On the equivariant self homotopy equivalences of spheres

By Toshimitsu MATSUDA

(Received May 12, 1977) (Revised Dec. 14, 1977)

§ 1. Introduction.

Let G be a compact Lie group, V its orthogonal representation with a G-invariant metric, and S(V) the unit sphere in V. Let $[S(V), S(V)]_G$ be the set of all G-homotopy classes of G-maps of S(V) into itself. If $\dim_{\mathbb{R}} V^G \geq 2$, then this set has a natural ring structure.

R. L. Rubinsztein [3] discussed the ring structure of $[S(V), S(V)]_G$. Moreover he gave a classification of G-maps $f: S(V) \to S(V)$. Another classification of G-maps were given by S. J. Willson [5]. T. tom. Dieck [2] and G. B. Segal [4] gave several important results for the Burnside ring and the equivariant stable homotopy group.

We are interested in the multiplicative group of the ring $[S(V), S(V)]_G$, denoted by $E_G[S(V)]$, which consists of all G-homotopy equivalences of S(V) into itself. In this paper we shall prove the following results. (Notations are given in § 2.)

Theorem I. Let G be a finite abelian group, and let V be its orthogonal representation such that $\dim_{\mathbb{R}} V^G \geq 2$. Then we have

$$|\mathbf{E}_{G} \lceil S(V) \rceil| = 2^{N+1}$$

where N=Car. $\{H \mid H \in O(V) \text{ and } |G/H|=2\}$.

THEOREM II. Let D_n be the dihedral group generated by a and b with relation $a^n=b^2=abab=1$, and let V be its complex representation such that $\dim_{\mathbb{R}} V^G \geq 2$. We put

$$N_1=Car. \{i \mid i \in [n]^*, i \text{ is odd, } i \neq 1, \text{ and } (b, a^i) \in O(V)\}$$

and

$$N_2 = Car. \{i \mid i \in [n]^*, i \text{ is even, } i \neq 2, (ba, a^i), (b, a^i) \in O(V) \}.$$

70 T. MATSUDA

Then we have

$$|E_{D_n}[S(V)]| = 2^{N_1 + N_2 + N_0 + 1}$$

where $N_0 = Car.(\{(a), (b, a^2), (ba, a^2)\} \cap O(V))$.

§ 2. Preparation.

2.1. From now on, let G be a finite group and V its orthogonal representation. Throughout this paper we use the following notations:

(H) the conjugacy class of a subgroup H of G,

 G_X the isotropy group at $x \in S(V)$,

O(V) the set of orbit types on S(V),

 $\langle Y \rangle$ the subgroup generated by a subset Y of G,

Car. X the cardinal number of a set X,

|K| the order of a group K,

A(V) the free abelian group generated by the set O(V),

C(G) the set of conjugacy classes of all subgroups of G,

 $X_{(H)}$ the set $\{x | x \in S(V) \text{ and } (G_X) = (H)\}$,

 V^G the set $\{x | x \in V \text{ and } G_X = G\}$,

 R^* the multiplicative group of a ring R,

Z the ring of rational integeres,

[n] the set $\{1, \dots, n\}$ for a natural number n,

[n] the set $\{0, \dots, n-1\}$,

 $[n]^*$ the set $\{i \mid i \in [n] \text{ and } i \mid n\}$.

Let Γ be the set of isomorphism classes of all finite G-sets. Addition and multiplication in Γ are defined by the disjoint union and the cartesian product, respectively. The Burnside ring A(G) is defined to be the Grothendieck ring of Γ . Any finite G-set can be written as the disjoint union of its orbits under the G-action, each of which is isomorphic to a homogeneous G-space. So that equivalently, A(G) is (additively) the free abelian group generated by the set $\{G/H | (H) \in C(G)\}$. We denote by [X] the element of A(G) represented by a finite G-set X. Then we have the formula

$$[X] = \sum_{(H) \in \mathcal{C}(G)} \lambda_{(H)} [G/H],$$

where $\lambda_{(H)} = Car$. $\{e \mid x \in e \in X/G \text{ and } (G_x) = (H)\}$. For each element (H) of O(V), we denote by the same letter (H) the corresponding element of A(V) when there arises no confussion.

LEMMA 2.2 (Remark 8.2 [3]). For any $x, y \in S(V)$, there is a point $z \in S(V)$ such that

$$G_x \cap G_y = G_z$$
.

2.3. There is a canonical group homomorphism

$$i_V: A(V) \longrightarrow A(G)$$

defined by $i_V((H)) = [G/H]$. We define a partial order on O(V) by $(H) \leq (K)$ if and only if H is conjugate to a subgroup of K. Suppose (H_0) , ..., (H_k) are all orbit types on S(V) with

$$(2.3.1)$$
 $(H_i) \leq (H_i)$ for $i < j$.

