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Abstract.

Let (U, G, a) be a C*-dynamical system, and C¥®; a) the reduced C*-
crossed product of A by «. We construct a “dual” C*-crossed product
Ci(CHHU; a); B) of CKU; @) by an isomorphism p from CH; a) into the
full operator algebra .£(®) on a Hilbert space & Then, it is isomorphic to the
C*-tensor product ?I®*C’(L2(G)) of A and the C*-algebra C(L%(G)) of all compact
operators on L¥G).

In the abelian case, there exists a continuous action & of the dual group G
of G on the C*-crossed product C*(¥ ; a) of A by « such that the C*-crossed
C*C*WU; a); &) of C*U; a) by a is isomorphic to CFCF¥U; a); B).

§1. Introduction.

In the second author showed a C*-algebra version of Takesaki’s duality
theorem for crossed products of von Neumann algebras. In other words, given
a C*-dynamical system (%, G, @) based on a locally compact abelian group
G, there exists a continuous action a of the dual group G of G on the C *-crossed
product C*(¥, a) of A by a such that the C*-dynamical system (C*C*U ; a);
&), G, &) is equivalent to the C*-dynamical system (QI®*C(L2(G)), G, a®RAd ),
where C(L*G)) is the C*-algebra of all compact operators on L*G), and A is
the regular representation of G on L¥G).

Recently, Y. Nakagami generalized Takesaki’s duality theorem based on
abelian groups to non-abelian groups using the method on Hopf-von Neumann
algebras. (Also see [2].)

In this paper, we study a non-abelian duality for C*-crossed products refer-
ring to Nakagami’s construction in von Neumann algebras. Actually, we obtain
that for a C*-dynamical system (%, G, a), there exists an isomorphism f§ of the
reduced C*-crossed product CX(; a) of A by a into the full operator algebra
LAGXG ;) on the Hilbert space LAGXG ; ) such that the “dual” C*-crossed
product CF(C¥®; a); B) is isomorphic to the tensor product 91®*C(L2(G)).
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In the abelian case, it is verified that the construction of “dual” C*-crossed
products is exactly that of second C*-crossed products via the Fourier transform.

§ 2. Notation and preliminaries.

Let (¥, G, a) be a C*-dynamical system in the sense of [5]. Then the
twised group algebra LL(G; U) is defined as the set of all Bochner integrable
N-valued functions on G with the following Banach *-algebra structure :

()= | HWanly(hg)lah
1) H(g)=4(g) " [x(g )"
o= I e,

where dg is the left Haar measure and 4(g) the associated modular function of G.
Let Rep A be the set of all non-degenerate representations of A. For pe&

Rep % on a Hilbert space §,, we denote by Ind p the representation of Li(G; %)

corresponding to the covariant representation (g, 2) of % as follows:

(p(a)6)(g)=p ° ag'(a)s(g)
(A(WENg)=E(h"g)

for every as¥, g, heG, and §€ L¥G; 9,), where L*G; $,) is the Hilbert space
consisting of all square integrable $,-valued functions on G.

Let C¥(¥U; a) be the completion of LL(G; A) with respect to the reduced
norm | .|, defined as

(2.2)

2.3) lxll;=sup{ll(Ind p)(x)| : p=Rep A}.

Then it can be considered as the quotient C*-algebra of the enveloping C*-
algebra C*; a) of LL(G; A) by the ideal Q ﬂ(lnd 0)~10).
PERep

In what follows, we construct a “dual” C*-crossed product based on C*( ; a),
which will be isomorphic to the tensor product SZI@)*(,’(LZ(G)) of A and the C*-
algebra C(L*G)) consisting of all compact operators on (L*G)) in later.

Taking the uiversal representation of 9 on a Hilbert space $, we may
assume by that C¥( ; «) is acting on L¥G; ) in such a way that

@4 (@)= | oz Lx(Ie (@)

for every xe LY(G; ) and £= LY G ; D).
Let 8 be an isomorphism of C}®; «)” into the full operator algebra
YLAGXG; ) of all bounded linear operators on L*GXG ; 9) such that
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ﬁ[i(a)]:[(a)®lm(a)
BLAM1=A()RA(h)

for every a9 and heG, where [ is the identity representation of % on $ and
A is the left regular representation of G on L*G). Actually, according to [3],
the mapping j3 cited above can be guaranteed at least one. Then we have by

and (2.5) that
26) = I @212/

(2.5)

for every x= LY(G; ).

Let Ci(G) be the C*-algebra of all complex valued continuous functions on
G vanishing at infinity.

