J. Math. Soc. Japan
Vol. 31, No. 2, 1979

On a skew polynomial ring

By Yoichi MIYASHITA

(Received Oct. 7, 1977)

§0. Introduction.

If K is a commutative ring, and A is a commutative Frobenius K-algebra
generated by a single element, then there exists a quasi-monic polynomial f(X)
such that K[ X]/(f(X)) is K-algebra isomorphic to A, and conversely ([6]). In
the preceding paper [ 8], as a generalization of this result, we have studied non-
singular bilinear maps which come from a (*)-positively filtered ring R=\U,;s.R;
over a not necessarily commutative ring K. In the present paper we study the
case when R,/K is isomorphic to K as right K-module (or equivalently, as left
K-module). In this case, R=\;;,R; is a skew polynomial ring K[ X; p, D]=
K® XK@ X*K@ ---, which is defined by an automorphism p of K, a p-deriva-
tion D of K, and aX=Xp(a)+D(a) (e K). Therefore some arguments proceed
as in the case when R is a polynomial ring over a commutative ring, and more
explicit descriptions may be obtained. [Proposition 1.4 and [Theorem 1.8 in this
paper correspond to [6; Proposition 2.1], and is analogous to
[6; Proposition 3.2]. Further, is a concrete description of [8;
Theorem 127, and [Theorem 1.9 corresponds to [5; Proposition 2.4]. However,
the characterization of a separable polynomial is not enough.
Because it is not easy to check that condition in practice. In fact, a monic
polynomial f(X) over a commutative ring is separable if and only if its dis-
criminant (i.e. the resultant of f(X) and f/(X)) is invertible, by virtue of the
local criterion for a separable algebra. But, in our situation, we don’t have a
corresponding result. Consequently, in §2 and §3, we give several examples of
separable polynomials. Further, concerning a separable polynomial, we have an
open problem: Is a separable polynomial always Frobenius (i. e. its residue class
ring is Frobenius over K)? Some arguments on this problem are done in §3
(Theorem 3.4 and [Theorem 3.5). It is easy to find a monic polynomial f such
that Rf=fR and R/Rf is not Frobenius over K. But we don’t know as yet a
separable polynomial which is not Frobenius. Finally, needless to say, the condi-
tion Rf=fR for a monic polynomial f is not an easy one (Lemma 1. 14 and
Lemma 2. 1). Concerning this, if K is an indecomposable commutative ring, every
non-zero K-R-submodule I of R such that R/I is finitely generated and pro-
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jective as left K-module is expressed as /=fR with a monic polynomial f such
that Kf=fK (, and conversely) ([7]). If we assume that K is a two sided
simple ring, then every non-zero K-R-submodule of R is expressed as the above,
too. Because every gv;R is a simple K-bimodule, and R,_.,P fR=R for any

monic polynomial f of degree m. It will be worthy to find another condition
about this problem.

§1.

Throughout this paper, all rings are associative, but not necessarily
commutative. Every ring has the identity 1, which is preserved by homomor-
phisms, inherited by subrings and acts as the identity operator on modules.
Let ,P, be a left A-, right A’-module. If P, is finitely generated, projective,
and generator, and Hom(P,., P, ) (the ring of all right A’-endomorphisms of P)
~ A under the mapping induced by ,P, we call 4P, an invertible module. Itis
well known that this is right-left symmetric. Here we recall the definition of
a (*)-positively filtered ring, which is defined in [8].

Let R2K be rings, and R,—=KZ R, SR, --- an ascending sequence of ad-
ditive subgroups such that R=\U,R; and R;R;SR;.; for all i, j=0. Then we
call R=\UR; a positively filtered ring over K. If, further, R=\UR,; satisfies the
following condition (*) we call R=\UR,; a (*)-positively filtered ring over K:

(*) Each R;/R;-; (i=1) is an invertible K-bimodule, and (R;/R;-;) Qx(R;/R;-,)
>~ Ri+j/Ris;-1 by the canonical mapping (x;+R;-1) @ (x;4Rj-1) — x4+ Rt joy
(x;€ Ry, x;€R;), for all 1, j=1.

We denote this ring by K[R,], and put R,;=0, if :<0. For any i=0, we put
griR=R;/R;_;, which is an invertible K-bimodule. By induction we can see
that R;=R,--- R, (i-times)=R?%. Since gr;Rx is projective, R;=R, PP, for
some right K-submodule P; of R;. Similarly R;,=R,.,HQ; for some left K-
submodule @; of R;. We call P; (resp. @,) a monic right (resp. left) A-submodule
of degree 1. If P; is a K-bisubmodule, P; is called a monic K-bisubmodule of
degree i. Note that P, > gr;R as K-bimodules, in this case.

Now we assume that grRx 5 Kg, and X+K+—1 under this right K-
isomorphism, where XeR,. Then R,=K@ XK, and Xa=0 (¢=K) implies a=0.
For any a€ K, aX is written as aX=a'+Xa” (a’, a”’K). Since xgr,Rg is in-
vertible, we know that gr,R=K(X-+K) and a(X+K)=0 (a¢=K) implies a=0.
Therefore R,=K @ KX, and so the mapping p: ¢— ¢” is an automorphism of K.
Further it is easily seen that the mapping D: a—a’ is a p-derivation from K
to K (i.e. D(ab)=D(a)p(b)+aD(b) (a, b€K)). Thus aX=Xp(a)+D(a) (a=K).
Then the condition (*) implies that grRQg - Qg gr R (i-times) > gr;R, (X
+K)RQ -+ QX+K)— X*+R,_,, and X'a=0 implies a=0. Hence R;=R,_,D XK
for all i=1. Similarly R,=R;_ P KX". Therefore R=KPXKP XKD --- =KP
KXDKX*D---. Thus R=K[X;p, D], where aX=Xp(a)+D(a) (e€K). Note
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that aX'=X*p%a) (mod R;_,) for all ac K. Conversely, an automorphism p and
a p-derivation D of K determine an extension ring R=K[X; p, D] of K, which
is defined by aX=Xp(a)+D(a) (cf. [1]). If we put R,=KP XKD --- D XK, we
can easily see that R=\U;R; is a (*)-positively filtered ring over K such that
R,/Kx = Kg, by the mapping Xa+K —a (aeK).

