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§1. Introduction and preliminaries.

In this paper we prove that pseudo-orbits near a hyperbolic set are shadowed,
and for a hyperbolic set there is its arbitrarily slight extension which has

Markov partitions.
Bowen proved similar results for a basic set of an Axiom A diffeomorphism

[, 3D.
Suppose f: M — M is a diffeomorphism of a Riemannian manifold M with
. some Riemannian metric ||-||. A compact f-invariant set 4 C M is said to be

hyperbolic if T, M (the tangent bundle of M over A) splits into a Whitney sum
_.of Tf-invariant subbundles

T,M=E:& E¥,
and if there are ¢>0 and 0<<A<1 such that
NTf ™| = cA™|v] if vekEs

[T/ v =cA™|v] if veE"

for n>0.
The following was proved in [7].

THEOREM 0. Suppose A is a hyperbolic set for a diffeomorphism f . M—M,
and U 1is a neighbourhood of A. Then there is a hyperbolic set A’ with
AC A C U which is a quotient of a subshift of finite type. More precisely
there are a subshift of finite type X on symbols B={B,, ---, By} determined by
an NXN 0-1 matrix T=(t;;), and a map n: X — A’ satisfying the followings.

(1) n#(2)=A" and fr=mno, where ¢ is the shift transformation.
(2) By is a topologically embedded m-disk in M for i=1, ---, N.
(3) The map © is given by

m((aie)= ) /(@) for (a)iez€2,

Here Z denotes the integers.
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(4) For any ¢>0, we can choose B and T so that
diam B;<e
for i=1, ---, N (diam B; is the diameter of B)).

(5) There is an associated covering {U;}iq,...x of A such that

U; C B;
and
FWyNU;+#0 implies t;;=1
for i, j=1, -+, N.

In the above the subshift X is defined by
2:{(ai)ieze-@2|tni ”i+1:l Where ai:Bni}

where 37 is the space of maps from Z into 8 with the compact-open topology
(# and Z have the discrete topologies). The shift transformation ¢ : 3 — 3 is
given by

0 ((a4)iez)=(a})icz where ai=a;;.

§ 2. Pseudo-orbits in neighbourhoods of hyperbolic sets.

A sequence {x.}p=j..z (j=—o0 or k=-co is permitted and x,=M for
n=j, -+, k) is called an e-pseudo-orbit for f: M — M, if x, satisfy

d(f(xn), Xn41)<e

for n=j, -+, k—1. Here d(, ) denotes the metric on M. A pseudo-orbit
{xn}n=j..x is 0-shadowed by xeM if

d(f*(x), xn)=0

for n=j, -+, k.

Bowen proved that if £ is the non-wandering set for an Axiom A
diffeomorphism f, for each §>0 there is an ¢>0 so that every e-pseudo-orbit
{xXn}nzjr Of f|12 is d-shadowed by some x=2 (3], [4]).

We show the following.

LEMMA 2.1. Let AT M be a hyperbolic set for a diffeomorphism f. Then
for any 6>0, there are ¢>0 and a neighbourhood W of A such that every
e-pseudo-orbit {xp}nej .k With x,€W is d-shadowed by some x=M. Moreover
we can choose x so that

d(f*(x), 4)<é  for neZ,
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Proor. By Theorem 0, there is a subshift of finite type X on #={B,, -,
By} determined by a matrix T=(¢;;) such that

diam B; <% for i=1, ---, N. 2.1

There is an associated covering {U,}._.....» 0f A such that

U, C B;
and

for 1, j=1, ---, N. Let {U’,}.-1...~» be a covering of A such that lj’n c U,,
where U/, is the closure of U’,. Let ¢,>0 satisfy

e, <dU'n, M—=U,) (2.2)

for n=1, ---, N. Let V be a neighbourhood of 4 with V compact. Then there
is €,>0 such that

d(f(x), f()) <3 when d(x,y)<e,

for x, ye V.
Define

and
W={xeV|d(x, A)<e}.