Let $x=(g_1H_i, g_2H_j)$ be an element of the G-set $G/H_i\times G/H_j$, then we have

$$(G_x) \leq (H_i)$$
 and $(G_x) \leq (H_i)$.

Therefore, from (2.1.1) and Lemma 2.2, we have

where $\lambda(s, i, j) = Car$. $\{e \mid x \in e \in (G/H_i \times G/H_j)/G \text{ and } (G_x) = (H_s)\}$. From (2.3.2), $i_V(A(V))$ is a subring of A(G). So we consider A(V) as a ring. If $(G) \in O(V)$, then A(V) is a ring with unit element 1 = (G).

THEOREM 2.4 (Theorem 7.2 and Theorem 8.4 [3]). There is a bijection Φ ; $[S(V), S(V)]_G \to A(V)$ such that the diagram

$$\begin{bmatrix} S(V), S(V) \end{bmatrix}_{G} & \xrightarrow{\Phi} A(V) \\
\downarrow r_{H} & \downarrow \chi_{H} \\
 \begin{bmatrix} S(V)^{H}, S(V)^{H} \end{bmatrix} & \xrightarrow{\text{deg}} \mathbf{Z}
\end{bmatrix}$$

commutes for all subgroup H of G, where r_H is the restriction transformation, and χ_H is the homomorphism defined by

$$\chi_H((K)) = Car.(G/K)^H$$

for each generator (K) of A(V). If $\dim_{\mathbb{R}} V^{\sigma} \ge 2$ and $X_{(H)}/G$ is connected for each orbit types (H) on S(V), then Φ is a ring isomorphism and two G-maps

(2.4.1)
$$f_1, f_2 : S(V) \longrightarrow S(V) \text{ are } G\text{-homotopic}$$
 if and only if
$$\deg(f_1^H) = \deg(f_2^H) \text{ for all } (H) \in O(V).$$

THEOREM 2.5 (Proposition 8.1 [3]). For any $(H) \in O(V)$, $X_{(H)}/G$ is connected, provided one of the following two conditions is satisfied:

(2.5.1) G is a finite abelian group and
$$\dim_{\mathbb{R}} V^{G} \ge 2$$

and

72

$$(2.5.2)$$
 V is a complex representation of G .

From Theorem 2.4 and Theorem 2.5, we have

COROLLARY 2.6. If $\dim_{\mathbb{R}} V^G \ge 2$ and one of the conditions (2.5.1) and (2.5.2) is satisfied, then

$$\Phi|E_G[S(V)]: E_G[S(V)] \longrightarrow A(V)^*$$

is a group isomorphism.

LEMMA 2.7. We have

$$\Delta^2=1$$
 for any $\Delta \in A(G)^*$.

PROOF. It is shown in Bredon [1] that there is an orthogonal representation V(H) of G and a point $x \in S(V(H))$ such that $G_x = H$ for each subgroup H of G. Now we consider the representation

$$V_0 = \bigoplus_{H \subset G} 2V(H) \oplus R^2$$
, (G acts trivially on R^2)

then we have $O(V_0)=C(G)$. From Theorem 2.5, $X_{(H)}/G$ is connected for each subgroup H of G. Each element of $E_G[S(V_0)]$ is of order 2 by (2.4.1). So the desired result follows from Corollary 2.6. Q. E. D.

§ 3. Proof of Theorem I.

In this section we assume that G is a finite abelian group, $\dim_{\mathbb{R}} V^G \geq 2$, $O(V) = \{(H_0) = G, \dots, (H_k)\}$ satisfies (2.3.1), $|G/H_i| = 2$ for $1 \leq i \leq N \leq k$, and $|G/H_j| > 2$ for j > N.

LEMMA 3.1. We have

$$(3.1.1) Car.((G/H_i \times G/H_i)/G) = |G/H_i \cdot H_i|,$$

$$(3.1.2) (Hi)(Hi) = |G/Hi \cdot Hi|(Hi \cap Hi) in A(V)$$

and

(3.1.3)
$$s \ge i, j$$
 if $H_i \cap H_j = H_s$, $s > i, j$ if $H_i \cap H_j = H_s$ and $H_i \cap H_j \neq H_i, H_j$.

PROOF. (3.1.1) is trivial. (3.1.2) and (3.1.3) follows from (2.3.2) and (2.3.1), respectively. Q. E. D.

LEMMA 3.2. For each subset $I = \{i_1, \dots, i_s\}$ of [N], we define an element Δ_I of A(V) by

$$\Delta_I = \prod_{t=1}^{s} (1 - (H_{i_t})),$$

then $\Delta_I^2=1$.

PROOF. For each $i \in [N]$, $(1-(H_i))^2=1-2(H_i)+|G/H_i|(H_i)=1-2(H_i)+2(H_i)$ =1 by the assumption and (3.1.2). Since A(V) is a commutative ring, the desired result follows at once. Q. E. D.

