The orbits of affine symmetric spaces under the action of minimal parabolic subgroups

By Toshihiko MATSUKI

(Received Nov. 19, 1977)

Introduction

An affine symmetric space is a triple (G, H, σ) consisting of a connected Lie group G, a closed subgroup H of G and an involutive automorphism σ of G such that H lies between G_{σ} and the identity component of G_{σ} , where G_{σ} denotes the closed subgroup of G consisting of all the elements fixed by σ . Suppose that G is real semi-simple. We are interested in the double coset decomposition $H \setminus G/P$, where P is a minimal parabolic subgroup of G. These double cosets are considered as H-orbits on G/P or as P-orbits on $H \setminus G$.

If H is a maximal compact subgroup of G (when G is of finite center) and σ is the corresponding Cartan involution, this orbit structure is trivial in view of the Iwasawa decomposition $G=KA_{\mathfrak{p}}N^{+}$, where $P=MA_{\mathfrak{p}}N^{+}$ and H=K. If the affine symmetric space is $(G\times G, \Delta G, \sigma)$ where G is real semi-simple, ΔG denotes the diagonal of $G\times G$ and σ is the mapping $(x,y)\to (y,x)$, then the orbit structure can be easily reduced to the Bruhat decomposition $G=\bigcup_{w\in W}PwP$. In the case of $(G_{\mathfrak{C}},G,\sigma)$, where $G_{\mathfrak{C}}$ is a complex semi-simple Lie group, G is a real form of $G_{\mathfrak{C}}$ and σ is the conjugation of $G_{\mathfrak{C}}$ with respect to G, then the orbit structure is studied in Aomoto [1] and Wolf [8].

In this paper the orbit structure is determined for an arbitrary affine symmetric space such that G is real semi-simple.

Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, and $(\mathfrak{g}, \mathfrak{h}, \sigma)$ the corresponding symmetric Lie algebra. Let θ be a Cartan involution commutative with σ (cf. Berger [2]), and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan decomposition. Since the factor space G/P is identified with the set of all the minimal parabolic subalgebras of \mathfrak{g} , the following theorem and corollary which are the extension of [1] Theorem 3 and of [8] 2.6 Theorem give a complete characterization of H-orbits on G/P.

THEOREM 1. (i) Let $\mathfrak B$ be a minimal parabolic subalgebra of $\mathfrak g$. Then there exists a σ -stable maximal abelian subspace $\mathfrak a_{\mathfrak p}$ of $\mathfrak p$ and a positive system Σ^+ of the root system Σ of the pair $(\mathfrak g, \mathfrak a_{\mathfrak p})$ such that $\mathfrak B$ is H_0 -conjugate to $\mathfrak B(\mathfrak a_{\mathfrak p}, \Sigma^+)$ (where H_0 is the identity component of H, $\mathfrak B(\mathfrak a_{\mathfrak p}, \Sigma^+) = \mathfrak m + \mathfrak a_{\mathfrak p} + \mathfrak n^+$, $\mathfrak m = \mathfrak d_{\mathfrak c}(\mathfrak a_{\mathfrak p})$, $\mathfrak n^+ = \sum_{\alpha \in \Sigma^+} \mathfrak g_\alpha$, and

 $\mathfrak{g}_{\alpha} = \{X \in \mathfrak{g} \mid [Y, X] = \alpha(Y)X \text{ for all } Y \in \mathfrak{a}_{\mathfrak{p}}\}$).

(ii) Let $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ be σ -stable maximal abelian subspaces of \mathfrak{p} , and Σ^+ and Σ'^+ be positive systems of root systems $\Sigma(\mathfrak{a}_{\mathfrak{p}})$ and $\Sigma(\mathfrak{a}'_{\mathfrak{p}})$ respectively. If $\mathfrak{B}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ and $\mathfrak{B}(\mathfrak{a}'_{\mathfrak{p}}, \Sigma'^+)$ are H-conjugate, then $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ are K_+ -conjugate $(K_+ = H \cap K)$.

If $\mathfrak{a}_{\mathfrak{p}}$ is a σ -stable maximal abelian subspace of \mathfrak{p} , we can define a subgroup $W(\mathfrak{a}_{\mathfrak{p}}, K_{+})$ of the Weyl group $W(\mathfrak{a}_{\mathfrak{p}})$ by $W(\mathfrak{a}_{\mathfrak{p}}, K_{+}) = (M^{*}(\mathfrak{a}_{\mathfrak{p}}) \cap K_{+})/(M(\mathfrak{a}_{\mathfrak{p}}) \cap K_{+})$, where $M^{*}(\mathfrak{a}_{\mathfrak{p}}) = N_{K}(\mathfrak{a}_{\mathfrak{p}})$ and $M(\mathfrak{a}_{\mathfrak{p}}) = Z_{K}(\mathfrak{a}_{\mathfrak{p}})$.

COROLLARY. Let $\{\mathfrak{a}_{\mathfrak{p}i}|i\in I\}$ be representatives of the K_+ -conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} . Then there exists a one-to-one correspondence between the H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} and $\bigcup_{i\in I}W(\mathfrak{a}_{\mathfrak{p}i},K_+)\backslash W(\mathfrak{a}_{\mathfrak{p}i})$ (disjoint union). The correspondence is given as follows. Fix a positive system Σ_i^+ of $\Sigma(\mathfrak{a}_{\mathfrak{p}i})$ for each $i\in I$. Then $W(\mathfrak{a}_{\mathfrak{p}i},K_+)w\in\bigcup_{i\in I}W(\mathfrak{a}_{\mathfrak{p}i},K_+)\backslash W(\mathfrak{a}_{\mathfrak{p}i})$ corresponds to the H-conjugacy class of minimal parabolic subalgebras of \mathfrak{g} containing $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}i},w\Sigma_i^+)$.

In § 2 the K_+ -conjugacy classes of σ -stable maximal abelian subspaces of $\mathfrak p$ will be investigated. Let $\mathfrak a_{\mathfrak p}$ be a σ -stable maximal abelian subspace of $\mathfrak p$ such that $\mathfrak a_{\mathfrak p+}=\mathfrak a_{\mathfrak p}\cap \mathfrak h$ is maximal abelian in $\mathfrak p_+=\mathfrak p\cap \mathfrak h$. Put $\mathfrak q=\{X\in \mathfrak g\,|\, \sigma(X)=-X\}$, and $\Sigma(\mathfrak a_{\mathfrak p+})=\{\alpha\in \Sigma(\mathfrak a_{\mathfrak p})|\, H_\alpha\in \mathfrak a_{\mathfrak p+}\}$, where H_α is the unique element in $\mathfrak a_{\mathfrak p}$ such that $B(H_\alpha,H)=\alpha(H)$ for all $H\in \mathfrak a_{\mathfrak p}$ (B is the Killing form of $\mathfrak g$). Let $\alpha_i,\ i=1,\cdots,k$ be elements of $\Sigma(\mathfrak a_{\mathfrak p+})$ and X_{α_i} $i=1,\cdots,k$ be non-zero elements of $\mathfrak g_{\alpha_i}$. Then $\{X_{\alpha_1},\cdots,X_{\alpha_k}\}$ is said to be a $\mathfrak q$ -orthogonal system of $\Sigma(\mathfrak a_{\mathfrak p+})$ if the following two conditions are satisfied:

- (i) $X_{\alpha_i} \in \mathfrak{q}$ for $i=1, \dots, k$,
- (ii) $[X_{\alpha_i}, X_{\alpha_i}] = 0$ and $[X_{\alpha_i}, \theta(X_{\alpha_i})] = 0$ for $i, j = 1, \dots, k, i \neq j$.

Two q-orthogonal systems $\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ and $\{Y_{\beta_1}, \cdots, Y_{\beta_k}\}$ of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$ are said to be conjugate under $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ if there is a $w \in W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ such that $w\left(\sum\limits_{i=1}^k RH_{\alpha_i}\right) = \sum\limits_{i=1}^k RH_{\beta_i}$. Then the following theorem gives a complete characterization of the K_+ -conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} . This theorem includes Theorem 6 and Theorem 7 of Sugiura [5] which are the fundamental theorems for the classification of conjugacy classes of Cartan subalgebras of real semi-simple Lie algebras.

Theorem 2. Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, θ a Cartan involution of \mathfrak{g} commutative with σ , and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan decomposition of \mathfrak{g} . Let $\mathfrak{a}_{\mathfrak{p}+}$ be a maximal abelian subspace of \mathfrak{p}_+ and $\mathfrak{a}_{\mathfrak{p}}$ a maximal abelian subspace of \mathfrak{p} containing $\mathfrak{a}_{\mathfrak{p}+}$. Then there exists a one-to-one correspondence between the K_+ -conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} and the $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ -conjugacy classes of \mathfrak{q} -orthogonal systems of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$. The correspondence is given as follows. Let $Q=\{X_{\mathfrak{a}_1}, \dots, X_{\mathfrak{a}_k}\}$ be a

q-orthogonal system of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$. Put $\mathfrak{r}=\sum\limits_{i=1}^{k}\mathbf{R}H_{\alpha_{i}}$, $\mathfrak{a}'_{\mathfrak{p}+}=\{H\in\mathfrak{a}_{\mathfrak{p}+}\,|\,B(H,\,\mathfrak{r})=0\}$, $\mathfrak{a}'_{\mathfrak{p}-}=\mathfrak{a}_{\mathfrak{p}-}+\sum\limits_{i=1}^{k}\mathbf{R}(X_{\alpha_{i}}-X_{-\alpha_{i}})\ (\mathfrak{a}_{\mathfrak{p}-}=\mathfrak{a}_{\mathfrak{p}}\cap\mathfrak{q})$, and $\mathfrak{a}'_{\mathfrak{p}}=\mathfrak{a}'_{\mathfrak{p}+}+\mathfrak{a}'_{\mathfrak{p}-}$. Then the $W(\mathfrak{a}_{\mathfrak{p}},\,K_{+})$ -conjugacy class of \mathfrak{q} -orthogonal system of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$ containing Q corresponds to the K_{+} -conjugacy class of σ -stable maximal abelian subspace of \mathfrak{p} containing $\mathfrak{a}'_{\mathfrak{p}}$. Moreover if $X_{\alpha_{i}}$, $i=1,\cdots,k$ is normalized such that $2\alpha_{i}(H_{\alpha_{i}})B(X_{\alpha_{i}},\,X_{-\alpha_{i}})=-1$, then $\mathfrak{a}'_{\mathfrak{p}}=\mathrm{Ad}(\exp(\pi/2)(X_{\alpha_{1}}+X_{-\alpha_{1}})\cdots\exp(\pi/2)(X_{\alpha_{k}}+X_{-\alpha_{k}})\mathfrak{a}_{\mathfrak{p}}$ where $X_{-\alpha_{i}}=\theta(X_{\alpha_{i}})$.

As a consequence of Corollary 1 of Theorem 1 and Theorem 2, the following theorem gives explicitly the double coset decomposition $H \setminus G/P$. Finiteness of $H \setminus G/P$ is also clear (cf. [9]).

Theorem 3. Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, θ a Cartan involution commutative with σ , and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan decomposition. Let $\mathfrak{a}_{\mathfrak{p}}$ be a maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_+ , and $\{Q_1, \cdots, Q_m\}$ be representatives of $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ -conjugacy classes of \mathfrak{q} -orthogonal systems of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$. Suppose that $Q_j=\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ is normalized such that $2\alpha_i(H_{\alpha_i})B(X_{\alpha_i}, X_{-\alpha_i})=-1, i=1, \cdots, k$ for each $j=1, \cdots, m$. Put $c(Q_j)=\exp{(\pi/2)(X_{\alpha_1}+X_{-\alpha_1})}\cdots\exp{(\pi/2)(X_{\alpha_k}+X_{-\alpha_k})}$. Then

(i) We have the following decomposition of G.

$$G = \bigcup_{i=1}^{m} \bigcup_{v \in W(\mathfrak{ap}_i, K_+) \setminus W(\mathfrak{ap}_i)} Hw_v c(Q_i) P \quad (disjoint \ union)$$

where $P=P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$, Σ^+ is a positive system of $\Sigma(\mathfrak{a}_{\mathfrak{p}})$, $\mathfrak{a}_{\mathfrak{p}i}=\mathrm{Ad}\,(c(Q_i))\mathfrak{a}_{\mathfrak{p}}$, and w_v is an element of $M^*(\mathfrak{a}_{\mathfrak{p}i})$ that represents an element of the left coset $v\subset W(\mathfrak{a}_{\mathfrak{p}i})$.

- (ii) Put $P_{i, w_v} = w_v c(Q_i) P_c(Q_i)^{-1} w_v^{-1}$. Let $h_1, h_2 \in H$ and $p_1, p_2 \in P$. Then $h_1 w_v c(Q_i) p_1 = h_2 w_v c(Q_i) p_2$ if and only if there exists an $x \in H \cap P_{i, w_v}$ such that $h_2 = h_1 x$ and that $p_2 = c(Q_i)^{-1} w_v^{-1} x^{-1} w_v c(Q_i) p_1$.
- (iii) Let $P=P(\alpha_p', \Sigma^+)=MA_p'N^+$ be a minimal parabolic subgroup of G such that α_p' is σ -stable. Then

$$H \cap P = (K_+ \cap M)A'_{\mathfrak{p}_+} \exp(\mathfrak{h} \cap \mathfrak{n}^+ \cap \sigma \mathfrak{n}^+)$$
.

We call $(G, H', \sigma\theta)$ the affine symmetric space associated with (G, H, σ) if $H'=K_+\exp(\mathfrak{p}\cap\mathfrak{q})$ (Berger [2]). Then the following two corollaries hold (Corollary 2 of Theorem 1 and Corollary of Theorem 3).

COROLLARY. There exists a one-to-one correspondence between the H-conjugacy classes of minimal parabolic subalgebras of $\mathfrak g$ and the H'-conjugacy classes of them. In this correspondence the H-conjugacy class containing $\mathfrak P(\mathfrak a_\mathfrak p, \Sigma^+)$ ($\mathfrak a_\mathfrak p$ is a σ -stable maximal abelian subspace of $\mathfrak p$) corresponds to the H'-conjugacy class containing $\mathfrak P(\mathfrak a_\mathfrak p, \Sigma^+)$.

COROLLARY. Retain the notations given in Theorem 3 and let $(G, H', \sigma\theta)$ be the affine symmetric space associated with (G, H, σ) . Then we have the following two decompositions of G.

$$\begin{split} G &= \bigcup_{i=1}^m \bigcup_{v \in W(\mathfrak{ap}_i, \ K_+) \setminus W(\mathfrak{ap}_i)} Hw_v c(Q_i) P \quad (disjoint \ union) \\ &= \bigcup_{i=1}^m \bigcup_{v \in W(\mathfrak{ap}_i, \ K_+) \setminus W(\mathfrak{ap}_i)} H'w_v c(Q_i) P \quad (disjoint \ union). \end{split}$$

In § 3 the open orbits and the closed orbits are determined. The results are as follows. A minimal parabolic subalgebra $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ ($\mathfrak{a}_{\mathfrak{p}}$ is σ -stable) is contained in an open orbit if and only if the following two conditions are satisfied:

- (i) a_{p-} is maximal abelian in p_{-} ,
- (ii) Σ^+ is $\sigma\theta$ -compatible (i. e. $\alpha \in \Sigma^+ \Sigma^+(\mathfrak{a}_{\mathfrak{p}+}) \Leftrightarrow \sigma\theta(\alpha) \in \Sigma^+ \Sigma^+(\mathfrak{a}_{\mathfrak{p}+})$).