For any e-pseudo-orbits {x,}.-j.., in W, there is a sequence {y,},-j;..r such
that y,=4 and d(x,, y,)<e for n=j, ---, k. Then for n=j, .-+, k—1,

d(f(yn); yn+1>§d<f(yn)7 f(xn))+d(f(xn)» xn+1)+d(xn+1y yn+1>

é%LJreJre

=e;. (2.3)

In the case when j>—co or k<-+4oo, we extend {y,},-j..r to the two-sided
sequence {v,}necz as follows,
Set for 1>0
Veri=f"(yp) I k<o
and
Vi-e=f(yy if j>-—oo.
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Choose U’;,(neZ) such that
ya€U,.
From (2.2) and (2. 3), it follows that
fW:,) N\ Uy, #0.

This implies ¢;,;,,,=1 for n€Z. Then there is (a,)nezE2 such that a,=B;,

for neZ. Put

n+l1

x=r ((@n)nez).

Then
fr(x)€B,;,. (2.4)

From

ya€U;, C By, (2.5)
it follows that

d(f"(x), x2)=d (/" (x), ya)+d (In, Xa)
<0

for n=j, ---, k. By (2.1), (2.4) and (2.5),
d(f"(x), 4)<é  for neZ.

This completes the proof.

COROLLARY 2.2. Given any 6>0, there are an ¢>0 and a neighbourhood
W of A such that for any x&€ W with

d(f"(x), x)<e
and

fEx)eW  for k=1, -, n
there is a periodic point pe€M of period n with

d(f*(x), f*(p))=<6  for k=1, -, n

and

d(p, N)=.
Proor. In Cemma 2.1, suppose J is sufficiently small. Then

A= ({yeMld(y, HZa)

i3 a hyperbolic set and a point which d-shadows an e-pseudo-orbit in W is



Markov partitions 43

contained in A’. Letting 0 be small, we can choose A’ such that its expansive
constant is arbitrarily close to that of 4. Hence the corollary follows as in
[4, p.75-76].

§ 3. Markov partitions of hyperbolic sets.

Suppose /A is a hyperbolic set for a diffeomorphism f: M — M. Let ¢>0
be small so that Wi(x) intersects Wi (y) transversally and Wg(x) N\ We(y) is
at most one point for x, ye A, where Wi(x) (resp. W¥¢(x)) denotes the local
stable manifold (resp. the local unstable manifold) of size ¢ through x ([6]).

DEFINITION. A subset R C A is called a rectangle if the diameter of R is
less than ¢ and Wi(x) N\ W¥(y)eR for x, ye R, where ¢ is so small that
Wi(x) N\ Wi(y)=0. A rectangle R is proper if R=int R, where intR denotes
the interior of R in A.

DEFINITION. A finite covering R of A is a Markov partition of A if
(1) *={R,, .-, R,} where R, is a proper rectangle in 4 for i=1, ---, n.
(2) leR]:aleaR], where aR-L:R,__lnt Rl.

(3) fW(x, R)C W*(f(x), Ry, and [f'W*(f(x), Rj) T W*(x, R;) for
x€intR; N int f'R;, where W(x, R)=Wi{(x)\R; and W¥*(x, R)=W%(x)N R;.
Sinai proved that an Anosov diffeomorphism has Markov partitions ([9],
[10]). Bowen constructed Markov partitions of a basic set for an Axiom A

diffeomorphism ([(1]). We will prove that for a hyperbolic set there is its
arbitrarily slight extension which has Markov partitions.

THEOREM 1. Suppose A is a hyperbolic set for a diffeomorphism f: M — M,
and U 1is a neighbourhood of A. Then there is a hyperbolic set A’ such that
AC A CU and A" has a Markov partition.

Proor. Let 6>0 be small. By Lemma 2.1, there is >0 such that an
e-pseudo-orbit {x,},es in A is d-shadowed by some x=M with f*(x)eU for
neZ. Let y>0 satisfy

and
d(f(x), f)<g i dlx 9)<T

for x, yeU (we may assume that U is compact).
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Let P={p,, -+, p,} be a finite set of points in /A such that
U, (x)N\P#0 for any =x<4,
where U,(x)={ye 4|d (x, y)<yr}. Then the subset X (P) of P? defined by
2 (P)={(g:)icz€P?|d (f(gs), gi+1)<e for i=Z}
is a subshift of finite type. Let the map
6:2P)—U

be given by 6((q:)icz)=x, where x dJ-shadows (g;)icz. Then @ is continuous,
02 (P))C U is f-invariant and 4 C (2 (P)). Define

A'=6(2(P)).