LEMMA 3.3. If $\left(\sum_{i=0}^k x_i(H_i)\right)^2 = 1$, where $x_i \in \mathbb{Z}$, then we have

$$(3.3.1) x_0 = \pm 1 and x_i = 0 or -x_0 for all i \in [N],$$

(3.3.2)
$$x_j=0$$
 for all $j>N$ if $x_i=0$ for all $i\in[N]$.

PROOF. Let $\Delta = \sum_{i=0}^{k} x_i(H_i)$ and let c_i be the coefficient of (H_i) in Δ^2 . Since $H_i \cap H_j \neq H_i$, H_j for $0 < i \neq j \leq N$, we have $c_0^2 = x_0^2 = 1$ and $c_i = 2x_0 x_i + |G/H_i| x_i^2 = 2x_i(x_0 + x_i) = 0$ for all $i \in [N]$. So we have (3, 3, 1). If $x_i = 0$ for all $i \in [N]$, then we have $c_{N+1} = 2x_0 x_{N+1} + |G/H_{N+1}| x_{N+1}^2 = 0$ by Lemma 3.1. Since $|G/H_{N+1}| > 2$, we have $x_{N+1} = 0$. Then (3, 3, 2) follows from the induction on j > N.

Q. E. D.

LEMMA 3.4. Let
$$\beta = \sum_{i=N+1}^{k} x_i(H_i)$$
. If $(\Delta_I + \beta) \in A(V)^*$, then $\beta = 0$.

PROOF. By the assumption and Lemma 3.1, we can write

$$\Delta_I \beta = \sum_{i=N+1}^k y_i(H_i)$$
,

where $y_i \in \mathbb{Z}$. So $\Delta_I \beta = 0$ by (3.3.2). There are G-maps h and G-homotopy equivalence f such that

$$\Phi(\lceil h \rceil) = \beta$$
, $\Phi(\lceil f \rceil) = \Delta_I$ and $\lceil f \rceil \lceil h \rceil = 0$,

by Theorem 2.4 and Corollary 2.6. Since f induces an (additive) isomorphism f_* ; $[S(V), S(V)]_G \rightarrow [S(V), S(V)]_G$, we have [h]=0 and $\beta=0$. Q. E. D.

LEMMA 3.5. Each element of $A(V)^*$ is of the form Δ_I for some $I \subset [N]$.

74 T. Matsuda

PROOF. Let $\Delta = \sum_{i=0}^k x_i(H_i)$ and $I = \{i \mid x_i \neq 0 \text{ and } i \in [N]\}$. If $\Delta \in A(V)^*$, then we have

$$x_i = \left\{ egin{array}{lll} \mbox{the coefficient of } (H_i) \mbox{ in } \varDelta_I = -1 & \mbox{ if } x_0 = 1 \mbox{ the coefficient of } (H_i) \mbox{ in } -\varDelta_I = 1 & \mbox{ if } x_0 = -1, \end{array}
ight.$$

for all $i \in I$ by Lemma 3.3 and the definition of Δ_I . So the desired result follows from Lemma 3.4. Q. E. D.

PROOF OF THEOREM I.

Since Car. $\{I | I \subset [N]\} = 2^N$, we have

$$|E_G[S(V]]| = |A(V)^*| = 2^{N+1}$$

by Lemma 3.5 and Corollary 2.6.

Q. E. D.

COROLLARY 3.6. If |G| is odd, then we have

$$|E_G[S(V)]| = 2.$$

COROLLARY 3.7. If G acts semi-free on V, then we have

$$|\boldsymbol{E}_{G}[S(V)]| = \begin{cases} 2 & if \quad |G| \neq 2 \\ 4 & if \quad |G| = 2. \end{cases}$$

§ 4. Proof of Theorem II.

LEMMA 4.1. Let D_n be the dihedral group generated by a and b with relation $a^n=b^2=abab=1$. We have

- (4.1.1) $a^{i}b=ab^{-i}$ and $(a^{i}b)^{2}=1$ for any $i \in \mathbb{Z}$,
- (4.1.2) each element of D_n is of the form ba^i or a^i for some $i \in \mathbb{Z}$,
- (4.1.3) $(ba^i, a^j) = (ba^{2p-i}, a^j)$ for any $i, j, p \in \mathbb{Z}$,
- (4.1.4) $(ba^i, a^j) = (ba^{i-2p}, a^j)$ for any $i, j, p \in \mathbb{Z}$,
- (4.1.5) $(ba^{2i}, a^j) = (b, a^j)$ and $(ba^{2i+1}, a^j) = (ba, a^j)$ for any $i, j \in \mathbb{Z}$,
- (4.1.6) (ba, a^j)=(b, a^j) if either j is odd or n is odd,

and

(4.1.7) $(ba, a^j) \neq (b, a^j)$ if j is even and n is even.