The number of open orbits is $|W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})|/|W(\mathfrak{a}_{\mathfrak{p}},K_{+})|$, where $W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})$ is the subgroup of the Weyl group $W(\mathfrak{a}_{\mathfrak{p}})$ defined by $W_{\sigma}(\mathfrak{a}_{\mathfrak{p}}) = \{w \in W(\mathfrak{a}_{\mathfrak{p}}) | w(\mathfrak{a}_{\mathfrak{p}+}) = \mathfrak{a}_{\mathfrak{p}+}\}$. On the contrary, the closed orbits are characterized by the minimal parabolic subalgebras $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}},\Sigma^{+})$ of \mathfrak{g} such that $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_{+} and that Σ^{+} is σ -compatible. The number of closed orbits is $|W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})|/|W(\mathfrak{a}_{\mathfrak{p}},K_{+})|$. In the correspondence given in Corollary 2 of Theorem 1, open orbits correspond to closed orbits and closed ones to open ones.

§ 1. H-conjugacy classes of minimal parabolic subalgebras.

Let G be a connected Lie group with Lie algebra \mathfrak{g} , and σ an automorphism of G. Then the following notations are used throughout this paper. Let S be a Lie subgroup of G. Then S_{σ} denotes the set of σ -fixed points of S, that is $S_{\sigma} = \{x \in S \mid \sigma(x) = x\}$. S_0 denotes the identity component of S. Let \mathfrak{F}_1 and \mathfrak{F}_2 be two subsets of \mathfrak{g} , and let S be a subset of G. Then $\mathfrak{F}_2(\mathfrak{F}_2)$, $Z_S(\mathfrak{F}_2)$, and $Z_S(\mathfrak{F}_2)$ denote the centralizer of \mathfrak{F}_2 in \mathfrak{F}_3 , the centralizer of \mathfrak{F}_2 in S, respectively. More precisely,

$$\begin{split} &\hat{\mathfrak{g}}_{\hat{\mathfrak{g}}_1}(\hat{\mathfrak{g}}_2) = \{X \in \hat{\mathfrak{g}}_1 \mid [X, Y] = 0 \quad \text{ for all } Y \in \hat{\mathfrak{g}}_2\}, \\ &Z_S(\hat{\mathfrak{g}}_2) = \{x \in S \mid \operatorname{Ad}(x)Y = Y \quad \text{ for all } Y \in \hat{\mathfrak{g}}_2\}, \\ &N_S(\hat{\mathfrak{g}}_2) = \{x \in S \mid \operatorname{Ad}(x)\hat{\mathfrak{g}}_2 = \hat{\mathfrak{g}}_2\}. \end{split}$$

and

An affine symmetric space is a triple (G, H, σ) consisting of a connected Lie group G, an involutive automorphism σ of G, and a closed subgroup H of G such that $(G_{\sigma})_{\circ} \subset H \subset G_{\sigma}$. We assume in the following that G is real semi-simple.

Let (G, H, σ) be an affine symmetric space such that G is real semi-simple. Then (G, H, σ) gives rise to a triple $(\mathfrak{g}, \mathfrak{h}, \sigma)$ in a natural manner, where \mathfrak{g} and \mathfrak{h} are the Lie algebras of G and H respectively, and the automorphism σ of \mathfrak{g} is the one induced by the automorphism σ of G. Such a triple $(\mathfrak{g}, \mathfrak{h}, \sigma)$ is called a symmetric Lie algebra. Put $\mathfrak{q} = \{X \in \mathfrak{g} \mid \sigma(X) = -X\}$. Then \mathfrak{g} is decomposed to $\mathfrak{g} = \mathfrak{h} + \mathfrak{q}$ (direct sum).

There exist Cartan involutions commutative with σ (Berger [2]). Let θ be one of them, and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the corresponding Cartan decomposition. Then we have

$$g = f_+ + f_- + p_+ + p_-$$
 (direct sum),

where $f_+=f \cap h$, $f_-=f \cap q$, $p_+=p \cap h$, and $p_-=p \cap q$.

REMARK. The existence of Cartan involutions commutative with σ is also proved by Lemma 3 of this paper, and all such Cartan involutions are determined in Lemma 4.

Let K denote the analytic subgroup of G corresponding to \mathfrak{k} . Put $K_+ = K \cap H$, $H' = K_+ \exp \mathfrak{p}_-$, and $\mathfrak{h}' = \mathfrak{k}_+ + \mathfrak{p}_-$. Then $(\mathfrak{g}, \mathfrak{h}', \sigma\theta)$ is a symmetric Lie algebra. In the Cartan decomposition $G = K \exp \mathfrak{p}$, K and $\exp \mathfrak{p}$ are σ -stable. So we have $G_{\sigma\theta} = K_{\sigma} \exp \mathfrak{p}_-$ and $(G_{\sigma\theta})_0 = (K_{\sigma})_0 \exp \mathfrak{p}_-$. Since K_+ is a subgroup of K and $(K_{\sigma})_0 \subset K_+ \subset K_{\sigma}$, it follows that H' is a subgroup of G and $(G_{\sigma\theta})_0 \subset H' \subset G_{\sigma\theta}$. Thus $(G, H', \sigma\theta)$ is an affine symmetric space. $(\mathfrak{g}, \mathfrak{h}', \sigma\theta)$ is called the symmetric Lie algebra associated with $(\mathfrak{g}, \mathfrak{h}, \sigma)$ and $(G, H', \sigma\theta)$ is called the affine symmetric space associated with (G, H, σ) ([2]).

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} , $\mathfrak{a}_{\mathfrak{p}}$ a maximal abelian subspace of \mathfrak{p} , and Σ^+ a positive system of the root system Σ of the pair $(\mathfrak{g},\mathfrak{a}_{\mathfrak{p}})$. Then the subalgebra

$$\mathfrak{P}=\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})=\mathfrak{m}+\mathfrak{a}_{\mathfrak{p}}+\mathfrak{n}^{+}$$

is a minimal parabolic subalgebra of \mathfrak{g} , where $\mathfrak{m}=\mathfrak{z}_{\mathfrak{l}}(\mathfrak{a}_{\mathfrak{p}})$, $\mathfrak{n}^{+}=\sum_{\alpha\in\Sigma^{+}}\mathfrak{g}_{\alpha}$, and $\mathfrak{g}_{\alpha}=\{X\in\mathfrak{g}|[H,X]=\alpha(H)X \text{ for all } H\in\mathfrak{a}_{\mathfrak{p}}\}$. And the subgroup

$$P=P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})=MA_{\mathfrak{p}}N^{+}$$

is a minimal parabolic subgroup of G, where $A_{\mathfrak{p}}$ and N^+ are the analytic subgroups of G corresponding to $\mathfrak{a}_{\mathfrak{p}}$ and \mathfrak{n}^+ respectively, and $M=Z_K(\mathfrak{a}_{\mathfrak{p}})$. Since all the minimal parabolic subalgebras are conjugate under $\mathrm{Ad}(G)$, they are obtained in this way. So are all the minimal parabolic subgroups.

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} , and let $\mathfrak{P}=\mathfrak{m}+\mathfrak{a}_{\mathfrak{p}}+\mathfrak{n}^+$ be a minimal parabolic subalgebra of \mathfrak{g} obtained as is stated above. Then a subspace \mathfrak{a} of \mathfrak{P} is called a split component of \mathfrak{P} if $\mathfrak{a}=\mathrm{Ad}(n)\mathfrak{a}_{\mathfrak{p}}$ for some $n\in N^+$.

LEMMA 1. Let a be a split component of \mathfrak{P} . If a is contained in another minimal parabolic subalgebra \mathfrak{P}' , then a is a split component of \mathfrak{P}' .

PROOF. For some Cartan decomposition $\mathfrak{g}=\mathfrak{k}'+\mathfrak{p}'$ of \mathfrak{g} , \mathfrak{P}' can be written as $\mathfrak{P}'=\mathfrak{m}'+\mathfrak{a}_{\mathfrak{p}'}+\mathfrak{n}^{+\prime}$. Let H_1 be a regular element in \mathfrak{a} (i. e. $\alpha(H_1)\neq 0$ for all

 $\alpha \in \Sigma(\mathfrak{a})$). Then \mathfrak{a} is the set of all the elements X in $\mathfrak{z}(H_1)$ such that all the eigenvalues of $\mathrm{ad}X$ are real numbers ([7], p. 57). Since the eigenvalues of $\mathrm{ad}H_1$ are all real, it follows that $H_1 \in \mathfrak{a}_{\mathfrak{p}'} + \mathfrak{n}^{+'}$ ([7], p. 57). Write $H_1 = H_2 + Y$ ($H_2 \in \mathfrak{a}_{\mathfrak{p}'}, Y \in \mathfrak{n}^{+'}$). Then H_2 is regular. Thus there is an $n \in N^{+'}$ such that $H_1 = \mathrm{Ad}(n)H_2$ ([4], p. 231). Since $\mathfrak{a}_{\mathfrak{p}'}$ is the set of all the elements X in $\mathfrak{z}(H_2) = \mathfrak{m}' + \mathfrak{a}_{\mathfrak{p}'}$ such that all the eigenvalues of $\mathrm{ad}X$ are real, we have $\mathfrak{a} = \mathrm{Ad}(n)\mathfrak{a}_{\mathfrak{p}'}$. Thus \mathfrak{a} is a split component of \mathfrak{P}' .

REMARK. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} , and $\mathfrak{a}_{\mathfrak{p}}$ a maximal abelian subspace of \mathfrak{p} . Let \mathfrak{P} be a minimal parabolic subalgebra of \mathfrak{g} containing $\mathfrak{a}_{\mathfrak{p}}$. Then it follows from Lemma 1 that $\mathfrak{P}=\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ for some positive system Σ^+ of $\Sigma(\mathfrak{a}_{\mathfrak{p}})$.

Fix a minimal parabolic subgroup P of G and its Lie algebra \mathfrak{P} . For every element x of G there corresponds a minimal parabolic subalgebra $\mathrm{Ad}(x)\mathfrak{P}$. This gives a one-to-one correspondence between G/P and the set of minimal parabolic subalgebras of \mathfrak{g} because P is the normalizer of \mathfrak{P} . Hence the problem is reduced to the characterization of H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} . Then the following theorem holds.

THEOREM 1. Let (G, H, σ) be an affine symmetric space such that G is a connected real semi-simple Lie group. Let θ be a Cartan involution commutative with σ , and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the corresponding Cartan decomposition. Then

- (i) for every minimal parabolic subalgebra $\mathfrak P$ of $\mathfrak g$, there exist a σ -stable maximal abelian subspace $\mathfrak a_{\mathfrak p}$ of $\mathfrak p$ and a positive system Σ^+ of the root system Σ of the pair $(\mathfrak g, \mathfrak a_{\mathfrak p})$ such that $\mathfrak P$ is H_0 -conjugate to $\mathfrak P(\mathfrak a_{\mathfrak p}, \Sigma^+)$.
- (ii) Let $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ be σ -stable maximal abelian subspaces of \mathfrak{p} , and let Σ^+ and Σ'^+ be positive systems of the root systems $\Sigma(\mathfrak{a}_{\mathfrak{p}})$ and $\Sigma(\mathfrak{a}'_{\mathfrak{p}})$ respectively. Then if $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ and $\mathfrak{P}(\mathfrak{a}'_{\mathfrak{p}}, \Sigma'^+)$ are H-conjugate, $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ are K_+ -conjugate.

To prove this theorem we prepare three lemmas.

Lemma 2. Every minimal parabolic subalgebra $\mathfrak g$ has a σ -stable split component.

PROOF. Let $\mathfrak P$ be a minimal parabolic subalgebra of $\mathfrak P$ and P be the corresponding minimal parabolic subgroup of G. Let $\mathfrak q_{\mathfrak p'}$ be a split component of $\mathfrak P$ and let $\mathfrak g=\mathfrak k'+\mathfrak p'$ be a Cartan decomposition of $\mathfrak P$ such that $\mathfrak q_{\mathfrak p'}$ is a maximal abelian subspace of $\mathfrak p'$. Then we can write $\mathfrak P=\mathfrak P(\mathfrak q_{\mathfrak p'},\, \Sigma^+)=\mathfrak m+\mathfrak q_{\mathfrak p'}+\mathfrak n^+$ and $P=P(\mathfrak q_{\mathfrak p'},\, \Sigma^+)=MA_{\mathfrak p'}N^+$. Since $\sigma\mathfrak P$ is also a minimal parabolic subalgebra of $\mathfrak P$, there is an $x\in G$ such that $\sigma\mathfrak P=\mathrm{Ad}(x)\mathfrak P$. By the Bruhat's lemma, x can be written as $x=nm_w\mathfrak P$ $(n\in N^+,\, \mathfrak p\in P,\, w\in W'=N_{K'}(\mathfrak q_{\mathfrak p'})/Z_{K'}(\mathfrak q_{\mathfrak p'})$, and m_w is an element of $N_{K'}(\mathfrak q_{\mathfrak p'})$ that represents w). Then

$$\sigma \mathfrak{P} \cap \mathfrak{P} = \mathrm{Ad}(x) \mathfrak{P} \cap \mathfrak{P} = \mathrm{Ad}(n)(\mathrm{Ad}(m_w) \mathfrak{P} \cap \mathfrak{P})$$
.

If we set $\mathfrak{n}_{w}^{+} = \sum_{\alpha \in \Sigma^{+} \cap w \Sigma^{+}} \mathfrak{g}_{\alpha}$, then

Ad
$$(m_w)$$
 $\mathfrak{P} \cap \mathfrak{P} = \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}'} + \mathfrak{n}_w^+$.

Hence

$$\sigma \mathfrak{P} \cap \mathfrak{P} = \operatorname{Ad}(n)(\mathfrak{m} + \mathfrak{a}_{\mathfrak{p}'} + \mathfrak{n}_{\mathfrak{w}}^+)$$
.

Let H_1 be a regular element of $\mathfrak{a}_{\mathfrak{p}'}$. Then the mapping $f: n \to \mathrm{Ad}(n)H_1 - H_1$ is an analytic diffeomorphism of N^+ onto \mathfrak{n}^+ ([4], p. 231), and $N_w^+ = \exp \mathfrak{n}_w^+$ is mapped onto \mathfrak{n}_w^+ by this mapping. In fact, if $X \in \mathfrak{n}_w^+$, then

$$f(\exp X) = \operatorname{Ad}(\exp X)H_1 - H_1 = [X, H_1] + \frac{1}{2}[X, [X, H_1]] + \cdots \in \mathfrak{n}_w^+.$$

Conversely let $X = \sum_{\alpha \in \Sigma^+} X_{\alpha}$ be an element of \mathfrak{n}^+ which is not contained in \mathfrak{n}_{ω}^+ , and let β be the lowest root of $\Sigma^+ \cap w\Sigma^-$ such that $X_{\beta} \neq 0$. Then

$$f(\exp X) \equiv [X_{\beta}, H_1] \not\equiv 0 \quad \mod \sum_{\alpha \in \Sigma^{+} - \{\beta\}} \mathfrak{g}_{\alpha},$$

so $f(\exp X) \in \mathfrak{n}_w^+$. Let $n' \in N^+$. Then $\operatorname{Ad}(n')H_1$ is contained in $\mathfrak{m} + \mathfrak{a}_{\mathfrak{p}'} + \mathfrak{n}_w^+$ if and only if $n' \in N_w^+$. It follows that every split component of \mathfrak{P} which is contained in $\sigma \mathfrak{P} \cap \mathfrak{P}$ is of the form $\operatorname{Ad}(nn')\mathfrak{a}_{\mathfrak{p}'}$, $n' \in N_w^+$.