In the remainder of this paper we assume that R=K[X;p, D] and R;=K&
XK@ - P XK (1=0). Let g be a monic polynomial of degree n. Then R,=R,_,
PgK=R,..SKg. Conversely, if P, is a monic right A-submodule of degree
n then g=X" (mod R,_,) for some g P,. Then R,=R,_,PgK, and so gK=P,,
because gK< P,. If P, is a monic K-bisubmodule, then P,=Kg, so that P,=Kg
=gK. In this case, as is easily seen, ag=gp"(a) for all ac K. Hence P, 5 g7,R,
g— X"+R,_,, as K-bimodules.

In the following we fix a monic polynomial f=X"+X""1a,_+ -+ +a,(m=1),
and put ¢,=1. As in [6], we put

Yn-1=1
Ymo=X+an
Y= Pt Xamo1tam-e

..........

fr=Xm+ak_ X™ 1+ .- +af (af=1) is defined by afX™*=X""1q; (mod R,_;)
(i=0, 1, ---, m—1) (i.e. p™ Ya¥)=a;). Further we put

Y =1
Y .=X+a_,
Yi-o=X+af_X+a)_,

Y;F:Xm—i—l'{"di_le—i_fz—l- +a>zl'=+1

M, M*, M,, and M*% are defined by M=R,, .o P Rn_1f, M*=R ., ;D f*Rp_1, M\=
R,._.PRf, and M¥=R,,_.,Pf*R. We begin with the following

LeMMA 1.1. (1) X'Y;=6,;X™' (mod M,) (0=i, j<m—1), where &;; is
Kronecker’s delta. )

(2) Y3X'=6,;X™? (mod M¥) (0=i, j=m—1). (Cf. [9; Remark 1.1].)

Proor. (1) X'V, =X{(Xm -1 Xm-i-2q 4+ o Fa;0)=X"" 1+ X" 20, _+ -
+Xta;., =X™"* (mod M,). If j<i then it is evident that X?Y;=0 (mod M,). If
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m—1=j=i+1 then X/V,=X/"11XHY; =X "X "+ X" "ap 1+ - +X"Ma; )=
Xi-t-1(—Xtq,— --- —a)=0 (mod M,). Similarly we can prove (2).

LEMMA 1.2. Y¥/=f*Y; (mod R,-.) (j=0, ---, m—1).

PROOF. Y*/=Y3(X"+X" lap-1+ - +Xa)= VX (X I+ X720+
ot @)+ X e, = YVEXY 4 Xy (mod Ry-p).  Similarly we have f*Y;=
Y3XY ;4+a¥X™* (mod R,-,). But, by definition, a}X™ '=X""'a; (mod R _»).
Hence Y¥f=/*Y; (mod R,-,) (j=0, 1, -+, m—1).

Now, assume that Kf=fK (monic K-bisubmodule). Note that R,,.,=Y,,.,KD
Yo KD - DY K=Y  KOY* KD - DYEtK. By definition, M=R,, s PR n-11.
On the other hand M*=R,_,PDf*Rpn-1=Rm-2+ *Y K+ -+ +/*Y K=R,_o+
Y*_.fK+ -+ +Y*fK, by virtue of Lemma 1.2. But, since fK=K/f, we have
M*=R, -+ Y* Kf+-+Y*Kf=R,_o+Rp_.f=M. Hence M=M* (if fK=KY).
Then, as R=R,_,+Rf, we have f*R=f*R,_,+Rf)SRn-.+Rf=M, and so
M¥fCSM,. Symmetrically M,SM*. Thus M,=M%.

Next we shall prove that if yR,..SM (y=R,_,) then y=0. Since ye
R, .."M=R,_,, we have yR,SR,..,"M=R,,.,. Hence yeR,,_;. Then yR,E
RpinM=R,_,, -~-. Eventually ye K, and s0 YR, 1ERn-1"M=R,,_,, and hence
y=0, as desired. Now, Kf*KR,_,SM, because M=M* is a K-bisubmodule. Hence
Kf*KNR,_.,=0Dby the preceding argument, and so R,,_, P Kf*K=R,,. Therefore
Kf*K=f*K=K/f*. Lastly,let zeR and zR,_.SM, (=M¥%). Let z=z, (mod f*R),
where z,R,.,. Then zRn 1ESRym "M SR, s+Rnf=M. Hence z,=0.
Thus z< f*R. Further, assume that ze R,,. Then ze f*RN\R,,=/f*K. Hence
f*R={z=R|zRSM}={zeR|zR,,.,.S M}, and f[*K={zeR,,|zR,-,EM}. Sim-
ilarly Rf={z=R|Rz&EM,} ={z€R|R,,_.2EM,}, and Kf={z=R,|Rn-12zEM}.
Thus we obtain the following

THEOREM 1.3. Let f=X"+X"'a,_+ - +a, im=1), and assume that Kf=
fK. Then there exists a monic polynomial f* of degree m such that R, .
¥R 1=Rp s DRy f (=M). Such a f* is uniquely determined by f. In fact,
[r=X"4ak_ X" 14 - +a¥, where afX™ '=X""'a; (mod R,,_,) (i=0, ---, m—1)
(i.e. p™ Ya¥)=a,), and there holds Kf*=f*K.