PROOF. (4.1.1) and (4.1.2) are trivial. Now we have

- (1) $ba^{p}\langle ba^{i}, a^{j}\rangle ba^{p}=\langle ba^{2p-i}, a^{j}\rangle,$
- $(2) a^{p} \langle ba^{i}, a^{j} \rangle a^{-p} = \langle ba^{i-2p}, a^{j} \rangle,$
- (3) $a^{i+1}\langle ba, a^{2i+1}\rangle a^{-(i+1)} = \langle b, a^{2i+1}\rangle$

and

(4) $\langle ba, a^j \rangle = \langle ba^{1+n}, a^j \rangle$.

Then $(4.1.3) \sim (4.1.6)$ follows from $(1) \sim (4)$. If $(ba, a^{2j}) = (b, a^{2j})$ and n is even, then we have

(i)
$$a^t \langle b, a^{2j} \rangle a^{-t} = \langle ba^{-2t}, a^{2j} \rangle = \langle ba, a^{2j} \rangle$$

or

(ii)
$$ba^t \langle b, a^{2j} \rangle ba^t = \langle ba^{2t}, a^{2j} \rangle = \langle ba, a^{2j} \rangle$$
,

for some $t \in \mathbb{Z}$. If (i) holds, then we have $ba^{1+2sj}=ba^{-2t}$ for some $s \in \mathbb{Z}$, so $1+2sj+2t\equiv 0 \pmod{n}$. If (ii) holds, then we have $ba^{1+2sj}=ba^{2t}$ for some $s \in \mathbb{Z}$, so $1+2sj-2t\equiv 0 \pmod{n}$. Therefore n must be odd. This contradiction establishes (4.1.7).

COROLLARY 4.2. We have

$$C(D_n) = \begin{cases} \{(a^i), (b, a^i) \mid i \in [n]^*\} & \text{if } n \text{ is odd} \\ \{(a^i), (b, a^i), (ba, a^j) \mid i, j \in [n]^* \text{ and } j \text{ is even}\} & \text{if } n \text{ is even.} \end{cases}$$

PROOF. This follows from Lemma 4.1. Q. E. D. In $A(D_n)$, let

$$\alpha_i = [D_n/\langle a^i \rangle], \quad \beta_i = [D_n/\langle b, a^i \rangle] \quad \text{for each } i \in [n]^*$$

and

$$\gamma_i = [D_n/\langle ba, a^i \rangle]$$
 for each even $i \in [n]^*$.

For $i, j \in [n]^*$, we write m(i, j) (resp. M(i, j)) for the greatest common diviser (resp. the least common multiple) of i and j. Throughout this section let us abbreviate m(i, j) = m and M(i, j) = M when there arises no confusion. There exists integers k_1, k_2, q_1 and q_2 such that $i = mk_1, j = mk_2$ and $k_1q_1 + k_2q_2 = 1$.

LEMMA 4.3. In $A(D_n)^*$, we have

$$\alpha_i \alpha_i = 2m \alpha_M$$
.

PROOF. Let X_1 denotes the D_n -set $D_n/\langle a^i\rangle \times D_n/\langle a^j\rangle$. For s_1 , $s_2\in [\underline{m}]$, we have

(4.3.1)
$$[\langle a^i \rangle, a^{s_1} \langle a^j \rangle] = [\langle a^i \rangle, a^{s_2} \langle a^j \rangle]$$
 if and only if $s_1 = s_2$

and

$$[\langle a^i \rangle, ba^{s_1} \langle a^j \rangle] = [\langle a^i \rangle, ba^{s_2} \langle a^j \rangle]$$
 if and only if $s_1 = s_2$

in X_1/D_n . Let t=hm+s ($s \in [m]$). Then

It is trivial that $[\langle a^i \rangle, a^{s_1} \langle a^j \rangle] \neq [\langle a^i \rangle, ba^{s_2} \langle a^j \rangle]$ for any $s_1, s_2 \in \mathbb{Z}$. Since $\langle a^i \rangle \cap a^s \langle a^j \rangle a^{-s} = \langle a^i \rangle \cap ba^s \langle a^j \rangle ba^s = \langle a^M \rangle$ and $Car.(X_1/D_n) = 2m$, the desired result follows from (2, 3, 2). Q. E. D.