For each x=C¥®; o) and f=Cy(G), we denote by f=x the operator
(lLécg;m@Lf)‘S(x) on LAGXG;$9) where L is the natural representation of C,(g)
on L¥G).

Now we define a dual C*-crossed product CFH(CF; a); B) of C¥U; a) by
B as the C*-algebra generated by fxx, x€C¥U; a), f€Cy(G). This definition
can be considered as a C*-algebra version of Nakagami’'s model in von Neumann
algebras ((3]). In the next section, we shall show the algebra defined above is
isomorphic to the tensor product ARC(LAG)) of U and the C*-algebra C(L¥G))
of all compact operators on L*G).

§3. Non abelian duality for C*-crossed products.

Throughout this section, we use the same symbols as in the previous section.
Let (%, G, a) be a C*-dynamical system and C¥(U; a) be the reduced C*-crossed
product of U by « acting on L¥G; ) in such a way as [2.4). By definition,
the dual C*-crossed product CF(CHA; a); B) of CHU; @) by B is acting on
L{GXG; 9).

Let us compute the operator f* x for x LL(G; ) and f=Cy(G). By
we see that

(3.1) f* x:(le(G;S))@Lf),B(x)
=| (oo @LAIK I DR 2)dg

:gGi[x<g>Ji<g>®Lf1<g>dg

on LAGXG; ) for every x€ LY(G; A) and f=Cy(G).
On the other hand, we consider the C*-dynamical system (%I®*CO(G), G, aQ1)
where 7 is the shift action of G on Ci(G). Then one can associate the reduced
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C*-crossed product CHUAR«Cy(G); a®r) of AR +C(G) by a@z. Let Ind IQL)
be the induced representation of Cf(%t@*CO(G) ;a®7) on LAGXG; 9) associated
to IQL. Since IRL is faithful on URCo(G) (cf: [6]), it follows by [4] that
Ind (IQL) is faithful.

For xe Lig(G; ARCH(G)), we compute Ind (IQL)(x) as follows:

(32) [Ind (IQL)(®E)e, 1)
= | SL(e)I(E) (g, Wk

= |, [a®L ) x(R)EC g, Nk

for every §€ LA(GXG; ). Let K(G) be the set of all complex valued continuous

functions on G with compact support. Taking x=/,QaQf., §=£,Q7XE, in
(ae¥, f;€K(G), n€9, &:€ L¥G)), we have that

Ind IR L)(/:@aRf)E@7@E)8, )
= [A(0az L « @R FIE(E 0 DEN Wk

L/1(R)E(k™ )z (@)@ Lot ¢spé)I(h)dk

Fi(RE(RTG( Lzt rpéa)(Mag (a)ndk

|
J

=|_A®a g eh ez @y dh
J

Fi(R)La'f34(R) (§.Q7&E.)1(g, Wk,
where
(@' Olg, W=az'(a)(g )
(f'O(g W=/1(gh)(g, h)
(' (R)o)Ng, W=L(k"'g, h)
for every a=¥, feK(G), and (e LY GXG; D).

Therefore, it follows that

(33) Ind (DL 1Qa@F)= | fi(k)a’ FLa(k) dk

for every a=¥, and f,€K(G). Let W be the unitary operator on LXGXG; 9)
so that (W{)(g, h)={(g, g *h) for all {€L*GXG; D). Then we have by
that
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(34 Ad(W) « Ind (RD(f,@a®f)
={ F(De o0 ®L)ABSUR)

={ (LA @OEIR xRS L )

= I[A RIS,k
By and (3,4), we deduce that

fox (f1Qa)=Ad (W)  Ind (IQ L) f:XaX)f>)
for every a= and f;=K(G). Therefore, we obtain by definition that

CHCHU; a); B)=Ad (W) « Ind UQLICFADLCAG) ; a®7)],

which implies the following proposition :

ProrosITION 3.1. Let (U, G, ) be a C*-dynamical system. Then the dual
C*-crossed product CF(CHU; a); B) of CHU; a) by B is isomorphic to the
reduced C*-crossed product C;"(%I@)*CU(G); a®7) of %@*CO(G) by a@r, where
(Y =f(gh) for every f€Cy(G). .

As we have seen in the abelian case, using the automorphism @ of AR «Co(G)
such that

(3.5) D(x)(g=ar'lx(g)] ([4D,
we deduce the following proposition.
PROPOSITION 3.2. The C*-algebra C;"(?I@)*CO(G); a@7) 1s isomorphic to the
reduced C*-crossed product C;“(‘)I@*CD(G); IR7) of %I®*C0(G) by IQr.
PrROOF. By (3.5), it is easy to see that @ is an automorphism of ARC(G).
Since
Do a,Rr,° 0 '=IRc,

for every g=G, we have the conclusion. Q.E.D.

