Markov partitions of hyperbolic sets

By Masahiro KURATA

(Received Feb. 22, 1977) (Revised March 17, 1978)

§ 1. Introduction and preliminaries.

In this paper we prove that pseudo-orbits near a hyperbolic set are shadowed, and for a hyperbolic set there is its arbitrarily slight extension which has Markov partitions.

Bowen proved similar results for a basic set of an Axiom A diffeomorphism ([1], [3]).

Suppose $f: M \to M$ is a diffeomorphism of a Riemannian manifold M with some Riemannian metric $\|\cdot\|$. A compact f-invariant set $\Lambda \subset M$ is said to be hyperbolic if T_AM (the tangent bundle of M over Λ) splits into a Whitney sum of Tf-invariant subbundles

$$T_{A}M=E^{s}\oplus E^{u}$$
,

and if there are c>0 and $0<\lambda<1$ such that

$$||Tf^{n}v|| \le c\lambda^{n}||v|| \quad \text{if} \quad v \in E^{s}$$

$$||Tf^{-n}v|| \le c\lambda^{n}||v|| \quad \text{if} \quad v \in E^{u}$$

for n > 0.

The following was proved in [7].

THEOREM 0. Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$, and U is a neighbourhood of Λ . Then there is a hyperbolic set Λ' with $\Lambda \subset \Lambda' \subset U$ which is a quotient of a subshift of finite type. More precisely there are a subshift of finite type Σ on symbols $\mathfrak{B}=\{B_1, \dots, B_N\}$ determined by an $N \times N$ 0-1 matrix $T=(t_{ij})$, and a map $\pi: \Sigma \to \Lambda'$ satisfying the followings.

- (1) $\pi(\Sigma)=\Lambda'$ and $f\pi=\pi\sigma$, where σ is the shift transformation.
- (2) B_i is a topologically embedded m-disk in M for $i=1, \dots, N$.
- (3) The map π is given by

$$\pi((a_i)_{i\in \mathbf{Z}}) = \bigcap_{i\in \mathbf{Z}} f^{-i}(a_i) \quad \text{for } (a_i)_{i\in \mathbf{Z}} \in \Sigma.$$

Here Z denotes the integers.

(4) For any $\varepsilon > 0$, we can choose \mathcal{B} and T so that

diam
$$B_i < \varepsilon$$

for $i=1, \dots, N$ (diam B_i is the diameter of B_i).

(5) There is an associated covering $\{U_i\}_{i=1,\dots,N}$ of Λ such that

$$U_i \subset B_i$$

and

$$f(U_i) \cap U_j \neq \emptyset$$
 implies $t_{ij} = 1$

for i, j=1, ..., N.

In the above the subshift Σ is defined by

$$\Sigma = \{(a_i)_{i \in \mathbb{Z}} \in \mathcal{B}^{\mathbb{Z}} | t_{n_i n_{i+1}} = 1 \text{ where } a_i = B_{n_i} \}$$

where $\mathscr{B}^{\mathbf{Z}}$ is the space of maps from \mathbf{Z} into \mathscr{B} with the compact-open topology (\mathscr{B} and \mathbf{Z} have the discrete topologies). The shift transformation $\sigma: \Sigma \to \Sigma$ is given by

$$\sigma((a_i)_{i \in \mathbf{Z}}) = (a'_i)_{i \in \mathbf{Z}}$$
 where $a'_i = a_{i+1}$.

§ 2. Pseudo-orbits in neighbourhoods of hyperbolic sets.

A sequence $\{x_n\}_{n=j,\dots,k}$ $(j=-\infty \text{ or } k=+\infty \text{ is permitted and } x_n\in M \text{ for } n=j,\dots,k)$ is called an ε -pseudo-orbit for $f:M\to M$, if x_n satisfy

$$d(f(x_n), x_{n+1}) < \varepsilon$$

for $n=j, \dots, k-1$. Here d(,) denotes the metric on M. A pseudo-orbit $\{x_n\}_{n=j,\dots,k}$ is δ -shadowed by $x \in M$ if

$$d(f^n(x), x_n) \leq \delta$$

for $n=j, \dots, k$.