LEMMA 4.4. In $A(D_n)^*$, we have

$$\beta_i \beta_j = \begin{cases} \beta_M + (m-1)/2\alpha_M & \text{if m is odd,} \\ 2\beta_M + (m/2-1)\alpha_M & \text{if m is even.} \end{cases}$$

PROOF. Let X_2 denotes the D_n -set $D_n/\langle b, a^i \rangle \times D_n/\langle b, a^j \rangle$. For $s, s_1, s_2 \in [m]$, we have

 $(4.4.2) \qquad (\langle b, a^i \rangle \cap a^s \langle b, a^j \rangle a^{-s}) = \begin{cases} (b, a^M) & \text{if either } s = m/2 \text{ or } s = 0, \\ (a^M) & \text{otherwise.} \end{cases}$

: Proof of (4.4.1): If $[\langle b, a^i \rangle, a^{s_1} \langle b, a^j \rangle] = [\langle b, a^i \rangle, a^{s_2} \langle b, a^j \rangle]$, then we can separate two cases:

(1)
$$a^{(it_1+s_1-s_2)}=a^{jt_2}$$
 for some $t_1, t_2 \in \mathbb{Z}$,

(2)
$$a^{(it_1+s_1+s_2)}=a^{jt_2}$$
 for some $t_1, t_2 \in \mathbb{Z}$.

In the case (2), $it_1+s_1+s_2\equiv jt_2\pmod{n}$. Since $m\mid i$, $m\mid j$ and s_1 , $s_2\in [m]$, we have $s_1+s_2=m$. Conversely, if $s_1+s_2=m$, then we have

Therefore we have (4.4.1).

: Proof of (4.4.2): Let $H=\langle b, a^i \rangle \cap a^s \langle b, a^j \rangle a^{-s}$. It is trivial that H contains $\langle a^M \rangle$. If $\langle a^M \rangle$ is a proper subgroup of H, then we have $ba^{it_1}=ba^{(-2s+jt_2)}$ for some $t_1, t_2 \in \mathbb{Z}$. So $it_1+2s-jt_2\equiv 0 \pmod{n}$ and $m \mid 2s$. Since $s\in [m]$, we have

$$s = \begin{cases} 0 & \text{if } m \text{ is odd,} \\ 0 & \text{or } m/2 & \text{if } m \text{ is even.} \end{cases}$$

Conversely, if s=m/2, then

$$a^{s}\langle b, a^{j}\rangle a^{-s} = \langle ba^{-m}, a^{j}\rangle = \langle ba^{-m(k_1q_1+k_2q_2)}, a^{j}\rangle$$

= $\langle ba^{-mk_1q_1}, a^{j}\rangle = \langle ba^{-iq_1}, a^{j}\rangle$

and

$$a^{(-iq_1/2)}(\langle b, a^i \rangle \cap \langle ba^{-iq_1}, a^j \rangle) a^{iq_1/2}$$

$$= \langle ba^{iq_1}, a^i \rangle \cap \langle b, a^j \rangle = \langle b, a^i \rangle \cap \langle b, a^j \rangle = \langle b, a^M \rangle.$$

Therefore we have (4.4.2).

Each element of X_2/D_n is of the form $[\langle b, a^i \rangle, a^s \langle b, a^j \rangle]$ for some $s \in [\underline{m}]$. So the desired result follows from (4.4.1), (4.4.2) and (2.3.2). Q. E. D.

LEMMA 4.5. In $A(D_n)^*$, we have

$$\alpha_i \beta_j = m \alpha_M$$
.

PROOF. Let X_3 denotes the D_n -set $D_n/\langle a^i \rangle \times D_n/\langle b, a^j \rangle$. Each element of X_3/D_n is of the form $[\langle a^i \rangle, a^s \langle b, a^j \rangle]$ for some $s \in [m]$. Since $\langle a^i \rangle \cap a^s \langle b, a^j \rangle a^{-s} = \langle a^M \rangle$ for any $s \in \mathbb{Z}$, the desired result follows from (2.3.2).

Q. E. D.

LEMMA 4.6. In $A(D_n)$, we have

$$\alpha_i \gamma_i = m \alpha_M$$
.

PROOF. This will be proved by the same way as in Lemma 4.5. Q. E. D.

LEMMA 4.7. In $A(D_n)$, we have

$$\beta_i \gamma_j = \begin{cases} m/2\alpha_M & \text{if m is even,} \\ ((m+1)/2-1)\alpha_M + \gamma_M & \text{if m is odd.} \end{cases}$$

PROOF. Let X_4 denotes the D_n -set $D_n/\langle b, a^i \rangle \times D_n/\langle ba, a^j \rangle$. For $s, s_1, s_2 \in [m]$, we have

$$(4.7.1) \qquad [\langle b, a^i \rangle, a^{s_1} \langle ba, a^j \rangle] = [\langle b, a^i \rangle, a^{s_2} \langle ba, a^j \rangle] \qquad \text{in} \quad X_4/D_n$$
if and only if $s_1 + s_2 = m + 1$ or $s_1 = s_2$ or $s_1 = 0$ and $s_2 = 1$,

and

$$(4.7.2) \qquad (\langle b, a^i \rangle \cap a^s \langle ba, a^j \rangle a^{-s}) = \begin{cases} (ba, a^M) & \text{if either } s = 0, m = 1 \\ & \text{or } s = (m+1)/2, m \neq 1, \\ (a^M) & \text{otherwise.} \end{cases}$$

(4.7.1) and (4.7.2) will be proved by the same way as in (4.4.1) and (4.4.2). Since each element of X_4/D_n is of the form $[\langle b, a^i \rangle, a^s \langle ba, a^j \rangle]$ for some $s \in [m]$, the desired result follows from (4.7.1), (4.7.2) and (2.3.2).