Let $\mathfrak{a}=\mathrm{Ad}\,(nn')\mathfrak{a}_{\mathfrak{p}}$, be one of them. Since $\sigma(\mathfrak{a})$ is a split component of $\sigma\mathfrak{P}$ and is contained in $\sigma\mathfrak{P}\cap\mathfrak{P}$, $\sigma(\mathfrak{a})$ is a split component of \mathfrak{P} . (Lemma 1). Thus there is a unique element $n''\in N_w^+$ such that $\sigma(\mathfrak{a})=\mathrm{Ad}\,(nn'')\mathfrak{a}_{\mathfrak{p}'}$. The mapping $n'\to n''$ is a continuous involutive mapping of N_w^+ onto itself, so it has a fixed point. In fact, if it has no fixed point, we have a two fold covering $N_w^+\to N_w^+/\sim$ by the equivalence relation $n'\sim n''$. This is impossible since the Euler characteristic number of $N_w^+\cong \mathbf{R}^k$ is one. Let n_1 be a fixed point. Then $\mathfrak{a}_1=\mathrm{Ad}(nn_1)\mathfrak{a}_{\mathfrak{p}'}$ is a σ -stable split component contained in \mathfrak{P} .

LEMMA 3. Let $(\mathfrak{g}, \mathfrak{h}, \sigma)$ be a symmetric Lie algebra such that \mathfrak{g} is real semisimple, θ a Cartan involution of \mathfrak{g} , and \mathfrak{t} a $\sigma\theta$ -stable subspace of \mathfrak{g} . Then there exists an $x \in \operatorname{Ad}(G)$ such that $x\theta x^{-1}$ commutes with σ and that $x(\mathfrak{t}) = \mathfrak{t}$.

PROOF. This lemma is proved in the same way as in p. 156 of [4] as follows. It is shown as in [4] that $\sigma\theta$ is a self-adjoint transformation of g with respect to the positive definite inner product B_{θ} ($B_{\theta}(X, Y) = -B(X, \theta Y)$ for $X, Y \in \mathfrak{g}$). Since t is $\sigma\theta$ -stable, we can take an orthonormal basis $\{X_1, \dots, X_n\}$ of g such that $\{X_1, \dots, X_m\}$ is a basis of t and that $\sigma\theta$ is represented by a diagonal matrix with respect to this basis. Put $\tau = (\sigma\theta)^2$ and define τ^s ($s \in \mathbb{R}$) as in [4]. Then $\tau^{1/4}\theta\tau^{-1/4}$ commutes with σ , $\tau^{1/4}\in \mathrm{Ad}(G)$, and $\tau^{1/4}!=!$. q. e. d.

LEMMA 4. Let θ_1 and θ_2 be Cartan involutions commutative with σ . Then there exists an $h \in Ad(H_0)$ such that $h\theta_1 h^{-1} = \theta_2$.

PROOF. Put $\tau'=\theta_2\theta_1$. Since σ commutes with θ_1 , \mathfrak{h} and \mathfrak{q} are orthogonal with respect to B_{θ_1} . On the other hand τ' commutes with σ , so $\tau'(\mathfrak{h})=\mathfrak{h}$ and $\tau'(\mathfrak{q})=\mathfrak{q}$. Put $\tau=(\tau')^2$ and define τ^s ($s\in R$) as in [4]. Then $\tau^{1/4}\theta_1\tau^{-1/4}$ commutes with θ_2 . Then it is easily shown that $\tau^{1/4}\theta_1\tau^{-1/4}=\theta_2$ ([4], p. 158). On the other

hand we have $\tau^s = \operatorname{Ad}(\exp sX)$ for some $X \in \mathfrak{g}$. Remark that $[X, \mathfrak{h}] \subset \mathfrak{h}$, and $[X, \mathfrak{q}] \subset \mathfrak{q}$. Then if we write $X = X_1 + X_2$ $(X_1 \in \mathfrak{h}, X_2 \in \mathfrak{q})$, it follows that

$$[X_2, \mathfrak{h}] \subset \mathfrak{h} \cap \mathfrak{q} = \{0\}$$
 and $[X_2, \mathfrak{q}] \subset \mathfrak{q} \cap \mathfrak{h} = \{0\}$.

Thus $[X_2, \mathfrak{g}] = \{0\}$. Since \mathfrak{g} is semi-simple, this implies $X_2 = 0$. Hence $\tau^{1/4} = \exp((1/4) X_1) \in Ad(H_0)$.

PROOF OF THEOREM 1. (i) A σ -stable split component $\mathfrak a$ which is obtained in Lemma 2 is a maximal abelian subspace of $\mathfrak p'$ for some Cartan decomposition $\mathfrak g=\mathfrak k'+\mathfrak p'$. Let θ' be the corresponding Cartan involution. Then Lemma 3 implies that there exists a Cartan involution θ'' commutative with σ such that $\mathfrak a \subset \mathfrak p''$ ($\mathfrak g=\mathfrak k''+\mathfrak p''$ is the Cartan decomposition corresponding to θ''). By Lemma 4 there is an $h\in H_0$ such that $\mathfrak a_{\mathfrak p}=\mathrm{Ad}\,(h)\mathfrak a$ is contained in $\mathfrak p$. It is clear that $\mathfrak a_{\mathfrak p}$ is a σ -stable maximal abelian subspace of $\mathfrak p$. Thus there exists a positive system $\mathcal L^+$ of $\mathcal L(\mathfrak a_{\mathfrak p})$ such that $\mathrm{Ad}\,(h)\mathfrak P=\mathfrak P(\mathfrak a_{\mathfrak p},\, \mathcal L^+)$ (cf. the Remark following Lemma 1).

(ii) Let $\mathfrak{P}=\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})$ and $\mathfrak{P}'=\mathfrak{P}(\mathfrak{a}'_{\mathfrak{p}}, \Sigma'^{+})$ be H-conjugate. Then there is an $h \in H$ such that $\mathrm{Ad}(h)\mathfrak{a}'_{\mathfrak{p}}$ is a split component of \mathfrak{P} . Since $\mathfrak{a}_{\mathfrak{p}}$ is σ -stable so is \mathfrak{m} . Then

$$\sigma \mathfrak{P} = \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}} + \sigma \mathfrak{n}^{+} = \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}} + w \mathfrak{n}^{+}$$

for some element w in the Weyl group W, and

$$\mathfrak{P} \cap \sigma \mathfrak{P} = \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}} + \mathfrak{n}_{w}^{+}$$
.

Thus we have $\mathrm{Ad}(h)\mathfrak{a}_{\flat}'=\mathrm{Ad}(n_1)\mathfrak{a}_{\flat}$ for some $n_1\in N_w^+$. Since $\mathrm{Ad}(h)\mathfrak{a}_{\flat}'$ is σ -stable, it follows that

$$\operatorname{Ad}(n_1)a_n = \sigma(\operatorname{Ad}(n_1)a_n) = \operatorname{Ad}(\sigma n_1)a_n$$

hence $n_1 = \sigma n_1$. Let $n_1 = \exp X$, $X \in \mathfrak{n}_w^+$. Then $\exp \sigma X = \exp X$, so $\sigma X = X$, $X \in \mathfrak{h}$, and $n_1 \in H_0$. Put $n_1^{-1}h = h' = k \exp X$ ($k \in K$, $X \in \mathfrak{p}$). Then $k \in K_+$ and $\operatorname{Ad}(k \exp X)\mathfrak{a}_p' = \mathfrak{a}_p$. Since $\operatorname{Ad}(\exp X)H = H$ for every $H \in \mathfrak{a}_p'$ ([7], p. 28), we have $\operatorname{Ad}(k)\mathfrak{a}_p' = \mathfrak{a}_p$. Thus \mathfrak{a}_p' is K_+ -conjugate to \mathfrak{a}_p .

REMARK. As is proved above, two maximal abelian subspaces $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ of \mathfrak{p} are H-conjugate if and only if they are K_+ -conjugate.

Define a subgroup $W(\mathfrak{a}_{\mathfrak{p}}, K_{+})$ of the Weyl group $W(\mathfrak{a}_{\mathfrak{p}})$ by

$$W(\mathfrak{a}_{\mathfrak{p}}, K_{+}) = (M^{*}(\mathfrak{a}_{\mathfrak{p}}) \cap K_{+})/(M(\mathfrak{a}_{\mathfrak{p}}) \cap K_{+}) = N_{K_{+}}(\mathfrak{a}_{\mathfrak{p}})/Z_{K_{+}}(\mathfrak{a}_{\mathfrak{p}}),$$

where $M(\mathfrak{a}_{\mathfrak{p}})=Z_K(\mathfrak{a}_{\mathfrak{p}})$ and $M^*(\mathfrak{a}_{\mathfrak{p}})=N_K(\mathfrak{a}_{\mathfrak{p}})$. Then the following corollary holds.

COROLLARY 1. Let $\{\mathfrak{a}_{\mathfrak{p}_i}|i\in I\}$ be a set of representatives of K_+ -conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} . Then there exists a one-to-one correspondence between the H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} and $\bigcup_{i\in I}W(\mathfrak{a}_{\mathfrak{p}_i},K_+)\backslash W(\mathfrak{a}_{\mathfrak{p}_i})$ (disjoint union). The correspondence is given as

follows. Fix a positive system Σ_i^+ of $\Sigma(\mathfrak{a}_{\mathfrak{p}i})$ for each $i \in I$. Then $W(\mathfrak{a}_{\mathfrak{p}i}, K_+)w \in \bigcup_{i \in I} W(\mathfrak{a}_{\mathfrak{p}i}, K_+) \setminus W(\mathfrak{a}_{\mathfrak{p}i})$ corresponds to the H-conjugacy class of minimal parabolic subalgebras of \mathfrak{g} containing $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}i}, w\Sigma_i^+)$.

PROOF. It follows from (i) of Theorem 1 that every minimal parabolic subalgebra is H-conjugate to one of $\{\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}i},\,w\Sigma_i^+)|i\in I,\,w\in W(\mathfrak{a}_{\mathfrak{p}i})\}$. On the other hand $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}i},\,w\Sigma_i^+)$ is H-conjugate to $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}j},\,w'\Sigma_j^+)$ if and only if i=j and w=w''w' for some $w''\in W(\mathfrak{a}_{\mathfrak{p}i},\,K_+)$ in view of (ii) of Theorem 1. Thus the given correspondence is a bijection between $\bigcup_{i\in I}W(\mathfrak{a}_{\mathfrak{p}i},\,K_+)\backslash W(\mathfrak{a}_{\mathfrak{p}i})$ and the H-conjugacy classes of minimal parabolic subalgebras of \mathfrak{g} .

The following corollary follows easily from Corollary 1.

COROLLARY 2. There exists a one-to-one correspondence between the H-conjugacy classes of minimal parabolic subalgebras of $\mathfrak g$ and the H'-conjugacy classes of them. In this correspondence the H-conjugacy class containing $\mathfrak P(\mathfrak a_{\mathfrak p}, \Sigma^+)$ ($\mathfrak a_{\mathfrak p}$ is a σ -stable maximal abelian subspace of $\mathfrak p$) corresponds to the H'-conjugacy class containing $\mathfrak P(\mathfrak a_{\mathfrak p}, \Sigma^+)$.

EXAMPLE 1. Let G_c be a connected complex semi-simple Lie group and G a connected real form of G_c . Then (G_c, G, σ) is an affine symmetric space, where σ is the conjugation of G_c with respect to G. Let \mathfrak{g}_c and \mathfrak{g} be Lie algebras of G_c and G respectively. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g}_c , and put $\mathfrak{u}=\mathfrak{k}+\sqrt{-1}\,\mathfrak{p}$. Then $\mathfrak{g}_c=\mathfrak{u}+\sqrt{-1}\,\mathfrak{u}$ is a Cartan decomposition of \mathfrak{g}_c , and we have $\mathfrak{g}_c=\mathfrak{k}+\sqrt{-1}\,\mathfrak{p}+\mathfrak{p}+\sqrt{-1}\,\mathfrak{k}$. Let θ be the corresponding Cartan involution. Let $\mathfrak{h}'=\mathfrak{h}_{\mathfrak{p}}+\sqrt{-1}\,\mathfrak{h}_{\mathfrak{l}}$ be a σ -stable maximal abelian subspace of $\sqrt{-1}\,\mathfrak{u}$ ($\mathfrak{h}_{\mathfrak{p}}\subset\mathfrak{p}$, $\sqrt{-1}\,\mathfrak{h}_{\mathfrak{l}}\subset\sqrt{-1}\,\mathfrak{k}$). Then $\mathfrak{h}=\mathfrak{h}_{\mathfrak{p}}+\mathfrak{h}_{\mathfrak{l}}$ is a θ -stable Cartan subalgebra of \mathfrak{g} . Thus in this case the problem is reduced to the study of conjugacy of Cartan subalgebras of \mathfrak{g} (cf. [5]). A minimal parabolic subgroup is a Borel subgroup in this case. For some examples, $G\backslash G_c/B$ is determined in [1]. Open orbits and closed orbits are determined in [8] (see also § 3). The associated affine symmetric space is $(G_c, K_c, \sigma\theta)$ (K_c is the analytic subgroup of G_c corresponding to \mathfrak{k}_c).

Example 2. Consider an affine symmetric space $(G\times G, \Delta G, \sigma)$, where G is a connected real semi-simple Lie group, ΔG is the diagonal of $G\times G$, and σ is the mapping $(x,y)\to (y,x)$. Let θ be a Cartan involution of $\mathfrak g$ and $\mathfrak g=\mathfrak t+\mathfrak p$ the corresponding Cartan decomposition of $\mathfrak g$. Then the mapping $\theta+\theta:\mathfrak g+\mathfrak g\to\mathfrak g+\mathfrak g$ $((\theta+\theta)(X,Y)=(\theta X,\theta Y)$ for $X,Y\in\mathfrak g$) is a Cartan involution of $\mathfrak g+\mathfrak g$ commutative with σ . Then $\mathfrak g+\mathfrak g=\Delta\mathfrak t+\mathfrak t+\Delta\mathfrak p+\mathfrak p$, where $\mathfrak t=\{(X,-X)|X\in\mathfrak t\}$ and $\mathfrak p=\{(Y,-Y)|Y\in\mathfrak p\}$. A subspace $\mathfrak a_\mathfrak p+\mathfrak a_\mathfrak p$ ($\mathfrak a_\mathfrak p$ is a maximal abelian subspace of $\mathfrak p$) is a σ -stable maximal abelian subspace of $\mathfrak p+\mathfrak p$ are ΔK -conjugate. If we identify $W(\mathfrak a_\mathfrak p+\mathfrak a_\mathfrak p)$ with $W(\mathfrak a_\mathfrak p)+W(\mathfrak a_\mathfrak p)$, then

$$W(\mathfrak{a}_{\mathfrak{p}}+\mathfrak{a}_{\mathfrak{p}}, \Delta K)=\Delta W(\mathfrak{a}_{\mathfrak{p}})$$
.