Bowen proved that if Ω is the non-wandering set for an Axiom A diffeomorphism f, for each $\delta > 0$ there is an $\varepsilon > 0$ so that every ε -pseudo-orbit $\{x_n\}_{n=j,\cdots,k}$ of $f|\Omega$ is δ -shadowed by some $x \in \Omega$ ([3], [4]).

We show the following.

LEMMA 2.1. Let $\Lambda \subset M$ be a hyperbolic set for a diffeomorphism f. Then for any $\delta > 0$, there are $\varepsilon > 0$ and a neighbourhood W of Λ such that every ε -pseudo-orbit $\{x_n\}_{n=j,\cdots,k}$ with $x_n \in W$ is δ -shadowed by some $x \in M$. Moreover we can choose x so that

$$d(f^n(x), \Lambda) < \delta$$
 for $n \in \mathbb{Z}_{\bullet}$

PROOF. By Theorem 0, there is a subshift of finite type Σ on $\mathcal{B} = \{B_1, \dots, B_N\}$ determined by a matrix $T = (t_{ij})$ such that

diam
$$B_i < \frac{\delta}{2}$$
 for $i=1, \dots, N$. (2.1)

There is an associated covering $\{U_n\}_{n=1,\dots,N}$ of Λ such that

$$U_i \subset B_i$$

and

$$f(U_i) \cap U_i \neq \emptyset$$
 implies $t_{i,i} = 1$

for $i, j=1, \dots, N$. Let $\{U'_n\}_{n=1,\dots,N}$ be a covering of Λ such that $\bar{U}'_n \subset U_n$, where \bar{U}'_n is the closure of U'_n . Let $\varepsilon_1 > 0$ satisfy

$$\varepsilon_1 < d(U'_n, M - U_n)$$
 (2.2)

for $n=1,\,\cdots,\,N$. Let V be a neighbourhood of \varLambda with \overline{V} compact. Then there is $\varepsilon_2>0$ such that

$$d(f(x), f(y)) < \frac{\varepsilon_1}{3}$$
 when $d(x, y) < \varepsilon_2$

for $x, y \in V$.

Define

$$\varepsilon = \min\left\{\frac{\delta}{2}, \frac{\varepsilon_1}{3}, \varepsilon_2\right\}$$

and

$$W = \{ x \in V \mid d(x, \Lambda) < \varepsilon \}.$$

For any ε -pseudo-orbits $\{x_n\}_{n=j,\dots,k}$ in W, there is a sequence $\{y_n\}_{n=j,\dots,k}$ such that $y_n \in \Lambda$ and $d(x_n, y_n) < \varepsilon$ for $n=j, \dots, k$. Then for $n=j, \dots, k-1$,

$$d(f(y_n), y_{n+1}) \leq d(f(y_n), f(x_n)) + d(f(x_n), x_{n+1}) + d(x_{n+1}, y_{n+1})$$

$$\leq \frac{\varepsilon_1}{3} + \varepsilon + \varepsilon$$

$$\leq \varepsilon_1$$
. (2.3)

In the case when $j>-\infty$ or $k<+\infty$, we extend $\{y_n\}_{n=j,\cdots,k}$ to the two-sided sequence $\{y_n\}_{n\in \mathbb{Z}}$ as follows.

Set for i > 0

$$y_{k+i} = f^i(y_k)$$
 if $k < +\infty$

and

$$y_{j-i}=f^{-i}(y_j)$$
 if $j>-\infty$.

Choose $U'_{i_n}(n \in \mathbb{Z})$ such that

$$y_n \in U'_{i_n}$$
.

From (2.2) and (2.3), it follows that

$$f(U_{i_n}) \cap U_{i_{n+1}} \neq \emptyset$$
.

This implies $t_{i_n i_{n+1}} = 1$ for $n \in \mathbb{Z}$. Then there is $(a_n)_{n \in \mathbb{Z}} \in \Sigma$ such that $a_n = B_{i_n}$ for $n \in \mathbb{Z}$. Put

$$x=\pi((a_n)_{n\in\mathbb{Z}}).$$

Then

$$f^n(x) \in B_{i_n}. \tag{2.4}$$

From

$$y_n \in U_{i_n} \subset B_{i_n}, \tag{2.5}$$

it follows that

$$d(f^{n}(x), x_{n}) \leq d(f^{n}(x), y_{n}) + d(y_{n}, x_{n})$$

$$< \delta$$

for n=j, ..., k. By (2.1), (2.4) and (2.5),

$$d(f^n(x), \Lambda) < \delta$$
 for $n \in \mathbb{Z}$.