Q. E. D.

LEMMA 4.8. In $A(D_n)$, we have

$$\gamma_i \gamma_i = 2 \gamma_M + (m/2 - 1) \alpha_M$$
.

PROOF. This will be proved by the same way as in Lemma 4.4.

Q. E. D.

From the above Lemmas 4.3-4.8, we have

LEMMA 4.9. We put

$$\begin{split} & \underline{\Lambda}_i = 1 + \alpha_i - 2\beta_i \quad \text{for each odd} \quad i \in (\lceil n \rceil^* - \{1\}), \\ & \nabla_i = 1 + \alpha_{2i} - \beta_{2i} - \gamma_{2i} \quad \text{for each} \quad i \in (\lceil n/2 \rceil^* - \{1\}), \\ & \underline{\Lambda}_1 = 1 - \alpha_1, \\ & \nabla_{(1,0)} = 1 - \beta_2, \end{split}$$

and

$$\nabla_{(1,1)} = 1 - \gamma_2$$

then those elements are in $A(D_n)^*$.

4.10. Let M_s (s=1, 2, 3, 4) be the submodule of $A(D_n)$ defined as follows:

 M_1 =the submodule generated by the set $\{1, \alpha_1\}$,

 M_2 =the submodule generated by the set

$$\{\alpha_i, \beta_i \mid i \in ([n]^* - \{1\}) \text{ and } i \text{ is odd}\},$$

 M_3 =the submodule generated by the set $\{\alpha_2, \beta_2, \gamma_2\}$,

and

 M_4 =the submodule generated by the set

$$\{\alpha_{2i}, \beta_{2i}, \gamma_{2i} \mid i \in ([n/2]^* - \{1\})\}.$$

Then it is trivial that $A(D_n)$ and $(M_1 \oplus M_2 \oplus M_3 \oplus M_4)$ are isomorphic as additive groups. Let $\Delta = X + Y$, where $X \in (M_1 \oplus M_2)$ and $Y \in (M_3 \oplus M_4)$. Since M(odd, odd) = odd, M(odd, even) = even and M(even, even) = even, we have

$$(4.10.1) (2XY+Y^2) \in (M_3 \oplus M_4) \text{ and } X^2 \in (M_1 \oplus M_2),$$

by Lemmas 4.3-4.8. If $\Delta \in A(D_n)^*$, then we have

(4.10.2)
$$2XY+Y^2=0$$
, $X^2=1$ and $X=\Delta(1+XY)$.

So we have

$$(4.10.3) A(D_n)^* = (M_1 \oplus M_2)^* ((1+M_3 \oplus M_4) \cap A(D_n)^*).$$

LEMMA 4.11. Let $\Delta = 1 + x\alpha_1 + X$, where $x \in \mathbb{Z}$ and $X \in M_2$. If $\Delta \in A(D_n)^*$, then x = 0 or x = -1.

PROOF. Since $\Delta^2=1$ and $\alpha_1^2=2\alpha_1$, we have

$$\Delta^2 = 1 + (2x^2 + 2x)\alpha_1 + X^2 + 2x\alpha_1 X + 2X = 1$$
,

and

$$(X^2+2x\alpha_1+2X) \in M_2$$
.

So
$$(2x^2+2x)=0$$
. Q. E. D.

LEMMA 4.12. Let $\Delta = 1 + \sum_{(2i+1)|n} (x_i \alpha_{2i+1} + y_i \beta_{2i+1})$ and $l = \min\{i \mid \{x_i, y_i\} \neq \{0\}\}\}$. If l > 0 and $\Delta^2 = 1$, then we have $x_l = 1$ and $y_l = -2$.

PROOF. Let a_1 and b_1 be the coefficients of α_{2l+1} and β_{2l+1} , respectively, in Δ^2 . Then we have

$$a_1 = 2(2l+1)x_1^2 + lv_1^2 + 2x_1 + 2x_1v_1(2l+1) = 0$$

and

$$b_1 = y_i^2 + 2y_i = 0$$
 $(y_i = 0 \text{ or } -2)$,

by Lemmas 4.3-4.5. If $y_i=0$, then

$$a_1 = 2x_l((2l+1)+1)=0.$$

If $y_i = -2$, then

$$a_1=2(2l+1)(x_l-1)(x_l-2l/(2l+1))=0.$$

Since l>0 and $\{x_l, y_l\} \neq \{0\}$, we have $x_l=1$ and $y_l=-2$. Q. E. D.