§ 2. K_{+} -conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} .

The results of this section are obtained by following the process in [5] (or [7], p. $88\sim$ p. 95). The following lemma seems to be familiar. But since this is frequently used in this section, we state it with a proof for the sake of completeness.

LEMMA 5. Let $\mathfrak g$ be a semi-simple Lie algebra, θ a Cartan involution of $\mathfrak g$, and $\mathfrak g=\mathfrak k+\mathfrak p$ the corresponding Cartan decomposition. Let $\mathfrak h$ be a θ -stable semi-simple subalgebra of $\mathfrak g$. Then $\mathfrak h=\mathfrak h\cap \mathfrak k+\mathfrak h\cap \mathfrak p$ is a Cartan decomposition of $\mathfrak h$.

PROOF. Let $B_{\mathfrak{J}}$ and $B_{\mathfrak{h}}$ be the Killing forms of \mathfrak{g} and \mathfrak{h} respectively. Then $B_{\mathfrak{g}}$ is negative definite on \mathfrak{k} and positive definite on \mathfrak{p} . Let $\{X_1, \cdots, X_k\}$ be an orthonormal basis of \mathfrak{k} with respect to $-B_{\mathfrak{g}}$ such that $\{X_1, \cdots, X_s\}$ is a basis of $\mathfrak{h} \cap \mathfrak{k}$. Let $\{Y_1, \cdots, Y_m\}$ be an orthonormal basis of \mathfrak{p} with respect to $B_{\mathfrak{g}}$ such that $\{Y_1, \cdots, Y_t\}$ is a basis of $\mathfrak{h} \cap \mathfrak{p}$. Then if $X \in \mathfrak{h} \cap \mathfrak{k}$, ad X is represented by a skew-symmetric matrix with respect to the basis $\{X_1, \cdots, X_k, Y_1, \cdots, Y_m\}$ of \mathfrak{g} ([4], p. 215). So is $\mathrm{ad} X|_{\mathfrak{h}}$, the restriction of $\mathrm{ad} X$ to \mathfrak{h} . In the same way if $Y \in \mathfrak{h} \cap \mathfrak{p}$, then $\mathrm{ad} Y|_{\mathfrak{h}}$ is represented by a symmetric matrix. Put $\mathrm{ad} X|_{\mathfrak{h}} = (a_{ij})$ and $\mathrm{ad} Y|_{\mathfrak{h}} = (b_{ij})$. Then

$$B_{\mathfrak{h}}(X, X) = \operatorname{tr} (\operatorname{ad} X |_{\mathfrak{h}^{2}}) = \sum_{i, j=1}^{s+t} a_{ij} a_{ji} = -\sum_{i, j=1}^{s+t} a_{ij}^{2}$$

$$B_{\mathfrak{h}}(Y, Y) = \sum_{i, j=1}^{s+t} b_{ij}^{2}.$$

and

If $X \neq 0$, then $\operatorname{ad} X|_{\mathfrak{h}} \neq 0$ since \mathfrak{h} is semi-simple, so $B_{\mathfrak{h}}(X, X) < 0$. If $Y \neq 0$, then $B_{\mathfrak{h}}(Y, Y) > 0$. This implies that $\mathfrak{h} = \mathfrak{h} \cap \mathfrak{k} + \mathfrak{h} \cap \mathfrak{p}$ is a Cartan decomposition of \mathfrak{h} .

q. e. d.

The fundamental tool of this section is the following.

MAXIMUM PRINCIPLE ([7], p. 90, and [5], Theorem 1). Let $\mathfrak g$ be a semi-simple Lie algebra, and let $\mathfrak t_1$ and $\mathfrak t_2$ be subalgebras of $\mathfrak g$ generating tori T_1 and T_2 in Int ($\mathfrak g$). If there exists a compact subgroup L with Lie algebra $\mathfrak I$ in Int ($\mathfrak g$) such that

$$[k(t_1), t_2] \subset \emptyset$$

for all $k \in L$, then there exists an element $k_0 \in L$ such that

$$\lceil k_0(t_1), t_2 \rceil = 0$$
.

Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, and $(\mathfrak{g}, \mathfrak{h}, \sigma)$ the corresponding symmetric Lie algebra. Let θ be a Cartan involution of \mathfrak{g} commutative with σ , $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan decomposition, and K the analytic subgroup of G for \mathfrak{k} . Put $K_+=K\cap H$ and $K'_+=\mathrm{Ad}(K_+)_0$.

Let $\mathfrak{a}_{\mathfrak{p}}$ be a σ -stable maximal abelian subspace of \mathfrak{p} . Write $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{a}_{\mathfrak{p}+} + \mathfrak{a}_{\mathfrak{p}-}$ ($\mathfrak{a}_{\mathfrak{p}+} = \mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{q}$).

LEMMA 6. $\sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}}, \, \sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}+} \, and \, \sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}-} \, generate \, tori \, in \, \operatorname{Int} (\mathfrak{g}_{c}).$

PROOF. Let T, T_+ and T_- be the analytic subgroups of $\operatorname{Int}(\mathfrak{g}_c)$ corresponding to $\sqrt{-1}\,\mathfrak{a}_{\mathfrak{p}}$, $\sqrt{-1}\,\mathfrak{a}_{\mathfrak{p}+}$ and $\sqrt{-1}\,\mathfrak{a}_{\mathfrak{p}-}$, respectively. We have only to prove that T, T_+ and T_- are closed subgroups of $\operatorname{Int}(\mathfrak{g}_c)$ since the analytic subgroup U of $\operatorname{Int}(\mathfrak{g}_c)$ corresponding to $\mathfrak{u}=\mathfrak{k}+\sqrt{-1}\,\mathfrak{p}$ is compact. It is proved for T in [5]. Extend σ to the automorphism of $\operatorname{Int}(\mathfrak{g}_c)$. Then T is σ -stable. Put $T'_+=\{x\in T|\sigma(x)=x\}$. Since T'_+ is a closed subgroup of T and coincides to T_+ in a neighborhood of the origin, T_+ is also closed. In the same way it is proved that T_- is closed.

LEMMA 7. All the σ -stable maximal abelian subspaces of \mathfrak{p} such that the \mathfrak{p}_+ (resp. \mathfrak{p}_-)-parts are maximal abelian in \mathfrak{p}_+ (resp. \mathfrak{p}_-) are mutually K'_+ -conjugate.

PROOF. Since $\mathfrak{h}=\mathfrak{k}_++\mathfrak{p}_+$ is θ -stable, \mathfrak{h} is a reductive subalgebra of \mathfrak{g} ([5], \mathfrak{p} . 42). So $\overline{\mathfrak{h}}=[\mathfrak{h},\mathfrak{h}]$ is semi-simple and θ -stable. Then $\overline{\mathfrak{h}}=\overline{\mathfrak{h}}\cap\mathfrak{k}+\overline{\mathfrak{h}}\cap\mathfrak{p}=\overline{\mathfrak{k}}+\overline{\mathfrak{p}}$ is a Cartan decomposition of $\overline{\mathfrak{h}}$ (Lemma 5). Let \mathfrak{c} be the center of \mathfrak{h} . \mathfrak{c} is θ -stable and is written as $\mathfrak{c}=\mathfrak{c}_t+\mathfrak{c}_{\mathfrak{p}}$. Then every maximal abelian subspace of \mathfrak{p}_+ is the sum of $\mathfrak{c}_{\mathfrak{p}}$ and a maximal abelian subspace of $\overline{\mathfrak{p}}$. Since all the maximal abelian subspaces in $\overline{\mathfrak{p}}$ are conjugate under \overline{K} (the analytic subgroup of $\operatorname{Int}(\mathfrak{g}_c)$ corresponding to $\overline{\mathfrak{k}}$), so are those in \mathfrak{p}_+ . Hence all the maximal abelian subspaces in \mathfrak{p}_+ are conjugate under K'_+ .

Given $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ which satisfy the condition of the Lemma, we can thus assume that $\mathfrak{a}_{\mathfrak{p}+} = \mathfrak{a}'_{\mathfrak{p}+}$. $\sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}-}$ and $\sqrt{-1} \, \mathfrak{a}'_{\mathfrak{p}-}$ generate tori in Int $(\mathfrak{g}_{\mathcal{C}})$ (Lemma 6) and $Z_{K'_{+}}(\mathfrak{a}_{\mathfrak{p}+})$ is a compact subgroup of Int $(\mathfrak{g}_{\mathcal{C}})$. If $k \in Z_{K'_{+}}(\mathfrak{a}_{\mathfrak{p}+})$, then

$$[\sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}}, \, k(\sqrt{-1} \, \mathfrak{a}'_{\mathfrak{p}})] \subset \mathfrak{f}_{+},$$

and

Therefore $[\sqrt{-1} \, a_{\mathfrak{p}-}, \, k(\sqrt{-1} \, a'_{\mathfrak{p}-})] \subset_{\mathfrak{d}_{\mathfrak{l}+}} (a_{\mathfrak{p}+})$. Applying the Maximum principle, there exists a $k_0 \in Z_{K'_+}(a_{\mathfrak{p}+})$ such that

$$[\sqrt{-1} \alpha_{\mathfrak{p}}, k_0(\sqrt{-1} \alpha'_{\mathfrak{p}})] = [\alpha_{\mathfrak{p}}, k_0(\alpha'_{\mathfrak{p}})] = \{0\}.$$

On the other hand $[a_{\mathfrak{p}+}, k_0(a'_{\mathfrak{p}-})] = \{0\}$. It follows that $k_0(a'_{\mathfrak{p}-}) = a_{\mathfrak{p}-}$ because $a_{\mathfrak{p}}$ is maximal abelian in \mathfrak{p} . Thus $a_{\mathfrak{p}}$ and $a'_{\mathfrak{p}}$ are K'_+ -conjugate. q. e. d.

REMARK. If $\mathfrak{a}_{\mathfrak{p}}$ is a maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{p}_{+}$ (resp. $\mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{p}_{-}$) is maximal abelian in \mathfrak{p}_{+} (resp. \mathfrak{p}_{-}), then it is easily shown that $\mathfrak{a}_{\mathfrak{p}}$ is σ -stable.

LEMMA 8. Let $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}'_{\mathfrak{p}}$ be σ -stable maximal abelian subspaces of \mathfrak{p} . If $\mathfrak{a}'_{\mathfrak{p}+} \subset \mathfrak{a}_{\mathfrak{p}+}$, then there exists an element $k \in Z_{K'_{+}}(\mathfrak{a}'_{\mathfrak{p}+})$ such that $k(\mathfrak{a}_{\mathfrak{p}-}) \subset \mathfrak{a}'_{\mathfrak{p}-}$. Moreover if $\mathfrak{a}'_{\mathfrak{p}+} = \mathfrak{a}_{\mathfrak{p}+}$, then $k(\mathfrak{a}_{\mathfrak{p}-}) = \mathfrak{a}'_{\mathfrak{p}-}$.

PROOF. If $k \in Z_{K'_{+}}(\mathfrak{a}'_{\mathfrak{p}+})$, then

$$[k(\sqrt{-1} \mathfrak{a}_{\mathfrak{p}-}), \sqrt{-1} \mathfrak{a}_{\mathfrak{p}-}'] \subset \mathfrak{k}_{+}$$
,

and

$$\begin{bmatrix} \alpha'_{\mathfrak{p}+}, \ \lfloor k(\sqrt{-1} \ \alpha_{\mathfrak{p}-}), \ \sqrt{-1} \ \alpha'_{\mathfrak{p}-} \end{bmatrix} \\
= \begin{bmatrix} \alpha'_{\mathfrak{p}+}, \ k(\alpha_{\mathfrak{p}-}) \end{bmatrix}, \ \alpha'_{\mathfrak{p}-} \end{bmatrix} + \begin{bmatrix} k(\alpha_{\mathfrak{p}-}), \ \lfloor \alpha'_{\mathfrak{p}+}, \ \alpha'_{\mathfrak{p}-} \end{bmatrix} \end{bmatrix} \\
= \{0\}.$$

Thus $[k(\sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}-}), \sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}-}'] \subset_{\mathfrak{F}_{\mathfrak{p}}} (\mathfrak{a}_{\mathfrak{p}+}')$. Applying the Maximum principle, there exists a $k_0 \in Z_{K'_+}(\mathfrak{a}_{\mathfrak{p}+}')$ such that

$$[k_0(\mathfrak{a}_{\mathfrak{p}-}), \mathfrak{a}'_{\mathfrak{p}-}] = \{0\}$$
.

On the other hand $[k_0(\mathfrak{a}_{\mathfrak{p}-}), \mathfrak{a}'_{\mathfrak{p}+}] = \{0\}$, hence we have

$$k_0(\mathfrak{a}_{\mathfrak{p}-}) \subset \mathfrak{a}'_{\mathfrak{p}-}$$
 q. e. d.

DEFINITION. Fix a σ -stable maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}}$ of \mathfrak{p} such that $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_+ . Then a σ -stable maximal abelian subspace $\mathfrak{a}'_{\mathfrak{p}}$ of \mathfrak{p} is said to be standard if $\mathfrak{a}'_{\mathfrak{p}+} \subset \mathfrak{a}_{\mathfrak{p}+}$ and $\mathfrak{a}'_{\mathfrak{p}-} \supset \mathfrak{a}_{\mathfrak{p}-}$.

It follows from Lemma 7 and Lemma 8 that every K_+ -conjugacy class of σ -stable maximal abelian subspaces of \mathfrak{p} contains a standard one.

LEMMA 9. Let $\mathfrak{a}_{\mathfrak{p}}$, $\mathfrak{a}'_{\mathfrak{p}}$ and $\mathfrak{a}''_{\mathfrak{p}}$ be σ -stable maximal abelian subspaces of \mathfrak{p} where $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_+ . Suppose that $\mathfrak{a}'_{\mathfrak{p}+}\subset\mathfrak{a}_{\mathfrak{p}+}$, $\mathfrak{a}''_{\mathfrak{p}+}\subset\mathfrak{a}_{\mathfrak{p}+}$, $\mathfrak{a}_{\mathfrak{p}-}\subset\mathfrak{a}'_{\mathfrak{p}-}$, and $\mathfrak{a}_{\mathfrak{p}-}\subset\mathfrak{a}''_{\mathfrak{p}-}$. Then $\mathfrak{a}'_{\mathfrak{p}}$ and $\mathfrak{a}''_{\mathfrak{p}}$ are K_+ -conjugate if and only if $\mathfrak{a}'_{\mathfrak{p}+}$ and $\mathfrak{a}''_{\mathfrak{p}+}$ are conjugate under $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$.

PROOF. If α'_{p+} and α''_{p+} are conjugate under $W(\alpha_p, K_+)$, it follows from Lemma 8 that α'_p and α''_p are K_+ -conjugate.

