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§1. Introduction.

Let G be a compact Lie group, V its orthogonal representation with a
G-invariant metric, and S(V) the unit sphere in V. Let [S(V), S(V)]s be
the set of all G-homotopy classes of G-maps of S(V) into itself. If dimzV9=2,
then this set has a natural ring structure.

R. L. Rubinsztein discussed the ring structure of [S(V), S(V)ls.
Moreover he gave a classification of G-maps f: S(V)— S(V). Another classi-
fication of G-maps were given by S.J. Willson [5]. T.tom. Dieck and
G. B. Segal gave several important results for the Burnside ring and the
equivariant stable homotopy group.

We are interested in the multiplicative group of the ring [S(V), S(V)]1g,
denoted by E;[S(V)], which consists of all G-homotopy equivalences of S(V)
into itself. In this paper we shall prove the following results. (Notations are
given in §2.)

THEOREM 1. Let G be a finite abelian group, and let V be its orthogonal
representation such that dimpV¢=2. Then we have

|[EcLS(V)]|=2%",

where N=Car. {H | HEO(V) and |G/H|=2}.

THEOREM I. Let D, be the dihedral group generated by a and b with
relation a"=0b*=abab=1, and let V be its complex representation such that
dimpV?%=2. We put

N,=Car. {ili€[n]*, iis odd, i1, and (b, a®)=0 (V)}
and

N,=Car. {1|i€[nl*, i is even, i+2, (ba, a*), (b, a)eO(V)}.
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Then we have
|EDn|:S(V)] l :2N1+N2+N0+1

where N,=Car.({(a), (b, a®), (ba, a®)} N\ O(V)).

§ 2. Preparation.

2.1. From now on, let G be a finite group and V its orthogonal represen-
tation. Throughout this paper we use the following notations:
(H) the conjugacy class of a subgroup H of G,
Gy the isotropy group at x=S(V),
O(V) the set of orbit types on S(V),
Y> the subgroup generated by a subset Y of G,
Car. X the cardinal number of a set X,
| K| the order of a group K,
A(V) the free abelian group generated by the set O(V),
C(G) the set of conjugacy classes of all subgroups of G,
Xy  the set {x|x=S(V)and (Gx)=(H)},
Ve the set {x|x€V and Gx=G},

R* the multiplicative group of a ring R,
Z the ring of rational integeres,
[n] the set {1, ---, n} for a natunal number n,

[n] the set {0, ---, n—1},
[n)* the set {i|i=[n] and i|n}.

Let I" be the set of isomorphism classes of all finite G-sets. Addition and
multiplication in I are defined by the disjoint union and the cartesian product,
respectively. The Burnside ‘ring A(G) is defined to be the Grothendieck ring of
I'. Any finite G-set can be written as the disjoint union of its orbits under the
G-action, each of which is isomorphic to a homogeneous G-space. So that
equivalently, A(G) is (additively) the free abelian group generated by the set
{G/H|(H)eC(G)}. We denote by [X] the element of A(G) represented by a
finite G-set X. Then we have the formula
2.1.1) [X]=_, 3 Aa[G/H],

YEC(G
where Agn=Car. {¢|x€ec X/G and (G,)=(H)}. For each element (H) of O(V),
we denote by the same letter (H) the corresponding element of A(V) when
there arises no confussion.
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LEMMA 2.2 (Remark 8.2 [3]). For any x, yeS(V), there is a point
zeS(V) such that
G: N\ Gy=G,.

2.3. There is a canonical group homomorphism
v . A(V) — A(G)

defined by iy ((H))=[G/H]. We define a partial order on O(V) by (H)<(K)
if and only if H is conjugate to a subgroup of K. Suppose (H,), ---, (H,) are
all orbit types on S(V) with

2.3.1) (H;)=(H;) for i<j.

Let x=(g,H;, g.H;) be an element of the G-set G/H;XG/H;, then we have
(Gz)=(H;) and (G.)=(H)).

Therefore, from (2.1.1) and we have

(2.3.2) LG/HLG/H;]= éj A(s, 1, DLG/H] - for 1=,

where A(s, i, j)=Car. {e|xcec(G/H;XG/H;)/G and (G,)=(H,)}. From (2.3.2),
v (A(V)) is a subring of A(G). So we consider A(V) as a ring. If (G)=0(V),
then A(V) is a ring with unit element 1=(G).