This completes the proof.

COROLLARY 2.2. Given any $\delta > 0$, there are an $\varepsilon > 0$ and a neighbourhood W of Λ such that for any $x \in W$ with

$$d(f^n(x), x) < \varepsilon$$

and

$$f^{k}(x) \in W$$
 for $k=1, \dots, n$

there is a periodic point $p \in M$ of period n with

$$d(f^k(x), f^k(p)) \leq \delta$$
 for $k=1, \dots, n$

and

$$d(p, \Lambda) \leq \delta$$
.

PROOF. In Lemma 2.1, suppose δ is sufficiently small. Then

$$\Lambda' = \bigcap_{n \in \mathbb{Z}} f^n \left(\{ y \in M | d(y, \Lambda) \leq \delta \} \right)$$

is a hyperbolic set and a point which δ -shadows an ε -pseudo-orbit in W is

contained in Λ' . Letting δ be small, we can choose Λ' such that its expansive constant is arbitrarily close to that of Λ . Hence the corollary follows as in [4, p. 75-76].

§ 3. Markov partitions of hyperbolic sets.

Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$. Let $\varepsilon > 0$ be small so that $W^s_{\varepsilon}(x)$ intersects $W^u_{\varepsilon}(y)$ transversally and $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y)$ is at most one point for $x, y \in \Lambda$, where $W^s_{\varepsilon}(x)$ (resp. $W^u_{\varepsilon}(x)$) denotes the local stable manifold (resp. the local unstable manifold) of size ε through x ([6]).

DEFINITION. A subset $R \subset \Lambda$ is called a rectangle if the diameter of R is less than ε and $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) \in R$ for $x, y \in R$, where ε is so small that $W^s_{\varepsilon}(x) \cap W^u_{\varepsilon}(y) \neq 0$. A rectangle R is proper if $R = \overline{\inf R}$, where $\overline{\inf R}$ denotes the interior of R in Λ .

Definition. A finite covering $\mathcal R$ of $\mathcal A$ is a Markov partition of $\mathcal A$ if

- (1) $\mathcal{R} = \{R_1, \dots, R_n\}$ where R_i is a proper rectangle in Λ for $i=1, \dots, n$.
- (2) $R_i \cap R_j = \partial R_i \cap \partial R_j$, where $\partial R_i = R_i \text{int } R_i$.
- (3) $fW^s(x, R_i) \subset W^s(f(x), R_j)$, and $f^{-1}W^u(f(x), R_j) \subset W^u(x, R_i)$ for $x \in \text{int } R_i \cap \text{int } f^{-1}R_j$, where $W^s(x, R_i) = W^s_{\varepsilon}(x) \cap R_i$ and $W^u(x, R_i) = W^u_{\varepsilon}(x) \cap R_i$.

Sinai proved that an Anosov diffeomorphism has Markov partitions ([9], [10]). Bowen constructed Markov partitions of a basic set for an Axiom A diffeomorphism ([1]). We will prove that for a hyperbolic set there is its arbitrarily slight extension which has Markov partitions.

Theorem 1. Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$, and U is a neighbourhood of Λ . Then there is a hyperbolic set Λ' such that $\Lambda \subset \Lambda' \subset U$ and Λ' has a Markov partition.

PROOF. Let $\delta > 0$ be small. By Lemma 2.1, there is $\varepsilon > 0$ such that an ε -pseudo-orbit $\{x_n\}_{n \in \mathbb{Z}}$ in Λ is δ -shadowed by some $x \in M$ with $f^n(x) \in U$ for $n \in \mathbb{Z}$. Let $\gamma > 0$ satisfy

$$\gamma < \frac{\varepsilon}{2}$$

and

$$d(f(x), f(y)) < \frac{\varepsilon}{2}$$
 if $d(x, y) < \gamma$

for $x, y \in U$ (we may assume that \overline{U} is compact).