We will prove the coverse assertion. Suppose $k'a'_{\mathfrak{p}}=a''_{\mathfrak{p}}$, $k'\in \mathrm{Ad}(K_+)$. Then $k'a'_{\mathfrak{p}+}=a''_{\mathfrak{p}+}$. Let k_1 be an element of $Z_{K'_+}(a''_{\mathfrak{p}+})$. Then

$$[k_1k'(\sqrt{-1} \mathfrak{a}_{\mathfrak{p}+}), \sqrt{-1} \mathfrak{a}_{\mathfrak{p}+}] \subset \mathfrak{k}_+,$$

and

$$\begin{split} & \left[\alpha_{\mathfrak{p}+}'', \left[k_1 k'(\sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}+}), \, \sqrt{-1} \, \mathfrak{a}_{\mathfrak{p}+}\right]\right] \\ = & \left[\left[\alpha_{\mathfrak{p}+}'', \, k_1 k'(\mathfrak{a}_{\mathfrak{p}+})\right], \, \mathfrak{a}_{\mathfrak{p}+}\right] + \left[k_1 k'(\mathfrak{a}_{\mathfrak{p}+}), \, \left[\alpha_{\mathfrak{p}+}'', \, \mathfrak{a}_{\mathfrak{p}+}\right]\right] \\ = & \left\{0\right\}. \end{split}$$

Thus $[k_1k'(\sqrt{-1}\mathfrak{a}_{\mathfrak{p}+}), \sqrt{-1}\mathfrak{a}_{\mathfrak{p}+}]\subset_{\mathfrak{d}_{\mathfrak{p}+}}(\mathfrak{a}''_{\mathfrak{p}+})$. Applying the Maximum principle, there exists a $k_0\in Z_{K'_+}(\mathfrak{a}''_{\mathfrak{p}+})$ such that

$$[k_0k'(\sqrt{-1}\,\mathfrak{a}_{\mathfrak{p}+}),\,\sqrt{-1}\,\mathfrak{a}_{\mathfrak{p}+}]=\{0\}$$
.

Hence $k_0 k'(\mathfrak{a}_{\mathfrak{p}+}) = \mathfrak{a}_{\mathfrak{p}+}$ because $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_+ . On the other hand, we have

$$k_0 k'(\mathfrak{a}'_{\mathfrak{p}+}) = \mathfrak{a}''_{\mathfrak{p}+}$$
.

It follows from Lemma 8 that there is a $k_2 \in Z_{K'_+}(\mathfrak{a}_{\mathfrak{p}_+})$ such that

$$k_2k_0k'(\mathfrak{a}_{\mathfrak{p}})=\mathfrak{a}_{\mathfrak{p}}$$
,

so $k_2k_0k' \in \operatorname{Ad}(M^*(\mathfrak{a}_{\mathfrak{p}}) \cap K_+)$. Since $k_2k_0k'(\mathfrak{a}'_{\mathfrak{p}+}) = \mathfrak{a}''_{\mathfrak{p}+}$, $\mathfrak{a}'_{\mathfrak{p}+}$ and $\mathfrak{a}''_{\mathfrak{p}+}$ are conjugate under $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$.

We will show in the latter half of this section when a subspace of a maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}+}$ of \mathfrak{p}_+ is the \mathfrak{p}_+ -part of some σ -stable maximal abelian subspace of \mathfrak{p} . Fix a maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}+}$ of \mathfrak{p}_+ and a σ -stable maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}}$ of \mathfrak{p} containing $\mathfrak{a}_{\mathfrak{p}+}$, Let H_{α} be the unique element of $\mathfrak{a}_{\mathfrak{p}}$ such that $B(H_{\alpha}, H) = \alpha(H)$ for all $H \in \mathfrak{a}_{\mathfrak{p}}$.

Lemma 10. Let $\mathfrak{a}'_{\mathfrak{p}}$ be a standard σ -stable maximal abelian subspace of \mathfrak{p} . Put $\mathfrak{r} = \{H \in \mathfrak{a}_{\mathfrak{p}+} \mid B(H, \mathfrak{a}'_{\mathfrak{p}+}) = 0\}$ and $\Sigma(\mathfrak{r}) = \{\alpha \in \Sigma \mid H_{\alpha} \in \mathfrak{r}\}$. Then $\mathfrak{r} = \sum_{\alpha \in \Sigma(\mathfrak{r})} RH_{\alpha}$.

PROOF. Note that

$$g_{\theta}(\alpha'_{p+}+\alpha_{p-})=m+\alpha_{p}+\sum_{\alpha\in\Sigma(r)}g_{\alpha}$$
,

and $\mathfrak{c}'_{\mathfrak{p}}\subset \mathfrak{d}_{\mathfrak{g}}(\mathfrak{a}'_{\mathfrak{p}+}+\mathfrak{a}_{\mathfrak{p}-})$. If $\mathfrak{r} \cong \sum_{\alpha\in\Sigma(\mathfrak{r})}RH_{\alpha}$, then there is a non-zero element $H_1\in\mathfrak{r}$ such that $\alpha(H_1)=0$ for all $\alpha\in\Sigma(\mathfrak{r})$. Hence

$$[H_1, \mathfrak{a}'_{\mathfrak{p}}] \subset [H_1, \mathfrak{F}_{\mathfrak{a}}(\mathfrak{a}'_{\mathfrak{p}+} + \mathfrak{a}_{\mathfrak{p}-})] = \{0\}$$
.

This implies that $H_1 \in \mathfrak{a}'_{\mathfrak{p}}$. Then we have $H_1 \in \mathfrak{a}'_{\mathfrak{p}} \cap \mathfrak{r} = \{0\}$, a contradiction.

q. e. d.

DEFINITION. For a subspace \mathfrak{r} of $\mathfrak{a}_{\mathfrak{p}+}$, put $\Sigma(\mathfrak{r}) = \{\alpha \in \Sigma \mid H_{\alpha} \in \mathfrak{r}\}$. Then a subspace \mathfrak{r} of $\mathfrak{a}_{\mathfrak{p}+}$ satisfying $\mathfrak{r} = \sum_{\alpha \in \Sigma(\mathfrak{r})} RH_{\alpha}$ is called a root space of $\mathfrak{a}_{\mathfrak{p}+}$.

Let $\mathfrak{r} \subset \mathfrak{a}_{\mathfrak{p}+}$ be a root space and put $\mathfrak{r}' = \{X \in \mathfrak{a}_{\mathfrak{p}} \mid B(X, \mathfrak{r}) = 0\}$. Let $\mathfrak{g}(\mathfrak{r})$ be the subalgebra of \mathfrak{g} generated by $\sum_{\alpha \in \Sigma(\mathfrak{r})} \mathfrak{g}_{\alpha}$, and \mathfrak{c} the center of $\mathfrak{z}_{\mathfrak{g}}(\mathfrak{r}')$. Then

$$\mathfrak{z}_{\mathfrak{g}}(\mathfrak{r}') = \mathfrak{c} + \mathfrak{g}(\mathfrak{r})$$
 (direct sum),

where g(r) is semi-simple ([7], p. 66). Since g(r) is σ -stable and θ -stable, we have

$$g(r) = f(r) + p(r) = f_+(r) + f_-(r) + p_+(r) + p_-(r)$$

where $\mathfrak{t}(\mathfrak{r})=\mathfrak{t}\cap\mathfrak{g}(\mathfrak{r})$, and so on. Since \mathfrak{r} is a maximal abelian subspace of $\mathfrak{p}(\mathfrak{r})$ contained in $\mathfrak{p}_+(\mathfrak{r})$ ([7], p. 67), and since $\mathfrak{g}(\mathfrak{r})=\mathfrak{t}(\mathfrak{r})+\mathfrak{p}(\mathfrak{r})$ is a Cartan decomposition of $\mathfrak{g}(\mathfrak{r})$ (Lemma 5), we have

$$\mathfrak{g}(\mathfrak{r}) = \mathfrak{m}(\mathfrak{r}) + \mathfrak{r} + \sum_{\alpha \in \Sigma(\mathfrak{r})} \mathfrak{g}_{\alpha}$$
 ,

where $\mathfrak{m}(\mathfrak{r})=\mathfrak{f}_{\mathfrak{s}(\mathfrak{r})}(\mathfrak{r}).$

Let $\alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}+})$. Then $\sigma \mathfrak{g}_{\alpha} = \mathfrak{g}_{\alpha}$, so we can write $\mathfrak{g}_{\alpha} = \mathfrak{g}_{\alpha+} + \mathfrak{g}_{\alpha-}$, $\mathfrak{g}_{\alpha+} = \mathfrak{g}_{\alpha} \cap \mathfrak{h}$, $\mathfrak{g}_{\alpha-} = \mathfrak{g}_{\alpha} \cap \mathfrak{g}$.

DEFINITION. Let $\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ be a set of non-zero root vectors of $\mathfrak g$ such that $X_{\alpha_i} \in \mathfrak g_{\alpha_i}$ and $\alpha_i \in \Sigma(\mathfrak a_{\mathfrak p+})$. Then $\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ is said to be a $\mathfrak q$ -orthogonal system of $\Sigma(\mathfrak a_{\mathfrak p+})$ if the following two conditions are satisfied:

- (i) $X_{\alpha_i} \in \mathfrak{g}_{\alpha_i}$ for $i=1, \dots, k$,
- (ii) $[X_{\alpha_i}, X_{\alpha_i}]=0$, $[X_{\alpha_i}, \theta(X_{\alpha_i})]=0$ for $i, j=1, \dots, k, i\neq j$.

LEMMA 11. Let Σ be a root system of the pair $(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}})$. Let $X_{\alpha} \in \mathfrak{g}_{\alpha}$, $X_{\beta} \in \mathfrak{g}_{\beta}$, and $X_{-\alpha} = \theta(X_{\alpha})$ $(\alpha, \beta \in \Sigma)$. Suppose that $X_{\alpha} \neq 0$, $X_{\beta} \neq 0$,

$$(\operatorname{ad} X_{\alpha})^k X_{\beta} \neq 0$$
 for $k=1, \cdots, s$, $(\operatorname{ad} X_{\alpha})^{s+1} X_{\beta} = 0$, $(\operatorname{ad} X_{-\alpha})^k X_{\beta} \neq 0$ for $k=1, \cdots, -r$, $(\operatorname{ad} X_{-\alpha})^{-r+1} X_{\delta} = 0$.

and

$$(auA_{-\alpha})$$
 $A_{\beta}=0$

Then

(i)
$$[X_{-\alpha}, [X_{\alpha}, X_{\beta}]] = \frac{s(1-r)}{2} \alpha(H_{\alpha}) B(X_{\alpha}, X_{-\alpha}) X_{\beta}.$$

(ii)
$$-2\frac{\beta(H_{\alpha})}{\alpha(H_{\alpha})} = r + s$$
.

Especially,

- (iii) If $(\alpha, \beta) < 0$, then $[X_{\alpha}, X_{\beta}] \neq 0$.
- (iv) If $(\alpha, \beta)=0$ and $[X_{\alpha}, X_{\beta}]\neq 0$, then $[X_{-\alpha}, X_{\beta}]\neq 0$ (where $(\alpha, \beta)=B(H_{\alpha}, H_{\beta})=\beta(H_{\alpha})$).

PROOF. Note that $[X_{\alpha}, X_{-\alpha}] = B(X_{\alpha}, X_{-\alpha})H_{\alpha}$ ([7], p. 66). Then the proofs of (i) and (ii) are the same as those of theorems on complex semi-simple Lie algebras ([4], p. 143 \sim 145). (iii) and (iv) follows from (ii). q. e. d.

It follows from (iii) of Lemma 11 that if $\{X_{\alpha_1}, \dots, X_{\alpha_k}\}$ is q-orthogonal then $(\alpha_i, \alpha_j)=0$ for $i\neq j$.

LEMMA 12. Let $(\mathfrak{g}, \mathfrak{h}, \sigma)$ be a symmetric Lie algebra such that \mathfrak{g} is semisimple, θ a Cartan involution commutative with σ , and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan decomposition of \mathfrak{g} . Suppose that there is a maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}}$ of \mathfrak{p} contained in \mathfrak{p}_+ . Then the following two conditions are equivalent:

- (i) There exists a maximal abelian subspace of \mathfrak{p} contained in \mathfrak{p}_{-} ;
- (ii) There exists a q-orthogonal system $\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ of $\Sigma(\mathfrak{a}_{\mathfrak{p}})$ ($k = \dim \mathfrak{a}_{\mathfrak{p}}$).

PROOF. (ii) \Rightarrow (i). Since $X_{\alpha_i} - X_{-\alpha_i} \in \mathfrak{p}_-$ and

$$[X_{\alpha_i}-X_{-\alpha_i}, X_{\alpha_i}-X_{-\alpha_i}]=0$$
 for all $i, j=1, \dots, k$,

the subspace of \mathfrak{p}_{-} spanned by $\{X_{\alpha_i}-X_{-\alpha_i}|i=1,\dots,k\}$ is a desired one.

- (i) \Rightarrow (ii). For every positive integer m, define a proposition (P_m) as follows.
- (P_m) . If \mathfrak{p}_- contains an abelian subspace of dimension m, then there exists a \mathfrak{q} -orthogonal system $\{X_{\alpha_1}, \cdots, X_{\alpha_m}\}$ of $\Sigma(\mathfrak{q}_{\mathfrak{p}})$.

For every q-orthogonal system $Q = \{X_{\alpha_1}, \dots, X_{\alpha_m}\}$ of $\Sigma(\mathfrak{a}_{\mathfrak{p}})$, define a real number f(Q) by $f(Q) = \sum_{i=1}^m (\alpha_i, \alpha_i)$. We will prove (P_m) $(m \leq k)$ by induction.

- (P₁). As $\mathfrak{p}_{-} \neq \{0\}$, there is an $\alpha \in \Sigma$ such that $\mathfrak{g}_{\alpha_{-}} \neq \{0\}$. Take a non-zero element $X_{\alpha} \in \mathfrak{g}_{\alpha_{-}}$. Then $\{X_{\alpha}\}$ is a \mathfrak{q} -orthogonal system.
- $(P_{m-1}) \Rightarrow (P_m)$. Consider the set of all the q-orthogonal systems of $\Sigma(\mathfrak{a}_p)$ consisting of m-1 root vectors. Then we can choose a q-orthogonal system $Q = \{X_{\alpha_1}, \cdots, X_{\alpha_{m-1}}\}$ such that f(Q) attains the maximum value.