THEOREM 2.4 (Theorem 7.2 and Theorem 8.4 [3]). There is a bijection
@; [S(V), S(V)]g— A(V) such that the diagram

[S(V), S(V) e AV)

l T deg l Fa

[S(V)#, S(V)H] z

commutes for all subgroup H of G, where ry is the restriction transformation,
and Xy is the homomorphism defined by

" Xu((K))=Car.(G/K)*

Jfor each generator (K) of A(V). If dimpV°=2 and X.g,/G 1is connected for
each orbit types (H) on S(V), then @ is a ring isomorphism and two G-maps

(2.4.1) f1, [2:S(V)—> S(V) are G-homotopic
if and only if
deg (fi)=deg(ff)  for all (H)eO(V).
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THEOREM 2.5 (Proposition 8.1 [3]). For any (H)eO(V), Xw,/G is con-
nected, provided one of the following two conditions is satisfied:

2.5.1) G is a finite abelian group and dimgpV¢=2

and

(2.5.2) V is a complex representation of G.
From 4 and we have

COROLLARY 2.6. If dimgV%=2 and one of the conditions (2.5.1) and
(2.5.2) 1s satisfied, then

DIEGLS(V)]: EcLS(V)] —> AV )*
1S a group isomorphism.
LEMMA 2.7. We have

4*=1 for any de A(G)*.

PrROOF. It is shown in Bredon [1] that there is an orthogonal representation
V(H) of G and a point x€S(V(H)) such that G,=H for each subgroup H of
G. Now we consider the representation

VO:HECBG 2V(H)D R?, (G acts trivially on R?)

then we have O(V,)=C(G). From [Theorem 2.5, X 4,/G is connected for each
subgroup H of G. Each element of E;[S(V,)] is of order 2 by (2.4.1). So the

desired result follows from Q.E.D.

§3. Proof of Theorem I.

In this section we assume that G is a finite abelian group, dimpV¢=2,
O(V)={(Hy)=G, ---, (H,)} satisfies (2.3.1), |G/H;|=2 for 1=i=N=<Pk, and
|G/H;|>2 for j>N.

LemmMma 3.1. We have

@3.L1) Car.((G/H;xG/H,)/G)=|G/H;-H,|,
(3.1.2) (H)(Hp)=|G/H;-H,(H;\\H;) in A(V)
and

(3.1.3) s=i,j if H,N\H=H,,

S>i,j lf HiﬂHj:Hx and H,;ﬂHjiHi, Hj.
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Proor. (3.1.1) is trivial. (3.1.2) and (3.1.3) follows from (2.3.2) and
(2.3.1), respectively. Q.E.D.

LEMMA 3.2. For each subset I={iy, -+, i} of [N], we define an element
d; of AV) by

4= 11 A—(Hy)),

then d3}=1.

ProoFr. For eachi€[N], 1—(H,))*=1-2(H,)+|G/H;|(H)=1—2(H)+2(H;)
=1 by the assumption and (3.1.2). Since A(V) is a commutative ring, the
desired result follows at once. Q.E.D.

LEMMA 3.3. If (Zi xi(Hi)>2:1, where x,=Z, then we have

3.3.1) xo==x1 and x;=0 or —x, for all i=[N],

(3.3.2) x;=0 for all j>N if x;=0 for all i€[NJ.

k
PROOF. Let 4= Z)O x;(H;) and let ¢; be the coefficient of (H;) in 4% Since

H;N\H;#H;, H; for 0<i#j=N, we have c¢j=x}j=1 and ¢;=2x,x;+|G/H;|x}=
2x;(xo+x:)=0 for all i€[N]. So we have (3.3.1). If x;=0 for all ie[N],

then we have ¢y =2xxy+1+1G/Hyiilx%+1=0 by Lemma 3. 1. Since |G/Hy .l
>2, we have xy,;=0. Then (3.3.2) follows from the induction on j>N.
Q.E.D.

LewMA 3.4 Let f= 3 xi(H). If (4r+E AV, then f=0.

1 +1

PrOOF. By the assumption and Cemma 3.1, we can write

A1 ,3:

1

k
:¥ yL(Hl)s

+1

where y;€Z. So 4,;8=0 by (3.3.2). There are G-maps h and G-homotopy
equivalence f such that

O(LhD)=p, @([fD=4; and [fI[A]I=0,

by and Since f induces an (additive) isomorphism
fx; [S(V), S(V)1e —[S(V), S(V)1s, we have [h]=0 and f=0. Q.E.D.