Let $P = \{p_1, \dots, p_r\}$ be a finite set of points in Λ such that

$$U_r(x) \cap P \neq \emptyset$$
 for any $x \in \Lambda$,

where $U_{\gamma}(x) = \{ y \in \Lambda | d(x, y) < \gamma \}$. Then the subset $\Sigma(P)$ of P^{z} defined by

$$\Sigma(P) = \{ (q_i)_{i \in \mathbb{Z}} \in P^{\mathbb{Z}} | d(f(q_i), q_{i+1}) < \varepsilon \text{ for } i \in \mathbb{Z} \}$$

is a subshift of finite type. Let the map

$$\theta: \Sigma(P) \longrightarrow U$$

be given by $\theta((q_i)_{i\in \mathbf{Z}})=x$, where x δ -shadows $(q_i)_{i\in \mathbf{Z}}$. Then θ is continuous, $\theta(\Sigma(P))\subset U$ is f-invariant and $\Lambda\subset\theta(\Sigma(P))$. Define

$$\Lambda' = \theta(\Sigma(P))$$
.

Then Λ' is compact because $\Sigma(P)$ is compact. If U is sufficiently small, Λ' is a hyperbolic set ([6, p. 161]). We will construct a Markov partition of Λ' from the subshift $\Sigma(P)$ along the line of [4].

For $s=1, \dots, r$, define

$$T_s = \{\theta(q_i)_{i \in \mathbf{Z}} | (q_i)_{i \in \mathbf{Z}} \in \Sigma(P), q_0 = p_s\}$$

Then

$$T_s$$
 is closed, (3.1)

$$T_s$$
 is a rectangle, (3.2)

for $s=1, \dots, r$, and

$$\{T_s\}_{s=1,\dots,r}$$
 is a finite covering of Λ' . (3.3)

For T_j and T_k $(1 \le j, k \le r)$ with $T_j \cap T_k \ne \emptyset$, define

$$T_{ik}^{1} = T_{i} \cap T_{k}$$

$$T_{ik}^2 = \{x \in T_i | W^u(x, T_i) \cap T_k \neq \emptyset, W^s(x, T_i) \cap T_k = \emptyset\},$$

$$T_{ik}^{3} = \{x \in T_{i} | W^{u}(x, T_{i}) \cap T_{k} = \emptyset, W^{s}(x, T_{i}) \cap T_{k} \neq \emptyset\},$$

and

$$T_{ik}^{4} = \{x \in T_{i} | W^{u}(x, T_{i}) \cap T_{k} = \emptyset, W^{s}(x, T_{i}) \cap T_{k} = \emptyset\}.$$

Then each T_{jk}^n $(1 \le n \le 4)$ is a rectangle. Let K_x $(x \in A')$ be given by

$$K_x = \bigcap \{T_{jk}^n | x \in T_{jk}^n\},$$

and a finite covering \mathcal{K} of Λ' be given by

$$\mathcal{K} = \{K_x\}_{x \in A} = \{K_1, \dots, K_m\},$$

where we omit the empty set and suppose $K_i \neq \emptyset$ ($1 \leq i \leq m$).

In general int T_j and int T_{jk}^n are not rectangles open in Λ' , because Λ' does not have the local product structure. Nevertheless we can prove that int K_i is a rectangle open in Λ' for $i=1, \dots, m$. To do this, we need Lemma $3.2 \sim \text{Lemma } 3.4$ as follows.

LEMMA 3.2.

- (1) $x \in \partial T_i$ if and only if $x \in \text{Int } W^s(x, T_i)$ or $x \in \text{Int } W^u(x, T_i)$.
- (2) $x \in \partial K_i$ if and only if $x \in \text{Int } W^s(x, K_i)$ or $x \in \text{Int } W^u(x, K_i)$.

Here Int $W^s(x, T_j)$ (resp. Int $W^u(x, T_j)$) denotes the interior of $W^s(x, T_j)$ (resp. $W^u(x, T_j)$) in $W^s_{\varepsilon}(x) \cap \Lambda'$ (resp. $W^u_{\varepsilon}(x) \cap \Lambda'$). Int $W^s(x, K_j)$ and Int $W^u(x, K_j)$ are defined similarly.