LEMMA 4.13. Let $\nabla = 1 + \sum_{2i \mid n} (x_i \alpha_{2i} + y_i \beta_{2i} + z_i \gamma_{2i})$ and $l = \min\{i \mid \{x_i, y_i, z_i\}\}$ $\neq \{0\}\}$. If l > 1 and $\nabla^2 = 1$, then we have $x_l = 1$ and $y_l = z_l = -1$.

PROOF. Let a_1 , b_1 and c_1 be the coefficients of α_{2l} , β_{2l} and γ_{2l} , respectively, in ∇^2 . Then we have

(4. 13. 1)
$$a_1 = 4lx_t^2 + (l-1)(y_t^2 + z_t^2) + 4lx_t(y_t + z_t) + 2x_t + 2ly_t z_t = 0,$$

$$b_1 = 2y_t^2 + 2y_t = 0 \quad (y_t = 0 \text{ or } -1),$$

80

and

$$c_1 = 2z_1^2 + 2z_1 = 0$$
 $(z_1 = 0 \text{ or } -1)$.

If $y_l = z_l = 0$, then

$$a_1 = 4l(x_1 + 1/2l)x_1 = 0.$$

If either $y_i=0$ and $z_i=-1$ or $y_i=-1$ and $z_i=0$, then

$$a_1 = 4l(x_l - 1/2)(x_l - (l-1)2l) = 0.$$

If $y_l = z_l = -1$, then

$$a_1 = 4l(x_l - 1)(x_l - (2l - 1)/2l) = 0.$$

Since l > 1, $\{x_l, y_l, z_l\} \subset \mathbf{Z}$ and $\{x_l, y_l, z_l\} \neq \{0\}$, we have $x_l = 1$ and $y_l = z_l = -1$. Q. E. D.

Let S_k (k=1, 2) be the subgroups of $A(D_n)^*$ defined as follows:

 S_1 =the subgroup generated by the set $\{1, \Delta_1, \Delta_i\}$,

and

 S_2 =the subgroup generated by the set

$$\{1, \nabla_{(1,0)}, \nabla_{(1,1)}, \nabla_i\}$$
 (cf. Lemma 4.9).

LEMMA 4.14. Let $\Delta = 1 + x\alpha_1 + X$, where $x \in \mathbb{Z}$ and $X \in M_2$. If $\Delta \in A(D_n)^*$, then $\Delta \in S_1$.

PROOF. From Lemma 4.11, x=0 or -1.

: In the case x=0: From Lemma 4.12, we can write

$$\Delta = 1 + \alpha_{l_1} - 2\beta_{l_1} + X_1$$

for some $l_1 \in (\lceil n \rceil^* - 1)$ and $X_1 \in M_2$ such that l_1 is odd and the coefficients of α_i and β_i in X_1 are equal to zero if $i \leq l_1$ and $X \neq 0$. So we have

$$1+X_1=\Delta_{l_1}\Delta\in(1+M_2)\cap A(D_n)^*$$
.

Therefore we have

$$1 = \Delta l_k \cdots \Delta l_2 \Delta l_1 \Delta$$

for some $l_t \in [n]^*$ $(t=i, \dots, k)$ by the induction. So $\Delta \in S_1$.

: In the case x=-1: Since $\Delta_1 \Delta = 1 + \Delta_1 X$ and $\Delta_1 X \in M_2$, so the desired result follows from : In the case x=0: Q. E. D.

LEMMA 4.15. Let $\nabla = 1 + x\alpha_2 + y\beta_2 + z\gamma_2 + X$, where $\{x, y, z\} \subset \mathbb{Z}$ and $X \in M_4$. If $\nabla \in A(D_n)^*$, then $\nabla \in S_2$.

PROOF. Since (4.13.1) is true for case l=1, we can separate four cases:

- (1) x=y=z=0,
- (2) x=y=0 and z=-1,
- (3) x=z=0 and y=-1,

and

$$(4)$$
 $x=y=z=-1.$

: In the case (1): From Lemma 4.13, we can write

$$\nabla = 1 + \alpha_{2l_1} - \beta_{2l_1} - \gamma_{2l_1} + X_1$$

for some $l_1 \in [n/2]^*$ and $X_1 \in M_4$ such that the coefficients of α_{2i} , β_{2i} and γ_{2i} in X_1 are equal to zero if $i \le l_1$ and $X \ne 0$. Therefore we have

$$1 = \nabla_{l_b} \cdots \nabla_{l_2} \cdot \nabla_{l_1} \cdot \nabla$$

for some $l_t \in [n/2]^*$ $(t=1, \dots, k)$ by the induction. So $\nabla \in S_2$.

: In the cases (2) \sim (4): This will be proved by the same way as in Lemma 4.14 by the use of the elements $\nabla_{(1,0)}$, $\nabla_{(1,1)}$ and $\nabla_{(1,0)} \cdot \nabla_{(1,1)}$.