LEMMA 3.5. Each element of A(V)* is of the form A; for some I C [N].
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PROOF. Let g= 3 x((Hy) and I={i| x;#0and i[NI}. If 4 A(V)*, then
we have
the coefficient of (H;) in 4;,=—1 if xo=1
e {the coefficient of (H;) in —4,=1 if xo=-—1,

for all i€l by and the definition of 4;. So the desired result
follows from Q.E.D.

PROOF OF THEOREM 1.
Since Car. {I|I C [N]1}=2%, we have

[EeLS(V]I=|A(V ¥[=27+

by Lemma 3.5 and Corollary 2.6, Q.E.D.

COROLLARY 3.6. If |G| is odd, then we have
|[Ec[S(V)]|=2.
COROLLARY 3.7. If G acts semi-free on V, then we have

2 1if |Gl#2

IEG[S<V>]1:{4 il
1 =Z.

§4. Proof of Theorem II.

LEMMA 4.1. Let D, be the dihedral group generated by a and b with
relation a®=b*=abab=1. We have

4.1.1) atb=ab"* and (a*b)*=1 for any 1€Z,

(4.1.2) each element of D, is of the form ba® or a* for some i€ Z,
(4.1.3) (bat, a/)=(ba???, a’) for any 1i,j, pEZ,

4.1. 4) (bat, a’)y=(ba*"??, @) for any 1, ], peZ,

(4.1.5) (ba*, a®)=(b, @) and (ba**!, a?)=(ba, &) for any 1, jEZ,
(4.1.6) (ba, a?)=(b, a’) if either j is odd or n is odd,

and

4.1.7 (ba, a’)+(b, a?) if j is even and n is even.
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PROOF. (4.1.1) and (4. 1.2) are trivial. Now we have
() ba?{bat, a’dba?=<{ba®*? ¢, a’>,
(2)  aP<ba?, a?)a~?=(ba’"??, a’),

(3) ai+1 <ba, a2i+]> a-(i+1):<b, a2i+l>
and
(4)  <ba, a?>=<ba*", a’).

Then (4.1.3)~(4.1.6) follows from (1)~(4). If (ba, a¥)=(b, a¥) and n is
even, then we have

(1) a'<b, a¥)a t=<ba"%, a¥)=<(ba, a¥)
or
(ii) ba*<b, a¥)bat=<{ba?, a¥y=<ba, a¥),

for some t=Z. If (i) holds, then we have ba'**=pa"% for some s=Z, so
1+25j+2t=0 (mod n). If (ii) holds, then we have ba'*?=pa? for some seZ,
s0 1+425j—2t=0 (modn). Therefore n must be odd. This contradiction
establishes (4.1.7). Q.E.D.

COROLLARY 4.2. We have

{(a%), (b, a®) | i€[n]*} if n is odd

{(a®), (b, a?), (ba, a’) | 1, j€[n]* and j is even} if n is even.

C(D)={

PRrRoOOF. This follows from 1. Q.E.D.
In A(D,), let

a;=[Dy/<a], B:i=[D,/<b, a®)]  for each ie[n]*
and

7i=LD,/<{ba, a®)] for each even is[n]*.

For 7, je[n]*, we write m (i, j) (resp. M (i, j)) for the greatest common diviser

(resp. the least common multiple) of i and j. Throughout this section let us

abbreviate m (i, j)=m and M(i, j)=M when there arises no confusion. There

exists integers k,, k,, ¢; and ¢, such that i=mk,, j=mk, and k, Q1+kq=1.
LEMMA 4.3. In A(D,)*, we have

g aj:2maM.

PrROOF. Let X, denotes the D,-set D./{a*yXDy/<a?). For s, s,e[m],
we have

4.3.1) [Ka%, a*1{a?)]=[a?, a’2<{a’>] if and only if s,=s,
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and
[Ka*, ba1<a’y]=[<a®, ba*2<a’)] if and only if s,=s,
in X,/D,. Let t=hm+s (s€[m]). Then
[Ka®, a*<ay]I=[a"""<a®, a*<a’)]
=[a~tmtrarkzw (g7, a*{a’)]
=[a ""*22{a"), a*<a’>]1=[{a?), a**™"*22{q’}]
=[a"®, a*<a’>].