Now we show the compatibility between reduced crossed products and
tensor products with respect to |- |«-cross norm which was announced in [4].

PROPOSITION 3.3. Let (¥, G, a), (B, H, f) be two C*-dynamical systems.
Then for the C*-dynamical system (2!@;&3, GX H, a@p), the reduced C*-crossed
product C;"(%I@)*%; a®@B) of AR B by a®p is isomorphic to the tensor product
CHU; )R«CHB; P) of CXUA; a) and CHB; ).

PrROOF. Let 7 (resp. p) be a faithful representation of U (resp. B) on -
(resp. ,). By [6], the tensor product #®p is faithful on AR,B. Consider
the induced representation Ind (z®Qp) of CHUARD B ; a@pB) by #&Qp. Then it
is faithful ([4]). For xeARB, and f= K(GX H), we compute that
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(3.6) [Ind (”@P)(ﬂgx)&@éz](go’ ho)
:SSGU;(”@PU@, mx12(g, REREN g, ho)dgdh

for every §,€L¥G; 9-) and &, L¥(H; 9,).
Put x=a®b (ac¥, b=B), and f=f,Rf. (L€ K(G), f.K(H)) in then
it follows that

[Ind (zQp)( /1D :DaRb)ERE)1(go, ho)
:SSGfo ()RR p(a®b)A(g, h)(ERENI(g, ho)dg dh

=\|, @ - agi@eee)®p o Bri0)E h)dg dh

=(], 7o) - ezt a)dg)R(|_fiwp - Bk hdh)

=[(Ind 7)(/1@a)%:1(g)RL(nd p)(/:Qb)€:1(ho)
=[(Ind z)(/:@0)Qnd p)(2Q6))(§:&E:)1(go> ho)

for every §,€L¥G; 9.) and &< L¥H; 9,) when we identify LA(GXH; $:K9,)
as LXG; 9)QL*(H; $,) by the natural mapping. Therefore, we have that

3.7 Ind (7@ p)(/1Q/:Qa®b)=(Ind z)(/1Qa)B(Ind p)(f:b)
=[(nd 1)&(Ind p)J[(/1Qa)&(f:b)]

for every a€¥, b8, f,=K(G), and f,e K(H).
By we easily see that

Ind (7®p)[CHARB ; a®p)]
=(Ind 7)@(Ind p)[CKA; )®+CHB; B)].

Since = (resp. p) is faithful on U (resp.®B), Ind n (resp. Ind p) is faithful on
CXW; a) (resp. CHB; p) (cf:[4]. So, (Ind r)®(Ind p) is faithful on CHU; a)
®*Ci‘(§B; B). This completes the proof. Q.E.D.
Applying the above proposition to the C*-dynamical systems (%, {¢}, /) and
(C(G), G, 7), we have by [Proposition 3.1] and [Proposition 3.2 the following :
PROPOSITION 3.4. The dual C*-crossed product C¥C¥¥U; a); B) of CKU; a)
by B is isomorphic to the tensor product AR <CHCH(B) ; 7) of A and CHCyg); 7).
In what follows, we shall show that C¥(Cy(G); 7) is isomorphic to the C*-
algebra C(L*G)) of all compact operators on L*G).
Let d(f)=f(e) for every f€CyG). Then the direct sum g@o 7,00 of 7,00

is faithful on C,(G). Therefore, it follows by [4] that Indd is faithful on
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C¥(Cy(G); 7). Computing the operator (Ind d)(x) for x=K(GXG), we see that

[(ind )6 )()=| x(g, MK
= #(&, gn™)d() e

=| (g HEwdn

for every &< L¥G), where y(g, h)==x(g, gh )4(h)"*. Since xK(GXG), ys L*
(GXG). So (Ind 0)(x) is an operator of Hilbert-Schmidt class. Hence (Ind d) (x)
eC(L¥G)). Since K(GXG) is dense in CX¥CyG); 7), we have that

(Ind )LCHCL(G) ; D ICCLHG)).

Moreover, since ¢ is a character of Co(G) and ¢ is free on C)(G)”, it implies by
that Ind d is an irreducible representation of C*(C)(G); ) on LXG). There-
fore, we deduce by that

(Ind HLCHCH(G) ; ) ]=ULHG)).