As is proved in Lemma 7 all the maximal abelian subspaces of \mathfrak{p}_{-} have the same dimension. So we can take an m-dimensional abelian subspace \mathfrak{t} of \mathfrak{p}_{-} containing $\{X_{\alpha_i}-X_{-\alpha_i}|i=1,\cdots,m-1\}$. Every element Y of \mathfrak{t} is written as $Y=\sum_{\beta>0}(Y_{\beta}-Y_{-\beta}),\ Y_{\beta}\in\mathfrak{g}_{\beta-},\ Y_{-\beta}=\theta(Y_{\beta}).$ Then we have

(A)
$$0 = [X_{\alpha_i} - X_{-\alpha_i}, Y] = \sum_{\beta > 0} ([X_{\alpha_i}, Y_{\beta}] - [X_{-\alpha_i}, Y_{\beta}] - [X_{-\alpha_i}, Y_{-\beta}] + [X_{-\alpha_i}, Y_{-\beta}])$$

for every $i=1, \cdots, m-1$. Put $\Sigma_1 = \{\alpha \in \Sigma \mid H_\alpha \in \sum_{i=1}^{m-1} RH_{\alpha_i}\}$. As the rank of the semi-simple subalgebra generated by $\sum_{\alpha \in \Sigma_1} \mathfrak{g}_\alpha$ is m-1 ([7], p. 67), t is not contained in $\sum_{\alpha \in \Sigma_1} \mathfrak{g}_\alpha$. Thus there is an element $Y \in \mathfrak{t}$ such that $Y_\beta \neq 0$ for some $\beta \in \Sigma^+ - \Sigma_1^+$.

If $[X_{\alpha_i}, Y_{\beta}] = 0$ and $[X_{\alpha_i}, Y_{-\beta}] = 0$ for all $i = 1, \dots, m-1$, then $\{X_{\alpha_1}, \dots, X_{\alpha_{m-1}}, Y_{\beta}\}$ is q-orthogonal. This implies (P_m) . Thus we can assume that $[X_{\alpha_i}, Y_{\beta}] \neq 0$ or $[X_{\alpha_i}, Y_{-\beta}] \neq 0$ for some i. Changing the order of the roots, we have only to consider the case $[X_{\alpha_i}, Y_{-\beta}] \neq 0$. In the right hand side of (A), the only non-trivial terms contained in $\mathfrak{g}_{\alpha_i - \beta}$ are $-[X_{\alpha_i}, Y_{-\beta}]$ and $-[X_{-\alpha_i}, Y_{\beta'}]$ if $\beta' = 2\alpha_i - \beta > 0$ ($-[X_{\alpha_i}, Y_{-\beta}]$ and $[X_{-\alpha_i}, Y_{\beta'}]$ if $\beta' < 0$). Thus changing the order of the roots if necessary, we can assume $[X_{\alpha_i}, Y_{-\beta}] = -[X_{-\alpha_i}, Y_{\beta'}]$. In particular, $\beta' \in \Sigma$.

It is easily seen that β and β' are not proportional. If $(\beta, \beta') > 0$, then $\beta' - \beta \in \Sigma$. If we set $\gamma = \beta' - \alpha_i$, then $\beta' - \beta = 2\gamma$. (Fig. 1). Then we have $\angle \beta 0 \gamma > \frac{\pi}{2}$ or $\angle \beta' 0 \gamma < \frac{\pi}{2}$. Suppose that $\angle \beta' 0 \gamma < \frac{\pi}{2}$. Since $\frac{2(\beta', 2\gamma)}{(2\gamma, 2\gamma)}$ and $\frac{2(\gamma, \beta')}{(\beta', \beta')}$ are integers and since

$$\frac{2(\beta',2\gamma)}{(2\gamma,2\gamma)}\frac{2(\gamma,\beta')}{(\beta',\beta')} = \frac{2(\beta',\gamma)^2}{(\beta',\beta')(\gamma,\gamma)} < 2,$$

it follows that

$$\frac{2(\beta', 2\gamma)}{(2\gamma, 2\gamma)} = 1 \text{ and } \frac{2(\gamma, \beta')}{(\beta', \beta')} = 1.$$

Thus $\angle \beta' 0 \gamma = \frac{\pi}{4}$ and $|\beta'| = \sqrt{2} |\gamma|$. Similarly if $\angle \beta 0 \gamma > \frac{\pi}{2}$, then $\angle \beta 0 \gamma = \frac{3}{4} \pi$ and $|\beta| = \sqrt{2} |\gamma|$. In both cases we have $(\beta, \beta') = 0$, a contradiction. We also have $(\beta, \beta') \leqslant 0$ in the same way. Hence $(\beta, \beta') = 0$. Then the two cases are possible (Fig. 2 and Fig. 3).

The root system of Fig. 2 only occurs in the root system of the type G_2 . Thus the simple ideal of \mathfrak{g} containing X_{α_i} is either the complex simple Lie algebra of the type G_2 or the normal real form of the type G_2 . Since $\beta + \alpha_i \in \Sigma$, $[X_{\alpha_i}, Y_{\beta}] \neq 0$ in both cases. It follows from (A) that there exists a $\beta'' \in \Sigma$ such that $[X_{\alpha_i}, Y_{\beta}] = [X_{-\alpha_i}, Y_{\beta'}]$. But $\beta'' = \beta + 2\alpha_i$ cannot be a root, hence this is a contradiction.

Therefore we have only to consider the case of Fig. 3. If $[X_{\alpha_j}, Y_{-\beta}] \neq 0$ for some $j \neq i$, then $\angle \beta 0\alpha_j = \frac{\pi}{4}$ as is stated above. Since $\angle \alpha_i 0\alpha_j = \frac{\pi}{2}$, it follows that 0, α_i , α_j and β lies on the same plane. This is impossible because $\beta \notin \Sigma_1$. Hence $[X_{\alpha_j}, Y_{-\beta}] = 0$ and similarly $[X_{\alpha_j}, Y_{\beta}] = 0$ for $j \neq i$. Therefore $Q' = \{X_{\alpha_1}, \cdots, \hat{X}_{\alpha_i}, \cdots X_{\alpha_{m-1}}, Y_{\beta}\}$ (X_{α_i} is excluded) is \mathfrak{q} -orthogonal and f(Q') > f(Q). This contradicts the assumption that f(Q) attains the maximum value. Thus we have proved (P_m) .

DEFINITION. Two q-orthogonal systems $\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ and $\{Y_{\beta_1}, \cdots, Y_{\beta_k}\}$ of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$ are said to be conjugate under $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ if there exists an element $w \in W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ such that

$$w\left(\sum_{i=1}^{k} RH_{\alpha_i}\right) = \sum_{i=1}^{k} RH_{\beta_i}.$$

The following theorem includes Theorem 6 and Theorem 7 of [5].

Theorem 2. Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, θ a Cartan involution of $\mathfrak g$ commutative with σ , and $\mathfrak g=\mathfrak k+\mathfrak p$ the corresponding Cartan decomposition of $\mathfrak g$. Let $\mathfrak a_{\mathfrak p+}$ be a maximal abelian subspace of $\mathfrak p_+$ and $\mathfrak a_{\mathfrak p}$ a maximal abelian subspace of $\mathfrak p$ containing $\mathfrak a_{\mathfrak p+}$. Then there exists a one-to-one correspondence between the K_+ -conjugacy classes of σ -stable maximal abelian subspaces of $\mathfrak p$ and the $W(\mathfrak a_{\mathfrak p}, K_+)$ -conjugacy classes of $\mathfrak q$ -orthogonal systems of $\Sigma(\mathfrak a_{\mathfrak p+})$. The correspondence is given as follows. Let $Q=\{X_{\mathfrak a_1}, \cdots, X_{\mathfrak a_k}\}$ be a $\mathfrak q$ -orthogonal systems of $\Sigma(\mathfrak a_{\mathfrak p+})$. Put $\mathfrak r=\sum\limits_{i=1}^k RH_{\mathfrak a_i}$, $\mathfrak a'_{\mathfrak p+}=\{H\in \mathfrak a_{\mathfrak p+} \mid B(H,\mathfrak r)=0\}$, $\mathfrak a'_{\mathfrak p-}=\mathfrak a_{\mathfrak p-}+\sum\limits_{i=1}^k R(X_{\mathfrak a_i}-X_{-\mathfrak a_i})$, and $\mathfrak a'_{\mathfrak p}=\mathfrak a'_{\mathfrak p+}+\mathfrak a'_{\mathfrak p-}$. Then the $W(\mathfrak a_{\mathfrak p}, K_+)$ -conjugacy class of $\mathfrak q$ -orthogonal system of $\Sigma(\mathfrak a_{\mathfrak p}^+)$ containing Q corresponds to the K_+ -conjugacy class of σ -stable maximal abelian subspace of $\mathfrak p$ containing $\mathfrak a'_{\mathfrak p}$. Moreover if $X_{\mathfrak a_i}$, $i=1,\dots,k$ is normalized such that $2\mathfrak a_i(H_{\mathfrak a_i})B(X_{\mathfrak a_i}, X_{-\mathfrak a_i})=-1$, then $\mathfrak a'_{\mathfrak p}=\mathrm{Ad}\left(\exp\frac{\pi}{2}(X_{\mathfrak a_1}+X_{-\mathfrak a_1})\cdots\exp\frac{\pi}{2}(X_{\mathfrak a_k}+X_{-\mathfrak a_k})\mathfrak a_{\mathfrak p}$.

PROOF. Let $\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ be a q-orthogonal system of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$. Then the $\mathfrak{a}'_{\mathfrak{p}}$ given in the statement of Theorem 2 is a standard σ -stable maximal abelian subspace of \mathfrak{p} (Lemma 12).

Conversely let $\mathfrak{a}'_{\mathfrak{p}}$ be a standard σ -stable maximal abelian subspace of \mathfrak{p} . Put $\mathfrak{r}=\{H\in\mathfrak{a}_{\mathfrak{p}+}|B(H,\,\mathfrak{a}'_{\mathfrak{p}+})=0\}$. Since $\mathfrak{a}'_{\mathfrak{p}-}\subset_{\mathfrak{d}_{\mathbb{R}}}(\mathfrak{a}'_{\mathfrak{p}+}+\mathfrak{a}_{\mathfrak{p}-})\cap\mathfrak{p}_{-}=\mathfrak{c}\cap\mathfrak{p}_{-}+\mathfrak{p}_{-}(\mathfrak{r})$, and since $\mathfrak{c}\cap\mathfrak{p}_{-}=\mathfrak{a}_{\mathfrak{p}-}$, $\mathfrak{g}(\mathfrak{r})$ satisfies the condition (i) of Lemma 12. It follows from (ii) that there exists a \mathfrak{q} -orthogonal system $\{X_{\mathfrak{a}_{1}},\,\cdots,\,X_{\mathfrak{a}_{k}}\}$ of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$ such that $\mathfrak{r}=\sum_{i=1}^{k}RH_{\mathfrak{a}_{i}}$. Then the first statement follows from Lemma 9. The last statement is clear ([7], \mathfrak{p} . 29).

As a consequence of Corollary 1 of Theorem 1 and Theorem 2, the following theorem gives explicitly the double coset decomposition $H \setminus G/P$.

THEOREM 3. Let (G, H, σ) be an affine symmetric space such that G is real semi-simple, θ a Cartan involution commutative with σ , and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the corresponding Cartan decomposition. Let $\mathfrak{a}_{\mathfrak{p}}$ be a maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_+ , and $\{Q_1, \cdots, Q_m\}$ be representatives of $W(\mathfrak{a}_{\mathfrak{p}}, K_+)$ -conjugacy classes of \mathfrak{q} -orthogonal systems of $\Sigma(\mathfrak{a}_{\mathfrak{p}+})$. Suppose that $Q_j=\{X_{\alpha_1}, \cdots, X_{\alpha_k}\}$ is normalized such that $2\alpha_i(H_{\alpha_i})B(X_{\alpha_i}, X_{-\alpha_i})=-1$, $i=1, \cdots, k$ for each $j=1, \cdots, m$. Put $c(Q_j)=\exp\frac{\pi}{2}(X_{\alpha_1}+X_{-\alpha_1})\cdots\exp\frac{\pi}{2}(X_{\alpha_k}+X_{-\alpha_k})$. Then

(i) we have the following decomposition of G

$$G = \bigcup_{i=1}^{m} \bigcup_{v \in W(\mathfrak{a}_{\mathfrak{p}_i}, K_+) \setminus W(\mathfrak{a}_{\mathfrak{p}_i})} Hw_v c(Q_i) P \quad (disjoint \ union)$$

where $P=P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$, Σ^+ is a positive system of $\Sigma(\mathfrak{a}_{\mathfrak{p}})$, $\mathfrak{a}_{\mathfrak{p}i}=\mathrm{Ad}\,(c(Q_i))\mathfrak{a}_{\mathfrak{p}}$, and w_v is an element of $M^*(\mathfrak{a}_{\mathfrak{p}i})$ that represents an element of the left coset $v\subset W(\mathfrak{a}_{\mathfrak{p}i})$.

- (ii) Put $P_{i, w_v} = w_v c(Q_i) P c(Q_i)^{-1} w_v^{-1}$. Let $h_1, h_2 \in H$ and $p_1, p_2 \in P$. Then $h_1 w_v c(Q_i) p_1 = h_2 w_v c(Q_i) p_2$ if and only if there exists an $x \in H \cap P_{i, w_v}$ such that $h_2 = h_1 x$ and that $p_2 = c(Q_i)^{-1} w_v^{-1} x^{-1} w_v c(Q_i) p_1$.
- (iii) Let $P=P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+})=MA'_{\mathfrak{p}}N^{+}$ be a minimal parabolic subgroup of G such that $\mathfrak{a}'_{\mathfrak{p}}$ is σ -stable. Then

$$H \cap P = (K_+ \cap M)A'_{\mathfrak{p}+} \exp(\mathfrak{h} \cap \mathfrak{n}^+ \cap \sigma \mathfrak{n}^+)$$
.

PROOF. The statement (i) follows easily from Corollary 1 of Theorem 1 and Theorem 2. (ii) is clear. (iii) is proved as follows.

Note that

$$G_{\sigma} \cap P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+}) = G_{\sigma} \cap P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+}) \cap \sigma P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+})$$
.

Since M and $A'_{\mathfrak{p}}$ are σ -stable, we have

$$P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+}) \cap \sigma P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+}) = MA'_{\mathfrak{p}}(N^{+} \cap \sigma N^{+})$$
.

Let $m \in M$, $a \in A'_{\mathfrak{p}}$, $n \in N^+ \cap \sigma N^+$. If $\sigma(man) = man$, then $\sigma(m) = m$, $\sigma(a) = a$ and $\sigma(n) = n$. Hence

$$G_{\sigma} \cap P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+}) = M_{\sigma} A'_{\mathfrak{p}+} (N^{+} \cap \sigma N^{+} \cap G_{\sigma})$$
.

Since $\sigma P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^{+}) = P(\mathfrak{a}'_{\mathfrak{p}}, w\Sigma^{+})$ for some $w \in W(\mathfrak{a}_{\mathfrak{p}})$,

$$N^+ \cap \sigma N^+ \cap G_{\sigma} = N_w^+ \cap G_{\sigma} = \exp(\mathfrak{n}_w^+ \cap \mathfrak{h})$$

as is shown in the proof of (ii) of Theorem 1. Hence

$$G_{\sigma} \cap P(\mathfrak{a}'_{\nu}, \Sigma^{+}) = M_{\sigma} A'_{\nu+} \exp(\mathfrak{n}^{+} \cap \sigma \mathfrak{n}^{+} \cap \mathfrak{h}).$$

Since $H \cap P(\alpha'_{p}, \Sigma^{+})$ is a union of some connected components of this, there is a subgroup M'_{σ} of M_{σ} such that $(M_{\sigma})_{0} \subset M'_{\sigma} \subset M_{\sigma}$ and that

$$H \cap P(\mathfrak{a}'_{\mathfrak{p}}, \Sigma^+) = M'_{\sigma}A'_{\mathfrak{p}^+} \exp(\mathfrak{n}^+ \cap \sigma\mathfrak{n}^+ \cap \mathfrak{h}).$$

It is easy to see that $M'_{\sigma} = M \cap K_{+}$.

q. e. d.