It is trivial that [{a®, a®<{a?d]+[Ka®), ba®2{a?>] for any s,, s;,eZ. Since
(a®y N a’a’ya*=a?) N ba*<a’>ba*=<{a™) and Car.(X,/D,)=2m, the desired
result follows from (2.3.2). Q.E.D.

LEMMA 4.4. In A(D,)*, we have
5.5 {ﬂM+(m—1)/2aM if mis odd,
R 2Bu+(m/2—1)ay iof mis even.

PrOOF. Let X, denotes the D,-set D,/{b, a®>XD,/{b, a?>. For s, s;, s,
Cm], we have
(4.4.1) [<b, a*), a*1{b, a?>]=[Kb, a*), a**<b, a’>] in X,/D,

if and only if s,+s,=m or s;=s,,
and
(b, a™) if either s=m/2 or s=0,

(4.4.2) (<b,a">ﬂas<b,a">“”>:{(M) therwi
a otherwise.

s Proof of (4.4.1): If [Kb, a*), a*iKb, a’>]=[(b, a®), a*2{b, a’>], then we
can separate two cases:

(1) atitsimsn—gJit2 for some ¢, t,eZ,
(2) athtsitsDd —gits for some ¢, LEeZ.

In the case (2), 1t;+s,+s,=jt, (modn). Since m|i, m|j and s, s,=[m], we
have s;+s,=m. Conversely, if s,+s,=m, then we have

[<b, a*>, a*1<b, a?y1=[Kb, a*), ba T*u**v (b, a’}]
=[<b, a*), ba“r W {p, al)]
=[b, a*), ba®“r™™<b, a?d]=[<b, a®>, a™ Vb, a?>]
=[<b, a*y, a2{b, a?>].
Therefore we have (4.4.1).
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: Proof of (4.4.2): Let H=<b, a®) N\ a*<b, a’>a~%. It is trivial that H
contains <{a¥). If {(a¥) is a proper subgroup of H, then we have baii=
ba¢"2s*it»> for some 1, t,€Z. So it,+2s—jt,=0 (modn) and m|2s. Since
se[m], we have

0 if m is odd,
=1

0 or m/2 if m is even.

Conversely, if s=m/2, then
a’{b, a’>a*=<{ba™™, ald=<(ba "1tk 7%

=(ba "™k, gIy={ba"'1, a’)
and

atu® (b, a'y N<ba™*4, a’y) a’’®
=<ba*a, a*y N<b, a?>=<b, a*> N <b, a?>=<b, a™>.
Therefore we have (4.4.2).

Each element of X,/D, is of the form [<b, a*), a®<{b, a’)] for some s=[m].
So the desired result follows from (4.4.1), (4. 4.2) and (2.3.2). Q.E.D.

LEMMA 4.5. In A(D,)*, we have
24 ﬁj:maM.

Proor. Let X, denotes the D,-set D,/{a*>*XD,/<b, a’>. Each element of
X,/D, is of the form [“a®), a®{b, a’>] for some s&[m]. Since <a*>N
a*<{b, a’>a *=<{a™) for any s€Z, the desired result follows from (2. 3.2).

Q.E.D.
LEMMA 4.6. In A(D,), we have

airj:maM.

Proor. This will be proved by the same way as in [Lemma 4.5l

Q.E.D.
LEmMma 4.7. In A(D,), we have

5 { m/2ay if mis even,
W D2=Day+ry  if m is odd.

Proor. Let X, denotes the D,-set D,/<{b, a*>xXD,/<{ba, a’>. For s, si, S,
e[m], we have

4.7. 1D [<b, a®, a*t<ba, a?>]=[<b, a*>, a*2<{ba, a’)] in X,/D,

if and only if s,+s,—m-+1 or s,—s, or s;=0 and s,=1,
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and
(ba, a¥) if either s=0, m=1
4.7.2) «b, a®> N a*<ba, a’d>a )= or s=(m+1)/2, m+1,

(a™) otherwise.

(4.7.1) and (4.7.2) will be proved by the same way as in (4.4.1) and (4.4.2).