We now state the above argument as follows:

PROPOSITION 3.5. The reduced C*-crossed product CHCo(G); 7) of Ci(G) by
T 1S 1somorphic to the C*-algebra C(L¥G)) of all compact operators on L¥G).

Combining all the propositions that we obtained, we have the following
theorem :

THEOREM 3.6. Let (U, G, a) be a C*-dynamical system, and CXW: ) be the
reduced C*-crossed product of N by a acting on L¥G; ) in such a way as (2.4).
Then lhere exists an isomorphism B of CHU; a) into the full operator algebra
UL GXG; ) on LAGXG; O) such that the dual C*-crossed product CXC¥
A a); B) of CXU:a) by B is isomorphic to the tensor product AR «C(LHG)) of
A and the C*-algebra C(L¥G)) of all compact operators on L*G).

§4. Duality in the abelian case.

Suppose (¥, G, a) is a C*-dynamical system based on a locally compact
abelian group G. According to [4], we can construct a C*-dynamical system
(CX¥; a); G, &) based on the character group G of G such that

4.1) a,(0(g)=<g, p>x(g)

for every xe LL(G; ) and p=G. Let CXC*¥; a); @) be the reduced C*-
crossed product of CY; @) by a. In what follows, we shall show that
CHCH¥U; a); &) is isomorphic to the dual C*-crossed product CHC}¥; a); B)
of C¥; a) by B defined in the previous section.
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Since we may assume that CH; a) is acting on LG ; ) by the fashion
as it follows by that

(4.2) a,=Ad (0, on CX¥;a) (p=G),

where (U,£)(g)={g, p>&(g) for every E€L¥G; D).

Let I, be the identity representation of C}(¥; a) on L*G; $). Then Ind !/,
is the faithful representation of CHXCHQ; a); &) on LAGXG; ). For xe
CHU; a), and fe LY(G), we see that

*3) (Ind 1)(f @)=, LEG@RBIAp)dp

= Sa f(;b)l-r(x)(lLZ(G;@)@)/K])))d]b .

Let F be the isometry mapping from LAGXG; ) onto LAGXG; ) such
that

(44) (F&)g, W=\ <k Beg, p)dp

for every £€K(GXG ; ), the set of all H-valued continuous functions on GXG
with compact support. Then we have by and that

(4.5) Ad(F) - (Ind I)(f ®x)

={, (0 Ad(F) » 1,00 Ad (F) » (Lo, @A) P

=Ad (F) * 1) Ad (F) » (o2 |, ADAD)D)

=Ad (F) o [,(x) (11200:65QL3) ,

where f is the Fourier image of /. Moreover, it follows by and that
for a=¥ and /= K(G),

[Ad (F) » I{f'Qa)E](g, )

:Sa@“,—pxz‘,( S Qa)F*E)(g, p)dp
— 6<m>[a;1(f’®a)F*$ (g p)1dp

|
:ga<m>w HPQRa)U,F*]1(g, pdp
|

= (P> p| 0z L @awNT, Fak g, p)dk dp
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=\ ([ Qa)R)IA(R)QARE) g, Mdk

G

for every £ LA(GXG; ). Therefore, we obtain by that

(4.6) Ad (F) » I,(f/®@a)=p(f'®a)

for every a=¥U and f'eK(G). By (4.5) and (4.6), we have that

4.7 Ad (F) - (Ind [,) (f&f' Qa)
=Ad(F) * [(//@a)1126::@L7)
=B(/'®a)1rece;:QL7)
=(/*(FQa"1*,

where f is the complex conjugate of 7. By the definition of CHCH¥; a); B),
we see by (4.7) that

Ad(F) > (Ind [)[CHCHA; a); a)]
=CHC¥U; a); B),

which means that CFC}® ; a); &) is isomorphic to CH(CH¥; a); B). Since G
is abelian, we know by that C*® ; a) is identified with the C*-crossed
product C*(¥; a) of A by «a.

Summing up the above argument, we deduce by the following
abelian version :

THEOREM 4.1. Let (U G, a) be a C*-dynamical system where G is abelian.
Let G be the dual group of G. Then there exists a C*-dynamical sysiem
(C*U; a); G, &) such that the C*-crossed product C*C*U ; &) ; &) is isomorphic
to the tensor product QI@*C(B(G)) of N and the C*-algebra C(L*G)) of all compact
operators on L¥G) ([4]).

REMARK. In[2] Landstad also discussed a duality for C*-crossed products.
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However, our dual object seems to be closer to Nakagami’s one rather than
Landstad’s method.
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