Then A’ is compact because 2 (P) is compact. If U is sufficiently small, A’ is
a hyperbolic set ([6, p.161]). We will construct a Markov partition of /4’ from
the subshift X (P) along the line of [4].

For s=1, ---, r, define

Ts=1{0(q:)iczl(@s)icz €2 (P), go=Ds}s

Then
T, is closed, (3.1)
T, is a rectangle, (3.2)
for s=1, ---, r, and
{T}s-1...r is a finite covering of A’. (3.3)

For T; and T, (1=J, k=r) with T; N\ T,+0, define
Tjklz ij Tk:
Tij: {xe Tj|Wu(x: Tj)ﬂ T, #0, W(x, Tj)ﬂ T,=0},

Ti’={xeT;{W*(x, TH)N\ Tr=0, W(x, T;) \ Tr+0},
and

Tivi={xeTiW*(x, TH)N Tr=0, We(x, T;) N\ Tr=0}.
Then each T, (1=n=4) is a rectangle. Let K, (x€4’) be given by
K, =N AT x< T,
and a finite covering X of A’ be given by
K={Kz}zea=1{Ky, =+, Kn},

where we omit the empty set and suppose K;#0 (1=i=<m).



Markov partitions 45

In general int7; and intT;,” are not rectangles open in A’, because A’
does not have the local product structure. Nevertheless we can prove that

int K; is a rectangle open in A4’ for i=1, -, m. To do this, we need Lemmal
3.2~ Lemma 3.4 as follows.

LEMMA 3. 2.

(1) x=0dT; if and only if x&Int We(x, T;) or xe&Int W*(x, T)).

(2) x<=0K; if and only if xlnt We(x, K;) or xeInt W¥(x, Kj).

Here Int W*(x, T;) (resp. Int W¥(x, T;)) denotes the interior of W*(x, T;)

(resp. W¥(x, Ty)) in Wix)N\ A" (resp. We(x)N A'). Int W(x, K;) and
Int W*(x, K;) are defined similarly.

PROOF OF (2). Suppose x=0K;. Then there is a sequence {z,},c, in A’
such that {z,},.cz converges to x and

zZnE K; for neZ. (3.5)
By (3.3) there are a rectangle T, and a subsequence {z; }nez C {za}nez With

zi, €T, for neZ (3.6)
By (3.1), we have

xe Tl . (3. 7)
From (3.2), (3.6) and (3.7), it follows that
[z, xJeT, C A (3.8)

and
[x, Zi‘n]e Tl (@ A/, (3. 9)

where [z;,, x]J=Wi(z;,) \ Wi(x). We have that [z, xJEW"(x, K;) or
[x, zg, 1E W (x, K;) for n& Z, because

[zi,, xJEW*(x, K;) and [x, z;, e W(x, K;)
implies
zi,= [z, x], [x, z;, J1EK;.
Hence there is a subsequence {z; }ncz C {2;,} nez such that
[z;,, xJeW*(x, K;) for neZ (3. 10)
or
[x, z;, W (x, K;) for nelZ. (3.11)

By (3.8), (3. 10) implies

Lz;,, xJeWL ()N A —=W*(x, K;)
and

[z, x]—>x as n — oc,
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By (3.9), (3.11) implies

Lx, z; JeWex) N\ A=W (x, K;)
and
Lx, z;,] —> x as n — co,

Thus xeInt W*(x, K;) or x&Int W*(x, K;). The converse is obvious. The
proof of (1) is similar.

LEMMA 3.3. (1) Suppose xInt W*(x, Ty), y&Int Wy, T,) and ye W(x,
T;). Then there is T; such that x&T; and y=T;.