Since each element of X,/D, is of the form [<b, a®>, a®<{ba, a’>] for some

se[m], the desired result follows from (4.7.1), (4.7.2) and (2.3.2).
Q.E.D.

LEMMA 4.8. In A(D,), we have
Ta7i=2ru+(m/2— 1) ay.

Proor. This will be proved by the same way as in Lemma 4.4
Q.E.D.

From the above Lemmas [ 3-4. 8, we have
LeMMA 4.9. We put

di=1+a;—28; for each odd i=([n]*—{1}),
Vi=1+a2i—‘32i—7’2i f07' each lE([?’L/Z]*_‘ {1}))
41:1_’“1,

V(l,o)zl—ﬁzy
and
V(Ll):l—"rz:

then those elements are in A(D,)*.
4.10. Let M, (s=1, 2,3, 4) be the submodule of A(D,) defined as follows:

M,=the submodule generated by the set {1, a;},

M,=the submodule generated by the set
{as, B: | ie([n]*—{1}) and 7 is odd},

M,=the submodule generated by the set {a,, B, 72},
and
M,=the submodule generated by the set

{aei, Bois Tor | 1€([n/21*—{11)}.

Then it is trivial that A(D,) and (M, P M,P M,P M, are isomorphic as
additive groups. Let g=X+Y, where XeM,® M, and YeM;HM,).
Since M (odd, odd)=o0dd, M (odd, even)=even and M (even, even)=even, we have
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(4.10.1) @CXY+YDe(M, B M,) and Xe(M,® M),
by Lemmas 4.3-4.8. If 4= A(D,)*, then we have

(4.10.2) 2XY+Y?=0, X?=1 and X=/4(+XY).
So we have
(4.10.3) AD =M, D Myy*((1+M, B M,) N A(DR)*) .

LEMMA 4.11. Let g=1+xa,+ X, where x€Z and XM,. If g=A(D,)*,
then x=0 or x=-—1.

PROOF. Since 4°=1 and ai=2«,;, we have
A=1+Cx*+2x)a;+ X24-2xa, X+2X=1,
and
(X:+2xa,+2X)eM,.
So (2x2+4+2x)=0. Q.E.D.

LEMMA 4.12. Let A———l—{&i;m(xiazm—}—yiﬂzm) and [=Min{i|{x;, y;} # {0}}.
If >0 and g*=], then we have x,=1 and y,=—2.

PrROOF. Let a, and b, be the coefficients of a,;+; and By, respectively,
in 4°. Then we have

a,;=22I+1) x3+1yi+2x,+2x, y, (21+1)=0,
and

b=y1+2y,=0 (y,=0 or —2),
by Lemmas 4, 3-4.5. If y,=0, then
a,=2x,((2l+1)+1)=0.
If y,=—2, then
a;=221+1)(x,—1)(x,—21/21+1))=0.

Since />0 and {x,, y,} # {0}, we have x,=1 and y,=—2. Q.E.D.
LEMMA 4.13. Let V=1+ g (xi au-i-yi /321;"‘257’2,-) and lem{z[ {xi, Vi, 2'1;}
#{0}}. If I>1 and V?=1, then we have x,=1 and y,=z,=—1.

PrOOF. Let a,, b; and ¢, be the coefficients of a,;, 8, and 7,,, respectively,
in V2. Then we have

(4.13.1) a,=4lxi+ (-1 (y+2)+4lx, (y,+2z)
+2xl—{—21y,zl:0,
b, =2y}+2y,=0 (y,=0 or —1),
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and
c,=223+22z,=0 (z;=0 or —1).
If y,=2z,=0, then
a,=41(x,+1/2]) x,=0.

If either y,=0 and z;=—1 or y,=—1 and z,=0, then
a,=41(x,—1/2)(x,—(1—1)2))=0.
If y,=z,=—1, then
a,=41(x,—1)(x,—(2l—1)/20)=0.

Since [>1, {x,, v;, z,}C Z and {x,, y:, z;} # {0}, we have x,=1and y,=z,——1.
Q.E.D.

Let S, (=1, 2) be the subgroups of A(D,)* defined as follows:

S,=the subgroup generated by the set {1, 4, 4:},
and

S,=the subgroup generated by the set
{L, Va,oor Vo, Vib o (cf. .