The latter half of the above is a concrete description of (fK)* for a monic
K-bisubmodule fK in the case that R,/Kx =5 Ky (cf. [8; Theorem 127).

In what follows, we assume fAK=K/f. Let F be the bilinear map from
(R/f*R)X(R/Rf) to R/M, defined by F(y+f*R, z-+Rf)=yz+M, (y, z= R), where
M,=R, . PDRf=R, . Bf*R. Then Fla(y+f*R), r(z+Rf)b)=aF(y+f*R)r, z+
Rf)b (a, beK, vy, z, reR). In this sense we say that F is a (X, R, K)-bilinear
map. Since R=R,,-,PRf, we have R/M, 3 R, /Ry .=K(X" *+R, _,)=(X™"?
+Rn- K. X+f*R (i=0, 1, -+, m—1)is a basis for xR/f*R, and Y;+Rf (j=0,
1, -, m—1) is a basis for R/Rfx, and then [Lemma 1.1 implies that F is a
non-singular (K, R, K)-bilinear map, that is, xR/f*Rr > xHom(R/Rfx, R/M,x)r
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(the module of all right K-homomorphisms from R/Rf to R/M,) and RR/Rfx
HRHom(KR/f*R, xR/M)g under the maps induced by F. These facts are
proved in [8], in more general form.

Let = be the right K-isomorphism from R/M, to K such that z(X™ a+M,)
=a (acK). Let z* be the left K-isomorphism from R/M, to K such that
r*(aX™ '+M,)=a (acK). Then, for any a€K, aX™ '+M,=X""1p™ a)+M,,
and so w(aX™ '+-M)=n(X""1p™ Ya)+M)=p™  a)=p™ ‘¥ (aX™ *+M,).

PROPOSITION 1.4. For any y in R there hold y=3;n*(yY;+M)X'=
ey X +MOY% (mod f*R) and y=3; YV n(Xy+M)=3; X'a(Y¥y+M,) (mod
Rf), where j=0, 1, ---, m—1.

PROOF. Let y=3ic0... m-1 4 X* (mod f*R). Then, yY,;+M,=3; diX'Y;+M,
=d}X™*4+M,, by Hence n*(yY;+My)=d; (j=0, ---, m—1). Thus
y=X,;*(yY;+M)X (mod f*R). Next, let y=3;0,...m-1 Y:d? (mod Rf). Then,
Xoy+M,=3, XY d{+M,=X""d?+M,, by _ Lemma 1.1. Hence y=3X; Y;z(X’y
+M,) (mod Rf). The remainder is similarly proved.

PROPOSITION 1.5. Let f be a monic polynomial of degree m (=1) such that
Kf=fK, and let f* be the monic polynomial as in Theorm 1.3. Then
{yeR|yRSRf}={y=R|Ry=Sf*R}, that is, the bound of rR/Rf is equal to the
bound of R/f*Rpg.

Proor. For yin R, (R/f*R)y=0 and Hom(R/Rfx, R/M,x)y=0 are equivalent
since xR/f*Rr>3 yHom(R/Rfx, R/M,x)z. But, the latter is equivalent to
y(R/Rf)=0, by [Proposition 1.4l

In the sequel we denote the bound of zkR/Rf by I. If fR=Rf then I=fR
=Rf, and f=f*, A

REMARK. Since R=R,_.,®Rf, I={yeR|yR,-1SRf}.

Let 7V, W be left T-modules over a ring 7. If ;V is isomorphic to a direct
summand of ;W™ (direct sum of n copies of ;W) for some 7, then we write
rVI|rW. Then it is easily seen that ;V|,W if and only if there are g4, -+, g,
in Hom(;V, W) and z,, -, 7, in Hom(;W, rV) such that X; z,6,(v)=v for all
veV. Let ¢: U— T be a ring homomorphism. Then, by ¢, T is considered as
a U-bimodule, and we obtain a T-bimodule ;T QyTr. If ;T2 TQRyTr then ¢
(abbre. T/U) is said to be a separable extension. As is well known, this is
equivalent to that the canonical map TQyT — T, tQt' — tt’ splits as a T-T-
homomorphism, or equivalently, there is an element X} ¢, Q¢ in T@yT such that
S tti=1land X, tt,Qt;=20t,Qtit forall teT. If ;TQRyTr|rTr, o is called an
H-separable extension. It is known that an H-separable extension is a separable
extension (K. Hirata).

LEMMA 1.6. Any R-R-homomorphism v: g(R/D)Q g(R/f*R)gr— gR/Ip is
written as y(y+1) R (z+f*R))=yrz+1 (¥, zER) with an element v of R such that
rf*el and ra=ar (mod I) for all a€K.
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PROOF. This is evident from the sequence of isomorphisms Hom(z(R/I)
Q@ xk (R/f*R) g, gR/Ir) 5 Hom (xR/f*Rg, xkHom (gR/I, rR/I) ) 5 Hom (xR/f*Rp,
xR /Ip).

LEMMA 1.7. Any R-R-homomorphism p: gR/Ix— r(R/DD@Q k(R/f*R)r 1s
written as p(y+1)=j0,wnm-1 VY ;7 +)Q(X+f*R) (y=R) with an element r
of R such that frel and p™ Ya)r=ra (mod I) for all a€K.