PROOF OF (2). Suppose $x \in \partial K_j$. Then there is a sequence $\{z_n\}_{n \in \mathbb{Z}}$ in Λ' such that $\{z_n\}_{n \in \mathbb{Z}}$ converges to x and

$$z_n \in K_j$$
 for $n \in \mathbb{Z}$. (3.5)

By (3.3) there are a rectangle T_l and a subsequence $\{z_{i_n}\}_{n\in\mathbb{Z}}\subset\{z_n\}_{n\in\mathbb{Z}}$ with

$$z_{i_n} \in T_l$$
 for $n \in \mathbb{Z}$. (3.6)

By (3.1), we have

$$x \in T_l$$
. (3.7)

From (3.2), (3.6) and (3.7), it follows that

$$\lceil z_{i_n}, x \rceil \in T_i \subset \Lambda'$$
 (3.8)

and

$$[x, z_{i_n}] \in T_l \subset \Lambda', \tag{3.9}$$

where $[z_{i_n}, x] = W^s_{\epsilon}(z_{i_n}) \cap W^u_{\epsilon}(x)$. We have that $[z_{i_n}, x] \in W^u(x, K_j)$ or $[x, z_{i_n}] \in W^s(x, K_j)$ for $n \in \mathbb{Z}$, because

$$[z_{i_n}, x] \in W^u(x, K_j)$$
 and $[x, z_{i_n}] \in W^s(x, K_j)$

implies

$$z_{i_n} = [[z_{i_n}, x], [x, z_{i_n}]] \in K_j.$$

Hence there is a subsequence $\{z_{j_n}\}_{n\in\mathbb{Z}}\subset\{z_{i_n}\}_{n\in\mathbb{Z}}$ such that

$$[z_{i_n}, x] \in W^u(x, K_i) \quad \text{for} \quad n \in \mathbb{Z}$$
 (3.10)

or

$$[x, z_{i_n}] \in W^s(x, K_i) \quad \text{for} \quad n \in \mathbf{Z}.$$
 (3.11)

By (3.8), (3.10) implies

$$[z_{j_n}, x] \in W^n_{\varepsilon}(x) \cap \Lambda' - W^u(x, K_j)$$

and

$$[z_{j_n}, x] \longrightarrow x$$
 as $n \to \infty$.

By (3.9), (3.11) implies

$$[x, z_{j_n}] \in W^s_{\varepsilon}(x) \cap \Lambda' - W^s(x, K_j)$$

and

$$[x, z_{j_n}] \longrightarrow x$$
 as $n \to \infty$.

Thus $x \in \text{Int } W^u(x, K_j)$ or $x \in \text{Int } W^s(x, K_j)$. The converse is obvious. The proof of (1) is similar.

LEMMA 3.3. (1) Suppose $x \in \text{Int } W^u(x, T_i)$, $y \in \text{Int } W^u(y, T_i)$ and $y \in W^s(x, T_i)$. Then there is T_j such that $x \in T_j$ and $y \in T_j$.

(2) Suppose $x \in \text{Int } W^s(x, T_i)$, $y \in \text{Int } W^s(y, T_i)$ and $y \in W^u(x, T_i)$. Then there is T_j such that $x \in T_j$ and $y \in T_j$.

PROOF OF (1). Let x, y and T_i satisfy

$$x \in \text{Int } W^u(x, T_i),$$
 (3.12)

$$y \in \text{Int } W^u(y, T_i)$$
 (3.13)

and

$$y \in W^s(x, T_i). \tag{3.14}$$

By (3.13) there is a sequence $\{z_n\}_{n\in\mathbb{Z}}$ such that

$$z_n \in W_{\varepsilon}^u(y) \cap \Lambda' - W^u(y, T_i) \tag{3.15}$$

and

$$z_n \longrightarrow y$$
 as $n \to \infty$. (3.16)

By (3.3) there are a subsequence $\{z_{i_n}\}_{n\in \mathbb{Z}} \subset \{z_n\}_{n\in \mathbb{Z}}$ and a rectangle T_j with

$$z_{i_n} \in T_j. \tag{3.17}$$

By (3.1) and (3.16), this implies

$$y \in T_i. \tag{3.18}$$

We will show

$$x \notin T_i$$
. (3.19)

If we assume $x \in T_j$, then

$$[z_{i_n}, x] \in T_j \subset \Lambda'. \tag{3.20}$$

On the other hand we have

$$[z_{i_n}, x] \oplus T_i$$

by (3.2), (3.14) and (3.15). Combining with (3.20) this implies

$$[z_{i_n}, x] \in W^u_{\varepsilon}(x) \cap \Lambda' - W^u(x, T_i),$$

and from (3.16) and (3.14) it follows that

$$[z_{i_n}, x] \longrightarrow x$$
 as $n \to \infty$.