LEMMA 4.14. Let g=14+xa,+X, where x€Z and XeM,. If g AD,)*,
then 4<S,.
Proor. From 11, x=0 or —1.
:In the case x=0: From Lemma 4,12, we can write
A:1+all_2ﬁll+X1

for some /,&([n]*—1) and X,eM, such that [, is odd and the coefficients of
a; and B; in X, are equal to zero if i</, and X+0. So we have
14+X,= 41, A€+ M) N A(DR)*.

Therefore we have
I=4y, " di, 40, 4

for some [,={n]* (=1, ---, k) by the induction. So g=S,.
. In the case x=—1: Since 4, 4=1+4X and g4, X=M,, so the desired
result follows from :In the case x=0:. Q.E.D.

LEMMA 4.15. Let V=1+4xa,+yBs+2z7.+ X, where {x, y, 2z CZ and XeM,.
If Ve A(D,)*, then VES,.
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ProoF. Since (4.13.1) is true for case /=1, we can separate four cases:
(1) x=y=2z=0,
(2) x=y=0 and z=-1,
(3) x=z=0 and y=-1,

and
(4) x=y=z=-—1.
:In the case (1): From Lemma 4 13, we can write
v:1+a2l1~_|82l1—-r2l1.+-X1

for some [,€[n/2]* and X,=M, such that the coefficients of a,;, B and 7.
in X, are equal to zero if 1=/, and X+#0. Therefore we have

1=9,, - ¥,,-9,,-¥

for some [,=[n/2]* (=1, ---, k) by the induction. So Ve&S,.

:In the cases (2)~(4): This will be proved by the same way as in
14 by the use of the elements V.o, V. and Ve, Va.on-
Q.E.D.

THEOREM 4. 16. We put
Ny=Car. {i|i is odd and ie([n]*—{1})}
and
N,=Car. {i]i is even and ic([n]*—{2})}.
Then we have

AD)*=S5,-S,U —S,-S, and |A(D,)*|=2-2F1+Nz+

ProOOF. For any @< A(D,)*, we can write @=/4-Y, where g=(M,H M,y)*
and Ve(1+M, B M) N A(D,)*, by (4.10.3). If the coefficient of 8, (8,=1 in
A(D,)) is equal to 1, then g=S, and V&S, by Lemmas and 4. 15 From
Lemmas M. 3-4.8, Ai,"di, -+ diy# A5, iy -+ Ajg and V-V oo Vi 5=V, V5, - Vg
if there exists some 7, such that i,#j, for any s (1=<s=q). Therefore the
desired result follows at once. Q.E.D.

PrROOF OF THEOREM II. From (4.4.2), we have
b, aty N adlb, atyar=<a® if i#1, 2.

Therefore if (b, a?) (i+1,2) is in O(V), then (a?) is also in O(V) by
2.2. From we have

ha, a*y) N a’<ba, atdya  +#<b, atd if 1#1.
So the desired result follows from Q.E.D.
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§5. Example.

Let n=p" (p is an odd prime), then we define a homomorphism (complex
representation) ¢ : D, — U(2N+2) as follows :

A, cosf; —siné,;

A, A=(" )

p(a)= sin 4; cosd;
AN 01,:275/p2 (1:01 ] N);
and
1

—1

o(b)= -
1
—1

We define D,-equivariant maps f; (=0, ---, N) and h; S*V+3— S4¥+3 ag
follows :
fi(@)= (24, wo, =+, Zs, W, =+, 25, Wy)
and
h(z2)=(Zy, wo, *++, 2, Wy, =+, Zy, Wy),

where z=(z,, w,, -+, z;, Wi, -+, zy, wy)ES*¥*® and z, is the conjugation of z;.
Since D,-(z,, 0, -+, 0)=(z,, 0, -+, 0), we can use the II.
Now we have the following tables :

Api
{aP’y 1 1 A€ AWDy)
, 1 if j<i H l Xa(4)
Ga?y {0
—1 if j=i
and
[fi]
) ED S4N+3
(ar’s ) ’Ef]e L ]
H deg (F¥
, 1 if j<i , e (/%)
b, ay | |
—1 if j=i
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Therefore we have

P([fD)=4pi and O(Ch])=-1,

by Therefore Ep [S*V**] is the group of order 2¥** and the
group generated by the set

(1]
[2]
[3]
[4]
[5]

{lidentity map], Chl, [f:]|1=0, ---, N}.
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