COROLLARY. Retain the notations given in Theorem 3 and let $(G, H', \sigma\theta)$ be the affine symmetric space associated with (G, H, σ) . Then we have the following two decompositions of G.

$$G = \bigcup_{i=1}^{m} \bigcup_{v \in W(c_{\mathfrak{p}_i}, K_+) \setminus W(c_{\mathfrak{p}_i})} Hw_v c(Q_i) P \quad (disjoint \ union)$$

$$= \bigcup_{i=1}^{m} \bigcup_{v \in W(\mathfrak{a}_{\mathfrak{p}_i}, K_+) \setminus W(\mathfrak{a}_{\mathfrak{p}_i})} H'w_v c(Q_i) P \quad (disjoint \ union).$$

LEMMA 13. Let $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ be a minimal parabolic subalgebra of \mathfrak{a} such that $\mathfrak{a}_{\mathfrak{p}}$ is σ -stable. Then

$$\begin{split} (i) \quad \mathfrak{h} + \mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \ \varSigma^{+}) \\ = \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}} + \sum_{\alpha \in \Sigma^{+} \cup \sigma} \mathfrak{g}_{\alpha} + \sum_{\alpha \in (\Sigma^{-} \cap \sigma)^{\Sigma^{-}} - \Sigma(\mathfrak{a}_{n+1})^{-}} \mathfrak{h} \cap (\mathfrak{g}_{\alpha} + \sigma \mathfrak{g}_{\alpha}) + \sum_{\alpha \in \Sigma(\mathfrak{a}_{n+1})^{-}} \mathfrak{g}_{\alpha+} \,. \end{split}$$

(ii)
$$\dim \mathfrak{g} - \dim (\mathfrak{h} + \mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+}))$$

$$= \frac{1}{2} \sum_{\alpha \in (\Sigma^{+} \cap \sigma \Sigma^{+}) - \Sigma(\mathfrak{a}_{\mathfrak{p}+})^{+}} \dim \mathfrak{g}_{\alpha} + \sum_{\alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}+})^{+}} \dim \mathfrak{g}_{\alpha^{-}}.$$

PROOF. Note that

$$\begin{split} \mathfrak{h} + \mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \ \Sigma^{+}) &= \mathfrak{h} + \mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \ \Sigma^{+}) + \sigma \mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \ \Sigma^{+}) \\ &= \mathfrak{h} + \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}} + \mathfrak{n}^{+} + \sigma \mathfrak{n}^{+} \ . \end{split}$$

Since \mathfrak{m} , $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{g}_{\alpha} + \sigma \mathfrak{g}_{\alpha}$ are σ -stable,

$$\mathfrak{h} = \mathfrak{h} \cap \mathfrak{m} + \mathfrak{h} \cap \mathfrak{a}_{\mathfrak{p}} + \sum_{\alpha \in \Sigma - \Sigma(\mathfrak{a}_{\mathfrak{p}+})} \mathfrak{h} \cap (\mathfrak{g}_{\alpha} + \sigma \mathfrak{g}_{\alpha}) + \sum_{\alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}+})} \mathfrak{g}_{\alpha+} \,.$$

Then the statement (i) follows from those two equations. (ii) follows from (i). q. e. d.

Example 3. Let

$$G=SU(p, 2)=\{X\in SL(n, C)| {}^t\overline{X}EX=E\}$$
,

where
$$n=p+2$$
 and $E=\begin{bmatrix} 1 & & & 0 \\ & \ddots & & 0 \\ & & 1 & \\ 0 & & -1 & \\ & & & -1 \end{bmatrix} \begin{bmatrix} 1 & & & \\ p & & \\ & & & \\ \end{bmatrix}$.

Then the Lie algebra \mathfrak{g} of G is

$$\begin{split} \mathfrak{g} &= \{X \in M(n, \mathbf{C}) \mid {}^t \overline{X}E + EX = 0, \text{ tr } X = 0\} \\ &= \left\{ \begin{bmatrix} A & B \\ {}^t \overline{B} & D \end{bmatrix} \mid A \in \mathfrak{u}(p), \ D \in \mathfrak{u}(2), \ B \in M(p, 2, \mathbf{C}), \text{ tr } A + \text{tr } D = 0 \right\}. \end{split}$$

Put

$$\mathbf{t} = \left\{ \begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix} \middle| A \in \mathfrak{u}(p), \ D \in \mathfrak{u}(2), \ \text{tr } A + \text{tr } D = 0 \right\},$$

and

$$\mathfrak{p} = \left\{ \begin{bmatrix} 0 & B \\ t \bar{B} & 0 \end{bmatrix} \middle| B \in M(p, 2, C) \right\}.$$

Then $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition. Suppose $p \geq 4$. Then

$$\mathfrak{a}_{\mathtt{p}}\!\!=\!\!\!\left\{\!\!\!\!\begin{array}{ccc} & & h_{\mathtt{1}} & & & \\ & & & & & \\ & & & & h_{\mathtt{2}} & \\ h_{\mathtt{1}} & & & & & \\ & & h_{\mathtt{2}} & & & \\ & & & & h_{\mathtt{2}} & & \end{array}\!\!\!\right| h_{\mathtt{1}},\;h_{\mathtt{2}}\!\in\!\boldsymbol{R} \left.\!\!\!\right\}$$

is a maximal abelian subspace of \mathfrak{p} . Let α_i denote the linear form on $\mathfrak{a}_{\mathfrak{p}}$ defined by

$$\alpha_i: \left(\begin{array}{ccc} & h_1 \\ 0 & & h_2 \\ & & h_2 \\ h_1 & & 0 \\ & & h_2 \end{array}\right) \longrightarrow h_i.$$

Then the root system Σ of the pair $(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}})$ is

$$\Sigma = \{\pm \alpha_1, \pm \alpha_2, \pm \alpha_1 \pm \alpha_2, \pm 2\alpha_1, \pm 2\alpha_2\}.$$

And the root spaces are

$$\mathfrak{g}_{\alpha_1} = \left\{ \begin{bmatrix} 0 & {}^tD & 0 \\ -\overline{D} & 0 & 0 & \overline{D} & 0 \\ 0 & {}^tD & 0 \end{bmatrix} \middle| D \in M(p-2, 1, C) \right\},$$

$$\mathfrak{g}_{\alpha_2} = \left\{ \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\bar{F} & 0 & 0 & \bar{F} \\ 0 & 0 & 0 & 0 \end{bmatrix} \middle| F \in M(p-2, 1, C) \right\},$$

$$\mathfrak{g}_{\alpha_1+\alpha_2} = \left\{ X_{\alpha_1+\alpha_2, x} = \begin{bmatrix} x & -x \\ -\bar{x} & \bar{x} \end{bmatrix} \middle| x \in C \right\},$$

$$\begin{bmatrix} x & -x \\ 0 & \\ x & -x \end{bmatrix}$$

$$\mathfrak{g}_{\alpha_{1}-\alpha_{2}} = \left\{ X_{\alpha_{1}-\alpha_{2}, y} = \begin{bmatrix} -\overline{y}^{y} & \overline{y}^{y} \\ 0 \\ \overline{y}^{y} & -\overline{y}^{y} \end{bmatrix} \middle| y \in C \right\},$$

$$\mathfrak{g}_{2\alpha_1} = \left\{ \begin{bmatrix} t & -t \\ 0 & 0 \\ & 0 \\ t & -t \\ 0 & 0 \end{bmatrix} \middle| t \in \sqrt{-1}R \right\},$$

and so on.

Let h be a subalgebra of g defined by

$$\mathfrak{h} = \left\{ \begin{array}{c|cccc} x & 0 & x & 0 \\ \hline 0 & x & 0 & x \\ \hline & 0 & x & 0 \\ \hline & & 0 & x \\ \hline & & 0 & x \\ \hline & & & 0 & x \\ \end{array} \right\} \quad \text{where} \quad 0 < m < p - 2,$$

and q a subspace of g defined by

$$q = \left\{ \begin{array}{c|cccc} 0 & * & 0 & * \\ \hline 0 & * & 0 & * \\ \hline 0 & * & 0 & * \\ \hline & * & 0 & * & 0 \end{array} \right\}.$$

Let σ denote the mapping $X+Y\to X-Y$ ($X\in\mathfrak{h},\ Y\in\mathfrak{q}$) of \mathfrak{g} onto \mathfrak{g} . Then $(\mathfrak{g},\ \mathfrak{h},\ \sigma)$ is a symmetric Lie algebra, and $\mathfrak{a}_{\mathfrak{p}}$ is contained in \mathfrak{h} . Put

$$X_{\alpha_1, k} = \begin{bmatrix} -k+2 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \in \mathfrak{g}_{\alpha_1},$$

and

$$X_{\alpha_2, k} = \begin{bmatrix} -k+2-1 & 1 \\ -1 & 1 \\ 1 & 1 \end{bmatrix} \in \mathfrak{g}_{\alpha_2}.$$

Then $\{X_{\alpha_1,i}, X_{\alpha_2,j}\}$ is a q-orthogonal system of $\Sigma(\mathfrak{a}_p)$ for $0 < i \le m < j \le p-2$, and $\{X_{\alpha_1+\alpha_2,x}, X_{\alpha_1-\alpha_2,x}\}$ is also a q-orthogonal system for a non-zero complex number x.

It is easily shown that

and representatives of $W(\mathfrak{a}_{\mathfrak{p}})$ in $M^*(\mathfrak{a}_{\mathfrak{p}})$ are given by

where

$$E_{p-2} = \begin{bmatrix} \mathbf{p} - 3_{7} \\ 1 \\ \ddots \\ 1 \\ -1 \end{bmatrix}.$$

On the other hand, we have

$$G_{\sigma} = \left\{ \begin{array}{c|ccc} -m + 2 & & & 0 \\ \hline * & 0 & * & 0 \\ \hline * & 0 & * & 0 \\ \hline 0 & * & 0 & * \end{array} \right\} \in G_{\sigma}$$

$$\cong \{(A, B) \in U(p-m-1, 1) \times U(m+1, 1) | \det A \det B = 1\}$$
.

Since G_{σ} is connected, H must be equal to G_{σ} . Then (G, H, σ) is an affine symmetric space. It is easily shown that representatives of $W(\mathfrak{a}_{\mathfrak{p}}, K_{+})$ in $M^{*}(\mathfrak{a}_{\mathfrak{p}}) \cap K_{+}$ are given by

$$\left\langle I_{n}, \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & I_{p-2} & & \\ & & & 1 & \\ & & & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & E_{p-2} & & \\ & & & 1 & \\ & & & & -1 \end{pmatrix}, \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & E_{p-2} & & \\ & & & & -1 & \\ & & & & 1 \end{pmatrix} \right\rangle.$$

Hence

$$\{\emptyset, \{X_{\alpha_1, i}\}, \{X_{\alpha_2, j}\}, \{X_{\alpha_1+\alpha_2, x}\}, \{X_{\alpha_1, i}, X_{\alpha_2, j}\}\}$$

are representatives of $W(\mathfrak{a}_{\mathfrak{p}}, K_{+})$ -conjugacy classes of \mathfrak{q} -orthogonal systems of $\Sigma(\mathfrak{a}_{\mathfrak{p}})$, where i is an integer such that $0 < i \le m$, j is an integer such that $m < j \le p-2$, and x is a non-zero complex number. It follows from Theorem 2 that there are 5 H-conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} . Calculating matrices, it is shown that $|W(\mathfrak{a}'_{\mathfrak{p}}, K_{+})| = 4$ for every σ -stable maximal abelian subspace $\mathfrak{a}'_{\mathfrak{p}}$ of \mathfrak{p} . Since $|W(\mathfrak{a}'_{\mathfrak{p}})| = 8$, thus there are exactly 10 H-orbits on G/P (Corollary 1 of Theorem 1).

$$\begin{array}{lll} \text{Let} & Q_1 \! = \! \{0\} \text{,} & Q_2 \! = \! \Big\{ \frac{1}{2} X_{\alpha_1, \, 1} \Big\}, & Q_3 \! = \! \Big\{ \frac{1}{2} X_{\alpha_2, \, m+1} \! \Big\}, & Q_4 \! = \! \Big\{ \frac{1}{4} X_{\alpha_1 \! + \, \alpha_2, \, 1} \! \Big\}, & \text{and} & Q_5 \! = \! \Big\{ \frac{1}{2} X_{\alpha_1, \, 1}, & \frac{1}{2} X_{\alpha_2, \, m+1} \! \Big\}. & \text{Then} & c(Q_1) \! = \! I_n, \end{array}$$

$$c(Q_4) = egin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \ -1/\sqrt{2} & 1/\sqrt{2} & & \ & 1 & & \ & & 1/\sqrt{2} & -1/\sqrt{2} \ 0 & & & 1/\sqrt{2} & 1/\sqrt{2} \ \end{pmatrix}, \quad ext{and} \quad c(Q_5) = c(Q_2)c(Q_3) \, .$$

Let $N^+=\exp(\mathfrak{g}_{\alpha_1}+\mathfrak{g}_{\alpha_2}+\mathfrak{g}_{\alpha_1+\alpha_2}+\mathfrak{g}_{\alpha_1-\alpha_2}+\mathfrak{g}_{2\alpha_1}+\mathfrak{g}_{2\alpha_2})$, and $P=MA_{\mathfrak{p}}N^+$. Then it follows from Theorem 3 that G is decomposed to

$$G = HP \cup Hw_1P \cup Hc(Q_2)P \cup Hc(Q_2)w_1P \cup Hc(Q_3)P \cup Hc(Q_3)w_1P$$
$$\cup Hc(Q_4)P \cup Hc(Q_4)w_2P \cup Hc(Q_5)P \cup Hc(Q_5)w_1P$$

We can easily calculate $H \cap c(Q_i)wPw^{-1}c(Q_i)^{-1}$ ($i=1, \dots 5, w \in W(\mathfrak{a}_p)$) by (iii) of Theorem 3. Codimensions of orbits are as follows (Lemma 13).

representative	codimension	
I_n	2 <i>p</i>	closed
w_1	2p	
$c(Q_2)$	2(p-m-1)	$(0 < m \le p - 2)$
$c(Q_2)w_1$	2(p-m)	
$c(Q_3)$	2(m+2)	(0 < m < b 2)
$c(Q_3)w_1$	2(m+1)	$(0 \leq m < p-2)$
$c(Q_4)$	1	
$c(Q_4)w_2$	2(p-1)	
$c(Q_5)$	0	open
$c(Q_5)w_1$	0	

§ 3. Open orbits and closed orbits.