Proor. Put u=X""'+M,=R/M,. Then R/M,=uK, and ua=0 (a= K) implies
a=0. And, bu=up™ *(b) for all b€ K. The bilinear map F induces an isomorphism
xR/f*Rp = xHom(R/Rfk, uKk)r, and so g(R/I)Qk(R/f*R)r = »(R/I)® gHom
(R/Rfg, uKg)r. Since R/Rfyx is finitely generated and projective, x(R/I)Q
xHom (R/Rfx, uKx)r >3 gHom(R/Rfg, (R/I)Q xuKxg) g, (y+1) Q1 — (z+Rf — (y
+D@7(z+Rf). Therefore (§): Hom(zR/Ir, (R/D& k(R/f*R)r) = Hom(zR/Ir,
gHom (R/Rfx, (R/I)Q xuKg)g) = Hom (zR/Rf g, n(R/I)Q ruKy), where a(x)=
*x(14+I). Let r be an element of R such that frel. Then the mapping (z+Rf —
(zr+I)Qu) is in Hom(zR/Rfx, (R/I)Q xuKx) if and only if p™ *(a)r=ra (mod I)
for all ae K. Then (zr+1Qu=C; Y;n(Xz-+M)r+DQu=(; Y,ra*(X'z++M,)
+HQu=2%; (YV;r+1) QX" 'n (X' z+M)+M)=2; (Y;r+1) @ (Z; X' Y;n(X’z
+M)+M,) (Lemma 1.1) =3;(Y,;r+1)R®(Xz+M,) (Proposition 1.4). Finally,
under the above sequence () of isomorphisms, (y+I— X; (3Y;7+1)Q (X +f*R))
corresponds to (z+Rf— 2;(V,7+1)Q(X'z+M,)=(zr+I)Q@u). This proves the
lemma.

By Cemma 1.7 (and Lemma 1.6), we obtain the following

THEOREM 1.8. Assume that Rf=fR=1I. Then R/I is separable over K if
and only if there is an element y in R such that X, ... m-1 Y ;yX'=1(mod I) and
p™ Na)y=ya (modI) for all acK.

REMARK. It is easily seen that 3; X'rY¥=3; YV ,#X’ (mod I), if p™ a)r=ra
(mod I) for all a=K.

Note that if p=id and D=0 then X, ..n-1 X’Y; is the derivative of f.

THEOREM 1.9. Assume that Rf=fR=I1. Then R/I is H-separable over K
if and only if there are y;, z; (i=1, -+, s) in Rpn_y such that ay,=ya, p™ (a)z;
=z;a for all acK and X;v;yz;=r*(y+M,) (modI) for all yeR. (Cf. [5;
Proposition 2.47.)

ProOOF. By Lemmas and [.7, R/I is H-separable over K if and only if
there are y;, z; (i=1, «--, s) in R,_, such that ay,=y.a, p™ Y a)z;=z,a for all
a€K, and X, ; (Y2 + QX+ D=A+1)Q(y+I) for all yeR. But 1+1)®
(+D=2;1+DR@*yY;4+M) X’ +1)=3; (x*(yY ;+M)+1)Q(X+I). There-
fore the last condition is equivalent to that X3, ,3Y;z,;=x*(yY,;+M,) (mod I)
(j=0, -, m—1) for all yeR. Since X; RY;=RR,-,=R, this is equivalent to
that X; v, yz;=#n*(y+M,) (mod I) for all ye R. This completes the proof.

Let f be a monic polynomial such that Rf=fR. If R/Rf is separable over
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K, f is called a separable polynomial.

THEOREM 1.10. Let f, g be monic polynomials such that Rf=fR, Rg=gR,
deg f=m (=1), and deg g=n (=1). Then the following are equivalent.

(1) fg is a separable polynomial.

(il) f and g are separable polynomials, and Rf+Rg=R.

To prove this we need two lemmas.

LEMMA 1.11. Let f,g be monic polynomials such that Rf=fR and Rg=gR.
If Rf+Rg=R then fg=gf.

Proor. There is a monic polynomial f; such that fg=gf;, because fg=Rg
=gR. Then Rfi=(Rf+Rg)fi\=Rffi-+Rgfi=Rffi+RfgSRf. Therefore Rf,SRf.
But deg f=deg f;. Hence f,=f. Thus fg=gf.

LEMMA 1.12. Let T,, T, be separable extensions over K. Then T=T,HT,
(direct sum of rings) is a separable extension over K, too.

ProOOF. There is an element X; t,;; Q¥ in T, Q x T, such that 3, t,;tf,=1
and X, 11, Qif,=>: 1, Q¥ (€T, @ ¢ Ty) for all +;,=T,. Similarly there is an
element >, ¢,; Q1% in T,Q kT, such that >;¢,;t%5;,=1 and X, t.1,; Q=20 1,;Q
t5it: (€T.Q@«Ty) for all t,eT,. Put v=3;(t,, QY 0)+2;(0, 1) X0, %))
(eTQ«Tr). Then tv=vt (€:TQR Tyr) for all tT. Further, under the mapping
TRQxT—T, tQt —tt', v corresponds to (X; t,;tF;, X, t.;2%,)=(r,, 1r,). Hence
T is a separable extension over K.