(2) Suppose xsInt W(x, Ty), y&Int Wi(y, T;) and ye W*(x, T;). Then
there is T; such that x&T; and y<T;.

PrOOF OF (1). Let x, vy and T; satisfy

x<Int We(x, Ty), (3.12)
ye&Int We(y, T;) (3.13)

and
yeWs(x, T)). (3.14)

By (3.13) there is a sequence {z,}.cz such that

2, EWEy) N A'—=WH(y, Ty) (3.15)
and ‘
Zn—> Y as n — oo, (3.16)

By (3.3) there are a subsequence {z; }nez C {24} nez and a rectangle T; with

Zine T]. (3' 17) '
By (3.1) and (3.16), this implies
yeT;. (3.18)
We will show
xe&T;. (3.19)
If we assume x& T}, then
[z, x]eT;C A", (3.20)

On the other hand we have
[z, x1& T,
by (3.2), (3.14) and (3.15). Combining with (3.20) this implies
Lzi ), xJeWe ()N A=W (x, T)),
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and from (3.16) and (3. 14) it follows that
[Zin’ x]—>x as n — oo,

This contradicts (3.12). Thus we proved (3. 19).

Proof of (2) is similar.

LEMMA 3.4. (1) If x<0K; and x<Int W*(x, K;). Then yeInt We(y, K;)
for any yeW*(x, Ky).

(2) If x=0K; and xe&Int W¥(x, K;). Then y<Int W*(y, K;) for any
yeWs(x, K)).

ProOF OF (1). Let x, y, and K; satisfy

x€oK;, (3.21)
xe&Int W (x, K;) (3.22)
and
yeW(x, K. (3.23)
Let
T CA{T ™ Tp™0, 1=k, ISy, 1Ssm =4}
satisfy

Ki=N{Tu™Ty"€9}
By (3.22), there is a sequence {z,}n.ez such that

Zq —> X as n —oc (3.24)
and

zn €W )N A'—K;
=Wi)NA'— N {T™T™ed}. (3.25)

Then there are a subsequence {z;,}nez C{za}rez and T €T, so that

2, EWEON A —Taf for neZ. (3. 26)

We have

Case 1. xeInt Wé(x, T;) for any T, with T,,™=9,; (for some [, m),
or

Case 2. x&Int We(x, T,) for some T, with T,,"=4; (for some [, m).

In case 1, by (3.24) and (3.25) there is an integer N>0 such that

2z, €W (x, Tq) for n=N.

Then

Ly, zi, 1€ Tof, (3.27)
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because if [y, z;,1€ T45 we have

z,=0x, Ly, 25, ]J€Tas
which contradicts (3.26). From (3.27) and

[y’ Zin]—_—)y as n — oo,
it follows that
ye&Int We(y, K)).

In case 2, assume y<Int W*(y, T)). By (2), (3.22) and (3.23),
this implies that there is a rectangle T, such that x=7T,, and y&=T,. So x
and y can not belong to the same rectangle of . This is a contradiction.
Therefore

yeInt We(y, Th).
Then
yeInt Wo(y, Ky,

because T,,"<T; for some [, m. Thus we proved (1). The proof
of (2) is similar.

Now we will prove that int K; is a rectangle open in A’ if K;eX. Let
int K;#0 and x, yeint K;. Assume

z=[x, y]eoK;.
From (2), it follows that

z&Int Wiz, K)) (3.28)
or
zeInt We(z, K;). (3.29)

Because yeint K; and ze W*(y, K;), (3.28) contradicts Lemma 3.4 (1). On
the other hand (3.29) contradicts (2), because x<int K; and
zeWs(x, K;). Thus [x, yleint K, if x, yeint K;, i.e. int K; is a rectangle.
Because int K; is contained in a closed rectangle T, for some m, intK; is a
closed rectangle.

Set

Then R is a Markov partition of A4’ as in [4, p.78-83]. This completes the
proof of [Theorem 1l

REMARK 3.1. A Markov partition of A4’ induces a subshift 2 of finite
type and a surjective map = . 3 — A’ such that fr=no where ¢ is the shift
transformation ([1]). And =z is a finite to one map, i.e. there is a positive
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integer N such that the cardinal number of #n~*(x) is less than N for any
xed [2).