Note that there is a one-to-one correspondence $xP \to \operatorname{Ad}(x)\mathfrak{P}$ between G/P and the set of all the minimal parabolic subalgebras of \mathfrak{g} (see § 1). Let $\mathfrak{a}_{\mathfrak{p}}$ be a σ -stable maximal abelian subspace of \mathfrak{p} . Define a subgroup $W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})$ of the Weyl group $W(\mathfrak{a}_{\mathfrak{p}})$ by

$$W_{\sigma}(\mathfrak{a}_{\mathfrak{p}}) = \{ w \in W(\mathfrak{a}_{\mathfrak{p}}) \mid w(\mathfrak{a}_{\mathfrak{p}+}) = \mathfrak{a}_{\mathfrak{p}+} \}.$$

PROPOSITION 1 (cf. [8]). A minimal parabolic subalgebra $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ which is identified with a point of G/P is contained in an open H-orbit if and only if the following two conditions are satisfied:

- (i) $a_{\mathfrak{p}}$ is maximal abelian in \mathfrak{p}_{-} ,
- (ii) Σ^+ is $\sigma\theta$ -compatible (i.e. $\alpha \in \Sigma^+ \Sigma^+(\mathfrak{a}_{\mathfrak{p}+}) \Rightarrow \sigma\theta(\alpha) \in \Sigma^+ \Sigma^+(\mathfrak{a}_{\mathfrak{p}+})$). The number of open orbits is $|W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})|/|W(\mathfrak{a}_{\mathfrak{p}}, K^+)|$.

PROOF. It follows from Lemma 13 that $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ is contained in an open orbit if and only if the following two conditions are satisfied:

- (iii) $(\Sigma^+ \cap \sigma \Sigma^+) \Sigma(\mathfrak{a}_{\mathfrak{p}+})^+ = \emptyset$,
- (iv) $\mathfrak{g}_{\alpha} = \{0\}$ for all $\alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}+})$.

Clearly (iii) is equivalent to (ii). We will prove that (iv) is equivalent to (i). Since

$$\mathfrak{z}_{\mathfrak{g}}(\mathfrak{a}_{\mathfrak{p}-}) = \mathfrak{m} + \mathfrak{a}_{\mathfrak{p}} + \sum_{\alpha \in \Sigma (\mathfrak{a}_{\mathfrak{p}+})} \mathfrak{g}_{\alpha}$$
 ,

if $\mathfrak{g}_{\alpha-} = \{0\}$ for all $\alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}+})$ then $\mathfrak{z}_{\mathfrak{p}-}(\mathfrak{a}_{\mathfrak{p}-}) = \mathfrak{a}_{\mathfrak{p}-}$. Hence $\mathfrak{a}_{\mathfrak{p}-}$ is maximal abelian in \mathfrak{p}_- . Conversely suppose that $\mathfrak{g}_{\alpha-} \neq \{0\}$ for some $\alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}+})$. Let Y_α be a nonzero element of $\mathfrak{g}_{\alpha-}$. Then $\mathfrak{a}_{\mathfrak{p}-} + \mathbf{R}(Y_\alpha - \theta Y_\alpha)$ is an abelian subspace of \mathfrak{p}_- properly containing $\mathfrak{a}_{\mathfrak{p}-}$. Thus $\mathfrak{a}_{\mathfrak{p}-}$ is not maximal abelian in \mathfrak{p}_- . Hence the first assertion is proved.

The closure of the Weyl chamber corresponding to a positive system Σ^+ contains a regular element H_1 of $\mathfrak{a}_{\mathfrak{p}^-}$ (i. e. $\alpha(H_1)\neq 0$ for all $\alpha\in \Sigma-\Sigma(\mathfrak{a}_{\mathfrak{p}^+})$) if and only if Σ^+ is $\sigma\theta$ -compatible. Let $\tilde{\alpha}$ be the projection of $\alpha\in \Sigma$ to $\mathfrak{a}_{\mathfrak{p}^-}$ ($\alpha\in \Sigma$ is identified with $H_\alpha\in\mathfrak{a}_{\mathfrak{p}}$). Put $W_\sigma=W_\sigma(\mathfrak{a}_{\mathfrak{p}})$. We will show that $w_{\tilde{\alpha}}\in W_\sigma|_{\mathfrak{a}_{\mathfrak{p}^-}}$ for all $\alpha\in \Sigma-\Sigma(\mathfrak{a}_{\mathfrak{p}^+})$ as in [7] p. 24, where $w_{\tilde{\alpha}}$ is the reflection of $\mathfrak{a}_{\mathfrak{p}^-}$ with respect to $\tilde{\alpha}$. It is true if $\alpha=\tilde{\alpha}$. If $(\alpha,\,\sigma\theta(\alpha))<0$, then $\alpha+\sigma\theta(\alpha)=2\tilde{\alpha}\in \Sigma$, so $w_{\tilde{\alpha}}\in W_\sigma|_{\mathfrak{a}_{\mathfrak{p}^-}}$. If $(\alpha,\,\sigma\theta(\alpha))>0$, then $\alpha-\sigma\theta(\alpha)=\alpha+\sigma(\alpha)\in \Sigma$. Let X_α be a non-zero element of \mathfrak{g}_α . Then $[X_\alpha,\,\sigma X_\alpha]\neq 0$ (Lemma 11) and $\sigma[X_\alpha,\,\sigma X_\alpha]=-[X_\alpha,\,\sigma X_\alpha]$, so $[X_\alpha,\,\sigma X_\alpha]\in\mathfrak{g}_\beta$ where $\beta=\alpha+\sigma(\alpha)\in \Sigma(\mathfrak{a}_{\mathfrak{p}^+})$. As is proved before this is impossible since $\mathfrak{a}_{\mathfrak{p}^-}$ is maximal abelian in \mathfrak{p}_- . Thus $(\alpha,\,\sigma\theta(\alpha))\geqslant 0$. If $(\alpha,\,\sigma\theta(\alpha))=0$, then $w_{\tilde{\alpha}}=w_\alpha w_\sigma \theta(\alpha)|_{\mathfrak{a}_\mathfrak{p}^-}\in W_\sigma|_{\mathfrak{a}_\mathfrak{p}^-}$. Hence the assertion is proved.

It is known that the group generated by $\{w_{\tilde{\alpha}} \mid \alpha \in \Sigma\}$ acts simply transitively on the Weyl chambers of $\mathfrak{a}_{\mathfrak{p}_{-}}$ ([3], p. 73). Let Δ and Δ' be two Weyl chambers the closures of which contain regular elements of $\mathfrak{a}_{\mathfrak{p}_{-}}$. There is a $w \in W_{\sigma}$ such that $w(\mathfrak{a}_{\mathfrak{p}_{-}} \cap \bar{\Delta}') = \mathfrak{a}_{\mathfrak{p}_{-}} \cap \bar{\Delta}'$ because $\mathfrak{a}_{\mathfrak{p}_{-}} \cap \bar{\Delta}'$ are closures of Weyl chambers of $\mathfrak{a}_{\mathfrak{p}_{-}}$. Since the Weyl chambers of $\mathfrak{a}_{\mathfrak{p}}$ the closures of which contain $\mathfrak{a}_{\mathfrak{p}_{-}} \cap \bar{\Delta}'$ are transitive under the group generated by $\{w_{\alpha} \mid \alpha \in \Sigma(\mathfrak{a}_{\mathfrak{p}_{+}})\}$ ($\subset W_{\sigma}$), there is a $w' \in W_{\sigma}$ such that $w'\Delta = \Delta'$. Conversely it is clear that every element of W_{σ} maps a $\sigma\theta$ -compatible order to a $\sigma\theta$ -compatible order. Therefore it follows from Corollary 1 of Theorem 1 that the number of open orbits is $|W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})|/|W(\mathfrak{a}_{\mathfrak{p}_{+}}, K_{+})|$.

PROPOSITION 2 (cf. [8]). A minimal parabolic subalgebra $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \mathcal{L}^+)$ is contained in a closed H-orbit if and only if the following two conditions are satisfied:

- (i) $a_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p}_+ .
- (ii) Σ^+ is σ -compatible (i.e. $\alpha \in \Sigma^+ \Sigma^+(\mathfrak{a}_{\mathfrak{p}_-}) \Rightarrow \sigma(\alpha) \in \Sigma^+ \Sigma^+(\mathfrak{a}_{\mathfrak{p}_-})$). The number of closed orbits is $|W_{\sigma}(\mathfrak{a}_{\mathfrak{p}})| / |W(\mathfrak{a}_{\mathfrak{p}}, K_+)|$.

PROOF. Since G/P is compact, $\mathfrak{P}(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})$ is contained in a closed orbit if and only if $H/H \cap P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})$ is compact. Suppose that $H/H \cap P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+})$ is compact. Note that $H \cap P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^{+}) = (M \cap K_{+})A_{\mathfrak{p}_{+}} \exp{(\mathfrak{n}^{+} \cap \sigma \mathfrak{n}^{+} \cap \mathfrak{h})}$ ((iii) of Theorem 3). Let $\Sigma^{+\prime}$ be a σ -compatible positive system of Σ containing $\Sigma^{+} \cap \sigma \Sigma^{+}$. Let $\mathfrak{a}_{\mathfrak{p}_{+}}'$ be a maximal abelian subspace of \mathfrak{p}_{+} containing $\mathfrak{a}_{\mathfrak{p}_{+}}$. Define a positive system $\overline{\Sigma}^{+}$ of the root system $\overline{\Sigma}$ of the pair $(\mathfrak{h}, \mathfrak{a}_{\mathfrak{p}_{+}}')$ such that $\mathfrak{n}^{+\prime} \cap \sigma \mathfrak{n}^{+\prime} \cap \mathfrak{h} \subset \overline{\mathfrak{n}}^{+}$, where $\mathfrak{n}^{+\prime} = \sum_{\alpha \in \Sigma^{+\prime}} \mathfrak{h}_{\alpha}$ and $\overline{\mathfrak{n}}^{+} = \sum_{\lambda \in \Sigma^{+}} \mathfrak{h}_{\lambda}$. Then we have the Iwasawa decomposition of H,

$$H=K_+A'_{\mathfrak{p}+}\bar{N}^+$$
 ,

and natural projections

$$f: H/A_{\mathfrak{p}+} \exp (\mathfrak{n}^+ \cap \sigma \mathfrak{n}^+ \cap \mathfrak{h}) \to H/H \cap P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$$
,

and

$$g: H/A_{\mathfrak{p}+} \exp (\mathfrak{n}^+ \cap \sigma \mathfrak{n}^+ \cap \mathfrak{h}) \to H/A_{\mathfrak{p}+} \bar{N}^+ \cong K_+ \times A'_{\mathfrak{p}+} / A_{\mathfrak{p}+}$$
.

Since the fibres of f which are diffeomorphic to $M \cap K_+$ are compact, $H/A_{\mathfrak{p}+} \exp (\mathfrak{n}^+ \cap \sigma \mathfrak{n}^+ \cap \mathfrak{h})$ and $H/A_{\mathfrak{p}+} \bar{N}^+$ are compact. Hence $A'_{\mathfrak{p}+} = A_{\mathfrak{p}+}$ and $\mathfrak{a}_{\mathfrak{p}+}$ is maximal abelian in \mathfrak{p} . On the other hand we have

$$H/A_{\mathfrak{p}+} \exp (\mathfrak{n}^+ \cap \sigma \mathfrak{n}^+ \cap \mathfrak{h}) = H/\exp (\mathfrak{n}^+ \cap \sigma \mathfrak{n}^+ \cap \mathfrak{h})A_{\mathfrak{p}+}$$

$$\cong K_+ \bar{N}^+ / \exp \left(\mathfrak{n}^+ \cap \sigma \mathfrak{n}^+ \cap \mathfrak{h} \right).$$

If Σ^+ is not σ -compatible, then there is a minimal root $\beta \in (\Sigma^{+\prime} \cap \sigma \Sigma^{+\prime}) - (\Sigma^+ \cap \sigma \Sigma^+)$ with respect to the order of $\Sigma^{+\prime}$, and then $\beta \neq \sigma \beta$. Put $\Phi = (\Sigma^{+\prime} \cap \Sigma^{+\prime}) - \{\beta, \sigma \beta\}$. Then $\mathfrak{t} = \sum_{\alpha \in \Phi} (\mathfrak{g}_{\alpha} + \sigma(\mathfrak{g}_{\alpha})) \cap \mathfrak{h}$ is an ideal of $\overline{\mathfrak{n}}^+$, and $\overline{\mathfrak{n}}^+ = \mathfrak{t} + \{(\mathfrak{g}_{\beta} + \sigma \mathfrak{g}_{\beta}) \cap \mathfrak{h}\}$. We have a projection

$$h: \bar{N}^+/\exp\left(\mathfrak{n}^+ \cap \sigma\mathfrak{n}^+ \cap \mathfrak{h}\right) \to \bar{N}^+/\exp\mathfrak{t}$$
.

Since $\exp(X+Y) \in \exp X \exp t$ for $X \in \bar{\mathfrak{n}}^+$, $Y \in t$,

$$\bar{N}^+/\exp\mathfrak{t}\cong\bar{\mathfrak{n}}/\mathfrak{t}\cong R^k$$

for some k>0. Hence $\bar{N}^+/\exp\left(\mathfrak{n}^+\cap\sigma\mathfrak{n}^+\cap\mathfrak{h}\right)$ is not compact, so $H/H\cap P(\mathfrak{a}_{\mathfrak{p}}, \Sigma^+)$ is not compact. Thus Σ^+ is σ -compatible. The converse assertion follows easily from the above consideration, seeing that if $\mathfrak{a}'_{\mathfrak{p}+}=\mathfrak{a}_{\mathfrak{p}+}$, then $\mathfrak{n}^+/\cap\sigma\mathfrak{n}^+/\cap\mathfrak{h}=\bar{\mathfrak{n}}^+$. The proof of the second assertion is the same as that of Proposition 1.

COROLLARY. In the correspondence between the H-orbits on G/P and the H'-orbits on G/P given in Corollary 2 of Theorem 1 (see also Corollary of Theorem 3), open orbits correspond to closed orbits and closed ones to open ones.

References

- [1] K. Aomoto, On some double coset decompositions of complex semi-simple Lie groups, J. Math. Soc. Japan, 18 (1966), 1-44.
- [2] M.M. Berger, Les espace symétriques non compacts, Ann. Sci. École Norm. Sup., 74 (1957), 85-177.
- [3] N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie, Chapters IV-VI, Hermann, Paris, 1968.
- [4] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [5] M. Sugiura, Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J. Math. Soc. Japan, 11 (1959), 374-434.
- [6] M. Sugiura, Correction to my paper: Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J. Math. Soc. Japan, 23 (1971), 379-383.
- [7] G. Warner, Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin and New York, 1972.
- [8] J.A. Wolf, The action of a real semi-simple group on a complex flag manifold, I: Orbit structure and holomorphic arc components, Bull. Amer. Math. Soc., 75 (1969), 1121-1237.
- [9] J.A. Wolf, Finiteness of orbit structure for real flag manifolds, Geometriae Dedicata 3 (1974), 377-384.
- [10] O. Loos, Symmetric spaces, I, Benjamin, New York, 1969.

Toshihiko MATSUKI
Department of Mathematics,
Faculty of Science,
Hiroshima University
Hiroshima, Japan

Added in proof. Recently W. Rossmann announced without proof the same results as our Theorem 1 and Proposition 1 in [11] W. Rossmann, The structure of semisimple symmetric spaces, Queen's Paper Pure Appl. Math., 48 (1978), 513-520.