PrOOF OF THEOREM 1.10. (i) (ii). For any y=X; X'd; we put B(y)=
>iz1 X¥7'd;. Then B is a right K-homomorphism. Note that B f)=Y,;., (i=1,
-, m). Let us calculate B%(fg) (i=1, 2, ---). We put f=X;., X'a;, where a,=1
and ;=0 for all i>m. B(f2)=B(Tiz0 X'a:g)=321 X 'a;8+B(a08)=p(f)g+
B(g)p™ay,), because a,g=gp™a,). Then B*(fg)=p*f)g+p(g)p™(a)+B(g)p™(ao)-
Inductively we can prove that B*(fg)=p(fg+p(g)p™a:;-)+ L4 g)p™a;-2)+ -
+ B4 g)p™(a,). Let y be any element of R such that ya=p™*" Y a)y for all a€K.
Then i1 men ,Bi(fg)yX“:Em..., m+n ﬁi(f)gyXi_1+Ei=l,m, mAn 2uj=t, e i ﬁj(g>
o" (@i-7) Y X ' =it man B VX Dt it ,Bj (8) Zicjnmen ¥ "™ (A5-5)
XoNX =t em BN EY X 4D ers o n f7(2) y /¥ X772, because BH(f)=0 (i>m)
and 5%(g)=0 (j>n). Further, for any a€K, p™ Y a)gy=gp™ " a)y=gya (mod
Rf) and p* Xa)y/=yp ™a)f=yfa (mod Rg), where f=f* Now, assume that
> B (fgyX*'=1 (mod Rfg). Then 3; B (f)gyX*'=1 (mod Rf(=Rf*)), and
p™ Na)gy=gya (mod Rf) for all ac K. Hence f is separable. Similarly we can
prove that g is separable. Further, since Rf+Rg>1, we have Rf+Rg=R.
(ii) > (i). By [Lemma 1.11, we know that fg=gf, so that Rf"\Rg=Rfg=Rg/.
Then R/(RfN\Rg) = (R/Rf)D(R/Rg) canonically, by Chinese remainder theorem.
Hence, by R/Rfg is a separable extension of K.

When Rf=fR=I, we know that R/I> Hom(R/Ig, R/M,x) as K-R/I-
bimodules. Then, noting that xR/M,x (=5 xgrm-:Rx) is invertible, we obtain
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(g7m R 'R x(R/I) > Hom(R/Igx, Kx) as K-R/I-bimodules. Therefore R/[ is
Frobenius over K (i.e. R/I 3 Hom(R/Ix, Kx) as K-R/I-bimodules) if and only if
(g¥m-1R)"*Qx(R/I) > R/I as K-R/I-bimodules. But, as is well known, the latter
is equivalent to that p™~! can be extended to an inner automorphism of R/I
Thus we have the following

PROPOSITION 1.13. Assume that Rf=fR=I. Then R/I is Frobenius over K
if and only if there is an element v in R such that r-1I is invertible in R/I and
p" Ya)r=ra (mod 1) for all acK.

From the preceding argument, if R/I is Frobenius over K, then gr,_,R®
xRm-1 3 R, _, as K-bimodules, because R/l > R,,_, as K-bimodules. In particular,
if D=0 then gr,_..RP - Pgrom-vR—>griRP - Dgr,_.R as K-bimodules.
For instance, let K be a field, D=0, and p an automorphism of K with order
o=m (=2). Then R/l is not a Frobenius extension over K, because each
x8r:Rg is simple, and g7,cn-,pR is not isomorphic to gr;R for all j=0, ---,
m—1, as K-bimodules.

The following is a special case.

COROLLARY. Assume that fR=Rf=I, and that gR/Ix is a simple module.
Then if R/I is separable over K then R/I is Frobenius over K.

PrOOF. By there is an element rin R such that p™ Ya)r=ra
(mod I) for all e€K, and X, Y;#X’=1 (mod I). Then, since (Rr+I)/I is a non
zero R-K-submodule of R/I, we have (Rr+I)/I=R/I, and hence »: R/I— R/I,
x+I1— xr+1 is a left R-epimorphism. And the kernel of this epimorphism is an
R-K-submodule, and so Ker »=0. Thus % is a left R-isomorphism. Hence r4I
is invertible. Therefore R/l is Frobenius over K, by [Proposition 1.13

Here we state a problem. Assume that f is a separable polynomial. Is the
extension ring R/fR of K always Frobenius over K. Some arguments about this
problem will be done in § 3.

We end this section with the following

LEMMA 1.14. Let y=X"+X"*d,_,+ --- +dy (r=1). Then Ry=yR if and only
if ay=yp"(a) for all acK and Xy=y(X-+d,_.,—p(d,-1)).

ProOOFr. Since R=R,. P Ry=R..,ByR, RySyR implies that Ry=yR. Thus
the “if” part is evident. Assume Ry=yR. Then Ky=yK. Therefore, for any
ae K, there exists an element a’ in K such that ay=ya’, and then we have
a’=p"(a). Further there is an element d in K such that Xy=y(X+d). Then,
comparing the coefficients of X", we have d=d,_,—p(d,-,).

§2. Free quadratic extensions.

Let A2K be rings. If A/K is an invertible K-bimodule, we call A a quadratic
extension of K. In particular, if A/Kx =5 Ky (or equivalently, cA/K = 1K), A is
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called a free quadratic extension of K. Assume that A R, as K-bimodule.
Then A has the form K[X;p, D]/J, where g is a monic polynomial of degree
27such that Rg=gR=].

By we can easily see the following

LEMMA 2.1. Let g=X*—Xa—b be a monic polynomial of K[ X ; p, D]. Then
the following conditions are equivalent.

(i) Rg=gR.

(ii) (a) For any c of K, ap*(c)+Dp(c)+pD(c)=p(c)a, and bp*(c)+D¥c)—
D(c)a=cb, (B) b—p(b)=D(a)—ala—p(a)), and D(b)=>b(a— p(a)).