This contradicts (3.12). Thus we proved (3.19).

Proof of (2) is similar.

LEMMA 3.4. (1) If $x \in \partial K_i$ and $x \in \text{Int } W^s(x, K_i)$. Then $y \in \text{Int } W^s(y, K_i)$ for any $y \in W^u(x, K_i)$.

(2) If $x \in \partial K_i$ and $x \in \text{Int } W^u(x, K_i)$. Then $y \in \text{Int } W^u(y, K_i)$ for any $y \in W^s(x, K_i)$.

PROOF OF (1). Let x, y, and K_i satisfy

$$x \in \partial K_i$$
, (3.21)

$$x \in \text{Int } W^s(x, K_i)$$
 (3.22)

and

$$y \in W^u(x, K_i). \tag{3.23}$$

Let

$$\mathcal{I}_i \subset \{T_{kl}^m | T_{kl}^m \neq \emptyset, 1 \leq k, l \leq r, 1 \leq m \leq 4\}$$

satisfy

$$K_i = \bigcap \{T_{kl}^m | T_{kl}^m \in \mathcal{I}_i\}$$

By (3.22), there is a sequence $\{z_n\}_{n\in\mathbb{Z}}$ such that

$$z_n \longrightarrow x$$
 as $n \to \infty$ (3.24)

and

$$z_n \in W^s_{\varepsilon}(x) \cap \Lambda' - K_i$$

$$=W_{\varepsilon}^{s}(x)\cap \Lambda'-\cap \{T_{kl}^{m}|T_{kl}^{m}\in \mathcal{I}_{i}\}. \tag{3.25}$$

Then there are a subsequence $\{z_{i_n}\}_{n\in\mathbb{Z}}\subset\{z_n\}_{n\in\mathbb{Z}}$ and $T_{\alpha\beta}{}^r\in\mathcal{I}_i$ so that

$$z_{i_n} \in W^s_{\varepsilon}(x) \cap \Lambda' - T_{\alpha\beta}^{\gamma}$$
 for $n \in \mathbb{Z}$. (3.26)

We have

Case 1. $x \in \text{Int } W^s(x, T_k)$ for any T_k with $T_{kl}{}^m \in \mathcal{I}_i$ (for some l, m), or

Case 2. $x \in \text{Int } W^s(x, T_k)$ for some T_k with $T_{kl}^m \in \mathcal{I}_i$ (for some l, m).

In case 1, by (3.24) and (3.25) there is an integer N>0 such that

$$z_{i_n} \in W^s(x, T_\alpha)$$
 for $n \ge N$.

Then

$$[y, z_{i_n}] \notin T_{\alpha\beta}^{\gamma},$$
 (3.27)

because if $[y, z_{i_n}] \in T_{\alpha\beta}^{\gamma}$ we have

$$z_{i_n} = [x, [y, z_{i_n}]] \in T_{\alpha\beta}$$

which contradicts (3.26). From (3.27) and

$$[y, z_{i_n}] \longrightarrow y$$
 as $n \to \infty$,

it follows that

$$y \in \text{Int } W^s(y, K_i)$$
.

In case 2, assume $y \in \text{Int } W^s(y, T_k)$. By Lemma 3.3 (2), (3.22) and (3.23), this implies that there is a rectangle T_m such that $x \in T_m$ and $y \notin T_m$. So x and y can not belong to the same rectangle of \mathcal{K} . This is a contradiction. Therefore

$$y \in \text{Int } W^s(y, T_k).$$

Then

$$y \in \text{Int } W^s(y, K_i),$$

because $T_{kl}^m \in \mathcal{I}_i$ for some l, m. Thus we proved Lemma 3.4 (1). The proof of Lemma 3.4 (2) is similar.