Q. E. D.

THEOREM 4.16. We put

$$\bar{N}_1 = Car. \{i \mid i \text{ is odd and } i \in (\lceil n \rceil^* - \{1\})\}$$

and

$$\bar{N}_2 = Car. \{i \mid i \text{ is even and } i \in ([n]^* - \{2\})\}.$$

Then we have

$$A(D_n)^* = S_1 \cdot S_2 \cup -S_1 \cdot S_2$$
 and $|A(D_n)^*| = 2 \cdot 2^{(\overline{N}_1 + \overline{N}_2 + 3)}$.

PROOF. For any $\Theta \in A(D_n)^*$, we can write $\Theta = \underline{J} \cdot \overline{\nabla}$, where $\underline{J} \in (M_1 \oplus M_2)^*$ and $\overline{\nabla} \in (1+M_3 \oplus M_4) \cap A(D_n)^*$, by (4.10.3). If the coefficient of β_1 ($\beta_1 = 1$ in $A(D_n)$) is equal to 1, then $\underline{J} \in S_1$ and $\overline{\nabla} \in S_2$ by Lemmas 4.14 and 4.15. From Lemmas 4.3-4.8, $\underline{J}_{i_1} \cdot \underline{J}_{i_2} \cdots \underline{J}_{i_p} \neq \underline{J}_{j_1} \cdot \underline{J}_{j_2} \cdots \underline{J}_{j_q}$ and $\overline{\nabla}_{i_1} \cdot \overline{\nabla}_{i_2} \cdots \overline{\nabla}_{i_p} \neq \overline{\nabla}_{j_1} \cdot \overline{\nabla}_{j_2} \cdots \overline{\nabla}_{j_q}$ if there exists some i_t such that $i_t \neq j_s$ for any s ($1 \leq s \leq q$). Therefore the desired result follows at once. Q. E. D.

PROOF OF THEOREM II. From (4.4.2), we have

$$\langle b, a^i \rangle \cap a \langle b, a^i \rangle a^{-1} = \langle a^i \rangle$$
 if $i \neq 1, 2$.

Therefore if (b, a^i) $(i \neq 1, 2)$ is in O(V), then (a^i) is also in O(V) by Lemma 2.2. From Lemma 4.8, we have

$$\langle ba, a^i \rangle \cap a^s \langle ba, a^i \rangle a^{-s} \neq \langle b, a^i \rangle$$
 if $i \neq 1$.

So the desired result follows from Theorem 4.16.

Q. E. D.

§ 5. Example.

Let $n=p^N$ (p is an odd prime), then we define a homomorphism (complex representation) $\varphi:D_n\to U(2N+2)$ as follows:

$$\varphi(a) = \begin{pmatrix} A_0 \\ A_1 \\ \vdots \\ A_N \end{pmatrix} \qquad A_i = \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \\ \theta_i = 2\pi/p^i \ (i=0, \, \cdots, \, N),$$

and

$$\varphi(b) = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & \ddots & & \\ & & 1 & \\ & & -1 & \end{pmatrix}$$

We define D_n -equivariant maps f_i $(i=0,\,\cdots,\,N)$ and $h:S^{4N+3}\to S^{4N+3}$ as follows:

$$f_i(z)=(z_0, w_0, \dots, \bar{z}_i, \bar{w}_i, \dots, z_N, w_N)$$

and

$$h(z) = (\bar{z}_0, w_0, \dots, z_i, w_i, \dots, z_N, w_N),$$

where $z=(z_0, w_0, \cdots, z_i, w_i, \cdots, z_N, w_N) \in S^{4N+3}$ and \bar{z}_i is the conjugation of z_i . Since $D_n \cdot (z_0, 0, \cdots, 0) = (z_0, 0, \cdots, 0)$, we can use the Theorem II.

Now we have the following tables:

and

Therefore we have

$$\Phi([f_i]) = \Delta_{pi}$$
 and $\Phi([h]) = -1$,

by Theorem 2.4. Therefore $E_{D_n} [S^{4N+3}]$ is the group of order 2^{N+2} and the group generated by the set

{[identity map],
$$[h]$$
, $[f_i]$ | $i=0, \dots, N$ }.

References

- [1] G.E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York and London, 1972.
- [2] T.tom. Dieck, The Burnside ring and Equivariant Stable Homotopy, Lecture notes by Michael C. Bix, University of Chicago, 1975.
- [3] R.L. Rubinsztein, On the equivariant homotopy of spheres, Institute of Math., Polish Academy of Sciences, Preprint No. 58, 1973.
- [4] G.B. Segal, Equivariant Stable Homotopy Theory, Actes, Congress inyern. Math., Nice, 2 (1970), 59-63.
- [5] S.J. Willson, Equivariant maps between representation spheres, Pacific J. Math., 56 (1975).

Toshimitsu MATSUDA
Department of Mathematics
Faculty of Science
Shinshu University
Matsumoto, Nagano
Japan