In the sequel of this section, we assume that g=X*—Xa—b and Rg=gR=],
and put X4J/=x. Then x*=xa+b, and cx=xp(c)+D(c) for all ceK. In case
po=1idg, we have x’a+xb=x*=(xa+b)x=x*a+x(D(a)+b)+D(b) which implies
D(a)=D(b)=0.

LEMMA 2.2, The following conditions are equivalent.

(i) g is a separable polynomial.

(ii) There is an element y in R, such that p(c)y=yc for all ¢ in K, and
yX+(X—a)y=1 (mod]).

(iii) There are u, v in K such that p*(cju=uc, vp - (c)=D(c)u+cv for all ¢
in K, atu+pw)+v+p(v)—pla)u+ D(u)=0, and blu+ p(u))—ve *(a)+D(v)=1.

PRrROOF. (i) & (ii) follows from [Theorem 1.8. Put y=Xu-+v. Then we .can
easily see that (ii) & (iii).

If R/] is G-Galois over K (cf. [4]) then (G :e)=2 by Nagahara [10; Lemma
1.2].

THEOREM 2.3. The following conditions are equivalent.

(1) R/J is Galois over K.

(ii) There is an element s in K such that (a) 4b+s*—2D(s) (or 4b+sp(s)) is
invertible in K (or, 2x—s is invertible in R/]), (8) s+ p(s)=2a, s>—D(s)=sa, and
cs—sp(c)=2D(c) for all ceK.

Proor. (i)=> (ii). Let G={l, r} be a Galois group of a Galois extension
R/] of K, where t+#1d, and 7°=id. Put s=x+7(x). Then s€K, and r(x)=s—x.
Since cx=xp(c)+D(c) for all ce K, and x*=xa-+b, we have cr(x)=1(x)p(c)+D(c)
for all ceK, and r(x)’=t(x)a+b. Then the former implies that cs—sp(c)=2D(c)
for all ceK, and the latter implies that 2a=s-+p(s) and s*—D(s)=sa. By [10;
Lemma 1.2], 2x—s is invertible in R/J, or equivalently, (2x—s)*=4b+sp(s)=
4b+s2—2D(s) is invertible in K. (ii) > (i). We put Y=s—X. By (8), cY=Yp(c)
+D(c) for all ¢ in K, and so the mapping ¢: X— Y induces a K-automorphism
of R. Then, by (8), we know ¢(g)=g. Hence ¢ induces a K-automorphism ¢
of R/J such that r(x)=s—x. Let ¢,--xc, be an element of R/J such that z(c,
+xc)=c,+xc;. Then, s¢;=0, and 2¢;=0. Then (4b+s*—2D(s))c;=0. But 4b-s?
—2D(s) is invertible. Hence ¢;=0. Finally, as in the proof of [10; Lemma 1.5],
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(s—2x) Y s—x)r(1)+(s—2x)"¢(—x)=0, and (s—2x)""(s—x)-14+(s—2x)"(—x)=1.
Thus R/J is {1, 7}-Galois over K. This proves the theorem.

REMARK. If 2-1 is invertible in K, the condition s*—D(s)=sa follows from
two conditions s+ p(s)=2a and cs—sp(c)=2D(c) for all ¢ in K.

From the proof of if an element s of K satisfies (ii) (8) of
then 7: x— s—x induces a K-automorphism of R/J. Therefore

we have the following

COROLLARY 1. The following conditions are equivalent.

(i) The mapping t: x+— a—x induces a K-automorphism of R/J, and R/] is
{1, z}-Galois over K.

(ii) (a) 4b+a* is invertible in K, (B) pla)=a, D(a)=0, and ca—ap(c)=2D(c)
for all ceK.

In the above, if we assume pD=Dp, then the condition that ca—ap(c)=2D(c)
for all ceK is superfluous, by Lemma 2. 1. Noting this fact we have

COROLLARY 2. Assume that p=idg, and that 2-1 is invertible in K. Then
R/] is Galois over K if and only if 4b-+a*® is invertible in K. (Cf. Nagahara
[10; Theorem 3.4].)

Finally, let us improve a theorem which is found in Nagahara [10; Theorem
2.5 and Theorem 2.7].

THEOREM 2.4. Assume that D=0. Then the following conditions are equiv-
alent.

(i) R/J is Galois over K.

(ii) R/J is separable over K, and 2K+aK=K.

(iii) R/] is separable over K, and c=p(c) (mod 2K) for any c¢ of the center
of K.

(iv) 2x—a is invertible in R/] and p(a)=a.

(v) 4b+a?® is invertible in K, and p(a)=a.

