu}y Qu={FXerrarr}, 2nd Q=

1 1
{5 Xerw 5 Xaymuse Then (@)=,

r’p_11 / 0 1
0 L 1. 0
1 .
Q=] —1 0 Q)= 1
: 1
0 .
1 .
0 .
VT VT 0
—1/4/21/4/2
1
c(Qy= K ‘1 ,  and ¢(Q5)=c(Q:)c(Qy).
/42 =1/4/2
0

1/v2 1/v2
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Let N+:eXp (gal+ga2+ga1+a2+ga1—a2+g2a1+g2a2)’ al'ld P:AIAPN‘F' Then it f01'
lows from that G is decomposed to

G=HP\UHw,P\UHc(Q,)P\UHc(Q,)w,P\UHc(Q3)P\UHc(Q3)w,P
UHC(QQPUHC(QJW2PUHC(Q5)PUHC(Q5>U)1P

1 1
Where wi=— Ip—Z and Wo— Ep_g
1 , —1

We can easily calculate HN\c(Q)wPw c(Q;)* (i=1, ---5, we W (a,)) by (iii) of
Codimensions of orbits are as follows (Lemma 13).

representative | codimension
I, 2p
closed
Wy 2p
c(Q2) 2(p—m—1)
O<m=p—-2)
c(Qw, 2(p—m)
c(Qy) 2(m+2)
O=m<p—2)
c(Quw, 2(m-+1)
c(Qy) 1
C(Q4)w2 2(17”’1)
c(Qs) 0
open
Q5w 0

§3. Open orbits and closed orbits.

Note that there is a one-to-one correspondence xP — Ad(x)P between G/P
and the set of all the minimal parabolic subalgebras of g (see §1). Let a, be a
o-stable maximal abelian subspace of p. Define a subgroup W,(a,) of the Weyl
group W(a,) by

Wv(ap): {fwe W(ap) I w(an+):av+} .
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ProprosITION 1 (cf. [8]). A minimal parabolic subalgebra B(a,, X*+) which is
identified with a point of G/P is contained in an open H-orbit if and only if the
Sfollowing two conditions are satisfied:

(i) ay,- ts maximal abelian in p_,

(i) 2X* is gf-compatible (i.e. acX*—3*(a,,) D ol(a)E 3+ —Z+*(ay)).

The number of open orbits is |W,(a,)|/| W(a,, K¥)|. '

Proor. It follows from that (a,, 2*+) is contained in an open
orbit if and only if the following two conditions are satisfied :

(iii) (Z*Nne2*)—2(a)* =0,

(iv) ga-={0} for all ac(ay).

Clearly (iii) is equivalent to (ii). We will prove that (iv) is equivalent to (i).
Since

(@ )=mta,+ 3 ga,
ac(apy)
if g,-=1{0} for all a=2(a,,) then 3,_(a,-)=a,.. Hence a,. is maximal abelian
in p_. Conversely suppose that g,.+ {0} for some a=2(a,;). Let Y, be a non-
zero element of g,.. Then a,_+R(Y,—60Y,) is an abelian subspace of p_ prop-
erly containing a,.. Thus a,. is not maximal abelian in p_.. Hence the first
assertion is proved.

The closure of the Weyl chamber corresponding to a positive system X+
contains a regular element H, of a,. (i.e. a(H,)#0 for all a=X—2(a,;)) if and
only if X* is ¢f-compatible. Let @ be the projection of a2 to a,- (as? is
identified with H,€qa,). Put W,=W,(a,). We will show that wz€ W,l|,_ for
all ac¥—23(a,,) as in p. 24, where w; is the reflection of a,. with respect
to a. It is true if a=a. If (a, 00(a))<0, then a-t+ol(a)=2ac 2, s0 weEW,|q,_.
If (a, 660(a))>0, then a—of(a)=a+oc(a)2. Let X, be a non-zero element of
g.. Then [X,, ¢ X,]#0 and o[ X,, 6 X, 1=—[X,, 0X,],50 [ X4, 0 Xo]
€gs- where f=a+o(a)e2(a,.). As is proved before this is impossible since
a,- is maximal abelian in p_. Thus («, d6(a))}0. If (a, 06(a))=0, then wz=
WaWs0(a>lay-€ Wola,_. Hence the assertion is proved.