Now we will prove that int K_i is a rectangle open in Λ' if $K_i \in \mathcal{K}$. Let int $K_i \neq \emptyset$ and $x, y \in \text{int } K_i$. Assume

$$z = [x, y] \in \partial K_i$$
.

From Lemma 3.2 (2), it follows that

$$z \in \text{Int } W^s(z, K_i)$$
 (3.28)

or

$$z \in \text{Int } W^u(z, K_i). \tag{3.29}$$

Because $y \in \operatorname{int} K_i$ and $z \in W^u(y, K_i)$, (3.28) contradicts Lemma 3.4 (1). On the other hand (3.29) contradicts Lemma 3.4 (2), because $x \in \operatorname{int} K_i$ and $z \in W^s(x, K_i)$. Thus $[x, y] \in \operatorname{int} K_i$ if $x, y \in \operatorname{int} K_i$, i.e. $\operatorname{int} K_i$ is a rectangle. Because $\operatorname{int} K_i$ is contained in a closed rectangle T_m for some m, $\operatorname{int} K_i$ is a closed rectangle.

Set

$$\mathcal{R} = \{ \overline{\text{int } K_i} | K_i \in \mathcal{K}, \text{ int } K_i \neq \emptyset \}.$$

Then \mathcal{R} is a Markov partition of Λ' as in [4, p. 78-83]. This completes the proof of Theorem 1.

REMARK 3.1. A Markov partition of Λ' induces a subshift Σ of finite type and a surjective map $\pi: \Sigma \to \Lambda'$ such that $f\pi = \pi\sigma$ where σ is the shift transformation ([1]). And π is a finite to one map, i.e. there is a positive

integer N such that the cardinal number of $\pi^{-1}(x)$ is less than N for any $x \in \Lambda'$ ([2]).

DEFINITION. Let $g: X \to X$ be a homeomorphism of a compact space X. A subset $A \subset X$ is minimal for g if A is a closed g-invariant non-empty set which is minimal, i.e. when $B \subset A$ is a closed g-invariant non-empty set, then B = A.

Bowen proved that the dimension of a minimal set in a basic set for an Axiom A diffeomorphism is zero ($\lceil 2 \rceil$). We have the following.

COROLLARY 3.2. Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$. If $B \subset \Lambda$ is a minimal set for f, the dimension of B is zero.

PROOF. Let $\Lambda' \supset \Lambda$ be a hyperbolic set which has a Markov partition. Then B is also minimal in Λ' . As in [2], it follows that the dimension of B is zero. Q. E. D.

DEFINITION. Let $f: M \to M$ be a diffeomorphism with $N_m < \infty$ for m > 0, where N_m is the number of the fixed points of f^m . The zeta function ζ_f of f is the formal power series defined by

$$\zeta_f(z) = \exp\left(\sum_{m=1}^{\infty} \frac{N_m}{m} z^m\right).$$

Manning proved that Axiom A diffeomorphisms have rational zeta functions ([8]).

COROLLARY 3.3. Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$, and U is a neighbourhood of Λ . Then there is a hyperbolic set Λ' such that $\Lambda \subset \Lambda' \subset U$ and the zeta function of $f|\Lambda'$ is rational.

PROOF. By Theorem 1, there is a hyperbolic set Λ' such that $\Lambda \subset \Lambda' \subset U$ and Λ' has a Markov partition. From Remark 3.1 and [8], it follows that the zeta function of $f|\Lambda'$ is rational.

\S 4. Hyperbolic ω -limit sets.

DEFINITION. A homeomorphism $f: X \to X$ of a topological space X is called an abstract ω -limit set if there are a compact metric space Y, a homeomorphism $g: Y \to Y$ and a point $x \in Y$ such that there is a homeomorphism $h: X \to \omega(x)$ with gh = hf, where $\omega(x)$ is the ω -limit set of x in Y.

The following is an extension of [3] for hyperbolic sets.

Theorem 2. Suppose $\Lambda \subset M$ is a hyperbolic set for a diffeomorphism $f: M \to M$. If Λ is an abstract ω -limit set, Λ is an ω -limit set of a point in M, i. e. there is $x \in M$ with $\Lambda = \omega(x)$. Moreover for any $\delta > 0$, we can choose $x \in M$ so that $d(f^n(x), \Lambda) < \delta$ for $n \in \mathbb{Z}$.