ProOOF. Since Rg=gR, we know that b—p(b)=—ala—p(a)), bla—p(a))=0,
and ca=ap(c), cb=bp¥c) for all ceK, by Lemma 2.1. Then ala—p(a))=a*—a®
=0, and so b=p(b). Assume that g is separable. Then, by there
are u, v in K such that p*(cu=uc, p(c)v=vc for all ¢ in K, and a(u+p(u))+v
+p(v)—p(a)u=0, blu+p(u))—av=1. Then 1=p~*(w)b+p (wb—p *(v)a. Since
bla—p(a))=0 and a(a—p(a))=0, we know 1-(a—p(a))=0, that is, a=p(a). Then,
by Nagahara [10; Lemma 2. 27, we have 4-1x=(@b+a*)K. Hence (4b-+a*)K=4bK
+a’K=4K+a*K. Assume (i). Then, by [4; Proposition 1.3], R/J is separable
over K, and so p(a)=a, p(b)=>b. Then, by [10; Theorem 2.5], 4b+a® is inver-
tible in K. Hence 2K+aK=K. Thus (i) 2 (ii). Conversely, assume (ii). Then,
4K+a’K=K, and so 4b-+a? is invertible in K, by the preceding argument. Then,
by [10; Theorem 2.5], R/J is Galois over K. Let ¢ be in the center of K. Then
ca=ap(c)=p(c)a, and so ¢=p(c) (mod 2K), because a+2K is invertible in K/2K.
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Thus (i) © (ii) = (iii). Finally we assume (iii). Then, since bu lies in the center
of K, bu=p(bu)=bp(u) (mod 2K). Put bp(u)=bu+2d. Then 1=b(u+p(u))—av
=2bu-+2d—av. Thus 2K+aK=K. Hence (iii) = (ii). (i) & (iv) & (v) follow from
[10; Theorem 2.5].

§3. Examples.

THEOREM 3.1. Assume that D=0, and let f=X™—b (m=2) be in R=K[X; p].
Then the following conditions are equivalent:

(1) f is a separable polynomial.

(ii) (@) p(b)=b, and cb=bp™(c) for all ceK, (B) b is invertible in K, and
d+p(d)+ -+ +p™ Nd)=1 for some d of the center of K.

Proor. (i) > (ii). Kf=fK implies that cbo=bp™(c) for all ce K. And, Xf=fX
(Cemma 1. 14) yields p(b)=b. Let y be as in Then, since X™ 1y
FX™ Py XA e XM =X g+ p(0) 4 o ™ ()= PR (3) o () +
ce +y)X™-1 X1 is invertible in R/I, where I=fR=Rjf. Then X™+I=b+1 is
invertible in R/I. Since xK and Ky are direct summands of xR/I and R/Ix
respectively, it is easily seen that b is invertible in K. Then, by [5; Corollary
to Theorem 2.11], d+p(d)+ --- +p™ *(d)=1 for some d of the center of K.
(ii) = (i). This follows also from [5; Corollary to Theorem 2.117].

Let B be a ring, and put K=B@ B. Let p be the transposition (i. e. o(x;, x2)
=(xs, x1)). Put d=(1p, 0). Then d lies in the center of K, and d+ p(d)=(13, 15)
=1. Thus f=X®*—1 is separable in K[ X; p]. Put y=Xd. Then y satisfies the
condition in [Theorem 1.8 But y-+I is not invertible.

THEOREM 3.2. Let p be a prime number, and assume that plg=0 and p=idg.
Then, for f=X?—Xa—beR=K[X; D], the following conditions are equivalent.

(1) f is a separable polynomial.

(i) («) D(a)=D(b)=0, D?(c)—D(c)a=cb—bc for all ccK, and a lies in the
center of K, (B) there is an element y in R,_; such that D?~(y)—ya=1 and cy=yc
for all ¢ of K, where D(h)=hX—Xh for any heR.

To prove this we need the following

LEMMA 3.3. (1) Let p be a prime number, and let 0=j<p—1. Then

2 im0 p-1-j (Hi—])EO (mod p). (2) Assume that plg=0. Then, for any ycR=
KLX; D, X27y+ X0y X4 oo 3 Xr-=Dr7i(y).

Proor. (1) Let F, be the prime field of characteristic p, and we take the
polynomial ring F,[¢]. Then, in F,[t], i, .. p-1-5 tAFD=t1+1) T, p-1-5
(1+8)'=—(1+1t)y+1+1t?. On the other hand, the coefficient of t/*! in 33, ... p-1-;
A4 is Dico, o po1-7 (H;]> lg. Thus oo, p-1-; (l—li_]>50 (mod p). (2) For any

h=>; X, in R, we put D(h)=hX—Xh=3}; X'D(c;). Then, by induction, we can
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see that hX"=Xiuo.., X'( [ )Di(h) for all rZ0. Then, Sye.pm XP7 73X

= 2o, p-1 (Zi:o, T Xp_l_r”( :) Dr—i(y)) - Z;‘:o,m, p-1 (Ei=o,..., p-1-j Xp-iod (l—}i—])
Di(y))=D?"*(y), as desired.

ProOOF OF THEOREM 3.2. By Lemma 1. 14, fR=Rf if and only if X/=fX
and c/=fc for all ¢ of K. On the other hand, plx=0 implies that cX?=X?¢c
+D?(c) for all ce K (cf. the proof of Lemma 3.3). Therefore, as is easily seen,
JR=Rf if and only if (ii) (a) holds. Now, assume that f is separable. Let
yER,_, beasin Then, by XPly+ XP2y X4 - +y XP71
=DP-Y(y), and so D?"}(y)—ya=1. Thus (i) = (ii). Now it is evident that (ii) >
().

Here we state some particular cases of [Theorem 3.2.

First, let f=X?—X—b. Then fR=R/f implies that f is separable, because
we can take 1=y (cf. Kishimoto [2]).

When D?-'=0, (8) is equivalent to that a is invertible in the center of K.

J/=XP? is separable if and only if D?=0 and there exists y in R,_; such that
D?-(y)=1 and cy=yc for all ce K. For instance, let L be a field of characteristic
p(>0), and K=L[t]. Then X? is separable in K[ X; D], where D is the usual
derivation.

A monic polynomial fis called Frobenius, if Rf=fK=I and R/I is Frobenius
over K. For any ring A, we denote the Jacobson radical of A by rad(A4).

THEOREM 3.4. Let f be a separable polynomial of degree m (=2).