DEFINITION. Let g: X— X be a homeomorphism of a compact space X.
A subset A C X is minimal for g if A is a closed g-invariant non-empty set
which is minimal, i.e. when B C A is a closed g-invariant non-empty set,
then B=A.

Bowen proved that the dimension of a minimal set in a basic set for an
Axiom A diffeomorphism is zero ([2J). We have the following.

COROLLARY 3.2. Suppose A 1is a hyperbolic set for a diffeomorphism
f:M—M. If BC A is a minimal set for f, the dimension of B is zero.

PrOOF. Let A’ D A be a hyperbolic set which has a Markov partition.
Then B is also minimal in A’. As in [2], it follows that the dimension of B
is zero. Q.E.D.

DEFINITION. Let f: M — M be a diffeomorphism with N, <co for m>0,
where N, is the number of the fixed points of f™. The zeta function {; of f
is the formal power series defined by

Cf(z):exp( —Ar;—mzm)

Lk

1

Manning proved that Axiom A diffeomorphisms have rational zeta func-
tions ([8]).

COROLLARY 3.3. Suppose A is a hyperbolic set for a diffeomorphism f . M
— M, and U is a neighbourhood of A. Then there is a hyperbolic set A’ such
that A < A’ C U and the zeta function of f|A’ is rational.

Proor. By [Theorem 1|, there is a hyperbolic set A’ such that AC A’ C U
and A’ has a Markov partition. From Remark 3.1 and [8], it follows that the
zeta function of f|A’ is rational.

§ 4. Hyperbolic w-limit sets.

DEFINITION. A homeomorphism f: X — X of a topological space X is
called an abstract w-limit set if there are a compact metric space Y, a homeo-
morphism g:Y—Y and a point x<VY such that there is a homeomorphism
h ' X—w(x) with gh=~hf, where w(x) is the w-limit set of x in Y.

The following is an extension of [3] for hyperbolic sets.

THEOREM 2. Suppose A C M is a hyperbolic set for a diffeomorphism f . M
—M. If A is an abstract w-limit set, A is an w-limit set of a point in M,
i.e. there is x&M with A=w(x). Moreover for any 6>0, we can choose x=M
so that d(f™(x), A)<0 for neZ.
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Proor. By the proof of [Theorem 1 of [3], for any >0 there is an
¢-pseudo-orbit {x,}.cz in 4 so that

d(f(x2), Xn41) —> 0 (n — +00)
and

{xs}nez is dense in A.

If ¢ is sufficiently small, Cemma 2. 1 implies that there is x&M such that x
d-shadows {x,}n.ez and d(f"(x), 4)<é for neZ. As in [3, Theorem 2],
d(f"(x), xn,) — 0 (n — +00). Therefore w(x)=A1. Q.E.D.

DEFINITION. A homeomorphism g : X — X is topologically transitive if
there is a point whose orbit is dense in X.

PROPOSITION 4.2. Suppose A is a hyperbolic set for a diffeomorphism f: M
— M, and A is an w-limit set of some x&M. Then for any neighbourhood U
of A thereis a hyperbolic set A’ such that A < A’ C U and f|A’ is topologically
transitive and has dense periodic points.

Proor. By Theorem 0, there are a subshift X of finite type on symbols
B={B,, -, By} determined by a matrix T=(t;;), a hyperbolic set A’ with
AcC A’ c U and a surjective map 7 . ¥ — A’ with fr==no. Moreover there is
an associated covering {U;, ---, Uy} of A such that t;;=1 when f(U;)N U,;+0.
Because /A is an w-limit set of some x=M, for any 7, j (1=1, jJ=N) there is
a finite sequence n,, -+, nm (1=n,=N) satisfying n,=i, n,=; and f(U,)N
Un;y#0 for i=1, -, m—1. This implies #,;,,,,=1 for i=1, -, m—1. Then
Y is topologically transitive and has dense periodic points. Therefore f|A’ is
topologically transitive and has dense periodic points. This completes the
proof.
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