PROOF. By the proof of Theorem 1 of [3], for any $\varepsilon > 0$ there is an ε -pseudo-orbit $\{x_n\}_{n \in \mathbb{Z}}$ in Λ so that

$$d(f(x_n), x_{n+1}) \longrightarrow 0 \quad (n \to +\infty)$$

and

$$\{x_n\}_{n\in \mathbb{Z}}$$
 is dense in Λ .

If ε is sufficiently small, Lemma 2.1 implies that there is $x \in M$ such that $x \in A$ -shadows $\{x_n\}_{n \in \mathbb{Z}}$ and $d(f^n(x), \Lambda) < \delta$ for $n \in \mathbb{Z}$. As in [3, Theorem 2], $d(f^n(x), x_n) \to 0 \ (n \to +\infty)$. Therefore $\omega(x) = \Lambda$. Q. E. D.

DEFINITION. A homeomorphism $g: X \to X$ is topologically transitive if there is a point whose orbit is dense in X.

PROPOSITION 4.2. Suppose Λ is a hyperbolic set for a diffeomorphism $f: M \to M$, and Λ is an ω -limit set of some $x \in M$. Then for any neighbourhood U of Λ there is a hyperbolic set Λ' such that $\Lambda \subset \Lambda' \subset U$ and $f|\Lambda'$ is topologically transitive and has dense periodic points.

PROOF. By Theorem 0, there are a subshift Σ of finite type on symbols $\mathscr{B} = \{B_1, \, \cdots, \, B_N\}$ determined by a matrix $T = (t_{ij})$, a hyperbolic set Λ' with $\Lambda \subset \Lambda' \subset U$ and a surjective map $\pi: \Sigma \to \Lambda'$ with $f\pi = \pi\sigma$. Moreover there is an associated covering $\{U_1, \, \cdots, \, U_N\}$ of Λ such that $t_{ij} = 1$ when $f(U_i) \cap U_j \neq \emptyset$. Because Λ is an ω -limit set of some $x \in M$, for any i, j $(1 \le i, j \le N)$ there is a finite sequence $n_1, \, \cdots, \, n_m$ $(1 \le n_k \le N)$ satisfying $n_1 = i, \, n_m = j$ and $f(U_{n_i}) \cap U_{n_{i+1}} \neq \emptyset$ for $i = 1, \, \cdots, \, m - 1$. This implies $t_{n_i n_{i+1}} = 1$ for $i = 1, \, \cdots, \, m - 1$. Then Σ is topologically transitive and has dense periodic points. Therefore $f \mid \Lambda'$ is topologically transitive and has dense periodic points. This completes the proof.

References

- [1] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math., 92 (1970), 725-747.
- [2] R. Bowen, Markov partitions and minimal sets for Axiom A diffeomorphisms, Amer. J. Math., 92 (1970), 907-918.
- [3] R. Bowen, ω-limit sets for Axiom A diffeomorphisms, J. Differential Equations, 8, (1975), 333-339.
- [4] R. Bowen, "Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms," Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, New York, 1975.
- [5] R. Bowen and O.E. Lanford III, Zeta functions of restrictions of the shift transformation, Proc. Symp. Pure Math., Amer. Math. Soc., 14 (1970), 43-49.
- [6] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, Proc. Symp. Pure Math., Amer. Math. Soc., 14 (1970), 133-163.
- [7] M. Kurata, Hartman's theorem for hyperbolic sets, Nagoya Math. J., 67 (1977), 41-52.

- [8] A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc., 3 (1971), 215-220.
- [9] Ja.G. Sinai, Markov partitions and C-diffeomorphisms, Functional Anal. Appl., 2 (1968) no. 1, 61-82.
- [10] Ja.G. Sinai, Construction of Markov partitions, Functional Anal. Appl., 2 (1968) no. 2, 70-80.
- [11] Ja.G. Sinai, Gibbs measures in ergodic theory, Russian Math. Surveys, 27 (1972), 21-69.
- [12] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.

Masahiro KURATA
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo, Japan

Current address:

Department of Mathematics Nagoya Iustitute of Technology Gokiso, Shōwa-ku Nagoya, Japan