(1) If D=0 and rad (K) is a maximal ideal of K, then f is Frobenius.

(2) If xKg is simple and there exists ye R, as in Theorem 1.8, then [ 1is
Frobenius.

ProoF. (1) Let v be as in Put p=rad (K) and y=3=0,... m-1
X’d;. Then, p™ Yc)d,=d,c for all ce K. Therefore, if d,ep then d, is invertible
in K, and hence f is Frobenius, by [Proposition 1.131 On the other hand, if
d,€p, then X-+I+pR is invertible in R/(I+pR) (cf. and its Remark),
where pR=Rp. Then, since xR/l and R/Iyx are finitely generated, X4/ is in-
vertible in R/[I by Nakayama’s Lemma. Therefore X™ 4] is invertible, and
hence f is Frobenius, by [Proposition 1.13. (2) Let y be as in [Theorem 1.8, and
put y=Xu-+w. If u=0 then (y=) v is invertible in K. Thus f is Frobenius, by
IProposition I.13. Assume u+#0. Then, for any ceK, p™(cu=uc, and p™ (c)v
+Dp™ Yc)u=vc. The former implies that u is invertible, because x K is simple.
Then the latter implies that D(c)=vu"'p(c)—cvu? for all ¢ of K, that is, D is
inner. Thus this case is reduced to the one when D=0 (cf. [1]). Then, (2)
follows from (1).

COROLLARY. Let f be a separable polynomial of degree 2, and assume that
kK x is simple. Then f is Frobenius.
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Let e be a central idempotent of K. Then D(e)=D(e*)=D(e)p(e)+eD(e).
Therefore, if p(e)=e¢ then D(e)ceK, and so D(e)=0. Then, for any a in K,
D(ae)=D(a)e, and e lies in the center of R. Consequently, a monic polynomial
f is separable (resp. Frobenius) if and only if ef and (1—e)f are separable (resp.
Frobenius) over e¢K and (1—e)K, respectively. Assume that K is a direct sum
of (two sided) indecomposable ideals I; (=1, ---, 7), and let 1=>,_,...,¢; (e;1,).
Then p induces a permutation of {e,, ---, e,}, and hence it suffices to treat the
case p(e))=e,, -+, ple,-,)=e,, p(e;)=e,. Further, assume that D=0. Let f be a
separable polynomial of degree 2, and let y=Xu+v be as in [Theorem 1.8.
First we assume r=2. Then p(c)v=vc for all ceK, and so p(e,)v=ve,=e,v.
Hence v=0, because e,+p(e;)=1. Then the assumption for y yields that X4I
is invertible in R/I, where I=fR=Rf. Hence f is Frobenius, by [Proposition 1. 13
Next we eliminate the condition r=2. By Lemma 2.1, ca=ap(c) and cb=>bp*c)
for all ce K. Further, by Lemma 2 2, b(u+p(u))—av=1. Hence p*c)=c for
all ¢ in the center of K, and so p%(e;)=¢; (i=1, ---, 7). Thus this case is reduced
to the one when r=<2. Then, by [Theorem 3.4 (1), we have the following

THEOREM 3.5. Let D=0, and f a separable polynomial of degree 2. Assume
that K is a dirvect sum of rings I, (i=1, ---, r), and that each rad (I,) is a maximal
ideal of I,. Then f is Frobenius.

If K is a commutative artinean ring, then K is a direct sum of local rings.
Thus we have the following

COROLLARY. Let D=0, and f a separable polynomial of degree 2. If K 1is
a commultative artinean rving, then f is Frobenius.

References

[1] P.M. Cohn, Free rings and their relations, Academic Press, 1971.

{2] K. Kishimoto, On abelian extensions of rings I, Math. J. Okayama Univ., 14 (1970),
159-174.

[37] K. Kishimoto, On abelian extensions of rings II, Math. J. Okayama Univ., 15
(1971), 57-70.

[4] Y. Miyashita, Finite outer Galois theory of non commutative rings, J. Fac. Sci.
Hokkaido Univ., Ser. I, 19 (1966), 114-134,

[5] Y. Miyashita, On Galois extensions and crossed products, J. Fac. Sci. Hokkaido
Univ., Ser. I, 21 (1970), 97-121.

[67] Y. Miyashita, Commutative Frobenius algebras generated by a single element, J.
Fac. Sci., Hokkaido Univ., Ser. I, 21 (1971), 166-176.

[7] Y. Miyashita, Note on an ideal of a positively filtered ring over a commutative
ring, Math. J. Okayama Univ., 18 (1976), 61-63.

[87 Y. Miyashita, Non-singular bilinear maps which come from some positively
filtered rings, J. Math. Soc. Japan, 30 (1978), 7-14.

[9] T. Nagahara, On separable polynomials over a commutative ring III, Math. J.
Okayama Univ., 16 (1974), 189-197.



330 Y. MIYASHITA

[10] T. Nagahara, On separable polynomials of degree 2 in skew polynomial rings,
Math. J. Okayama Univ., 19 (1976), 65-95.

Yoichi MIYASHITA

Department of Mathematics
University of Tsukuba
Sakuramura, Ibaraki, 300-31
Japan



	\S 0. Introduction.
	\S 1.
	THEOREM 1. ...
	THEOREM 1. ...
	THEOREM 1. ...
	THEOREM 1. ...

	\S 2. Free quadratic extensions.
	THEOREM 2. ...
	THEOREM 2. ...

	\S 3. Examples.
	THEOREM 3. ...
	THEOREM 3. ...
	THEOREM 3. ...
	THEOREM 3. ...

	References