It is known that the group generated by {ws|as2} acts simply transitively
on the Weyl chambers of a,- ([3], p. 73). Let 4 and 4’ be two Weyl chambers
the closures of which contain regular elements of a,.. There is a we W, such
that w(a,-N\4)=a,-N4’ because a,-N4 and a,_ 4’ are closures of Weyl chambers
of a,. Since the Weyl chambers of a, the closures of which contain a, 4’
are transitive under the group generated by {w,|a<sX(a,;)} (CW,), there is a
w' €W, such that w'd=4’. Conversely it is clear that every element of W,
maps a of-compatible order to a of-compatible order. Therefore it follows
from [Corollary 1| of [Theorem 1 that the number of open orbits is |W,(a,)|/
| W(ay, Ky)l. q.e.d.
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PrROPOSITION 2 (cf. [8]). A minimal parabolic subalgebra P(a,, 2*) is con-
tained in a closed H-orbit if and only if the following two conditions are satisfied :

(1) aps s maximal abelian in p,.

(ii) 2* is g-compatible (i.e. acT*—2*(a,.) > o(a)e X*+*—2*(a,.)).

The number of closed orbits is| W,(ay)| /| W(a,, Ki)l.

Proor. Since G/P is compact, B(a,, 2*) is contained in a closed orbit if
and only if H/HN\P(a,, 2*) is compact. Suppose that H/H\P(a,, X*) is compact.
Note that HN\P(a,, XH)=(MNK,)A,. exp (n*nontNb) ((iii) of [Theorem 3). Let
2* be a g-compatible positive system of Y containing Y*~o2X*. Let a;, be a
maximal abelian subspace of p, containing a,,. Define a positive system 3+
of the root system X of the pair (9, aj;) such that n*/~on*’ ~NhCH*, where nt'=

> g, and 1= > 5. Then we have the Iwasawa decomposition of H,
asX+ eI+

H=K, A, .N*,
and natural projections

Fi H/A,; exp (m*Non* N — H/HA\P(a,, 3*),
and
g: H/ A, exp (*ront ) — H/ A N*= K, X ALy [/ A,y

Since the fibres of f which are diffeomorphic to MK, are compact, H/A,. exp
(w*nontNb) and H/A, N* are compact. Hence A};=A4,, and a,, is maximal
abelian in p. On the other hand we have

H/A,, exp (ntnaontn\)=H/exp (n*Non* M)A+
= K,N*/exp (nt~on* D).

If * is not og-compatible, then there is a minimal root f=(3+*'NoX+)—

(2Z*no2*) with respect to the order of X+, and then S#¢p. Put 0=+

) —{B, o}. Then t= Eq)(ga+a(ga))mf) is an ideal of n*, and ur=t+4{(g5+
as

a8s)Nbh}. We have a projection
h: N*/exp (ntnontN\h) — Nt/expt.
Since exp (X+Y)=exp Xexpt for Xeut, Yet,
N+ /exp t=1i/t= R*

for some £>0. Hence N*/exp (n*non*Nh) is not compact, so H/HN\P(a,, 3*) is
not compact. Thus 3+ is g-compatible. The converse assertion follows easily
from the above consideration, seeing that if aj,=a,,, then n*’'Non*’'"\bh=n*.
The proof of the second assertion is the same as that of Proposition ]|

g.e.d.
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COROLLARY. In the correspondence between the H-orbits on G/P and the

H'-orbits on G/P gien in Corollary 2 of Theorem 1 (see also Corollary of
Theorem 3), open orbits correspond to closed orbits and closed ones to open ones.
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Added in proof. Recently W. Rossmann announced without proof the same
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