On a duality for C^* -crossed products by a locally compact group

By Shō IMAI and Hiroshi TAKAI

(Received March 12, 1977)

Abstract.

Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system, and $C^*_r(\mathfrak{A}; \alpha)$ the reduced C^* -crossed product of \mathfrak{A} by α . We construct a "dual" C^* -crossed product $C^*_d(C^*_r(\mathfrak{A}; \alpha); \beta)$ of $C^*_r(\mathfrak{A}; \alpha)$ by an isomorphism β from $C^*_r(\mathfrak{A}; \alpha)$ into the full operator algebra $\mathcal{L}(\mathfrak{R})$ on a Hilbert space \mathfrak{R} . Then, it is isomorphic to the C^* -tensor product $\mathfrak{A} \hat{\otimes}_* \mathcal{C}(L^2(G))$ of \mathfrak{A} and the C^* -algebra $\mathcal{C}(L^2(G))$ of all compact operators on $L^2(G)$.

In the abelian case, there exists a continuous action $\hat{\alpha}$ of the dual group \hat{G} of G on the C^* -crossed product $C^*(\mathfrak{A}; \alpha)$ of \mathfrak{A} by α such that the C^* -crossed $C^*(C^*(\mathfrak{A}; \alpha); \hat{\alpha})$ of $C^*(\mathfrak{A}; \alpha)$ by $\hat{\alpha}$ is isomorphic to $C^*_{\mathfrak{A}}(C^*_{\mathfrak{P}}(\mathfrak{A}; \alpha); \beta)$.

§ 1. Introduction.

In [4], the second author showed a C^* -algebra version of Takesaki's duality theorem for crossed products of von Neumann algebras. In other words, given a C^* -dynamical system $(\mathfrak{A}, G, \alpha)$ based on a locally compact abelian group G, there exists a continuous action $\hat{\alpha}$ of the dual group \hat{G} of G on the C^* -crossed product $C^*(\mathfrak{A}, \alpha)$ of \mathfrak{A} by α such that the C^* -dynamical system $(C^*(C^*(\mathfrak{A}; \alpha); \hat{\alpha}), G, \hat{\alpha})$ is equivalent to the C^* -dynamical system $(\mathfrak{A} \otimes_* \mathcal{C}(L^2(G)), G, \alpha \otimes \operatorname{Ad}(\lambda))$, where $\mathcal{C}(L^2(G))$ is the C^* -algebra of all compact operators on $L^2(G)$, and λ is the regular representation of G on $L^2(G)$.

Recently, Y. Nakagami [3] generalized Takesaki's duality theorem based on abelian groups to non-abelian groups using the method on Hopf-von Neumann algebras. (Also see [2].)

In this paper, we study a non-abelian duality for C^* -crossed products referring to Nakagami's construction in von Neumann algebras. Actually, we obtain that for a C^* -dynamical system $(\mathfrak{A}, G, \alpha)$, there exists an isomorphism β of the reduced C^* -crossed product $C^*_r(\mathfrak{A}; \alpha)$ of \mathfrak{A} by α into the full operator algebra $\mathfrak{L}(L^2(G\times G; \mathfrak{H}))$ on the Hilbert space $L^2(G\times G; \mathfrak{H})$ such that the "dual" C^* -crossed product $C^*_\sigma(\mathfrak{A}; \alpha)$; β is isomorphic to the tensor product $\mathfrak{A} \otimes_* \mathcal{C}(L^2(G))$.

In the abelian case, it is verified that the construction of "dual" C^* -crossed products is exactly that of second C^* -crossed products via the Fourier transform.

§ 2. Notation and preliminaries.

Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system in the sense of [5]. Then the twised group algebra $L^1_{\alpha}(G; \mathfrak{A})$ is defined as the set of all Bochner integrable \mathfrak{A} -valued functions on G with the following Banach *-algebra structure:

$$(xy)(g) = \int_{G} x(h)\alpha_{h} [y(h^{-1}g)]dh$$

$$x^{*}(g) = \Delta(g)^{-1}\alpha_{g} [x(g^{-1})]^{*}$$

$$||x||_{1} = \int_{G} ||x(g)|| dg,$$

where dg is the left Haar measure and $\Delta(g)$ the associated modular function of G. Let Rep $\mathfrak A$ be the set of all non-degenerate representations of $\mathfrak A$. For $\rho \in \operatorname{Rep} \mathfrak A$ on a Hilbert space $\mathfrak P_\rho$, we denote by Ind ρ the representation of $L^1_\alpha(G;\mathfrak A)$ corresponding to the covariant representation $(\bar\rho,\bar\lambda)$ of $\mathfrak A$ as follows:

(2.2)
$$(\bar{\rho}(a)\xi)(g) = \rho \circ \alpha_{g}^{-1}(a)\xi(g)$$

$$(\bar{\lambda}(h)\xi)(g) = \xi(h^{-1}g)$$

for every $a \in \mathfrak{A}$, g, $h \in G$, and $\xi \in L^2(G; \mathfrak{H}_{\rho})$, where $L^2(G; \mathfrak{H}_{\rho})$ is the Hilbert space consisting of all square integrable \mathfrak{H}_{ρ} -valued functions on G.

Let $C_r^*(\mathfrak{A}; \alpha)$ be the completion of $L^1_{\alpha}(G; \mathfrak{A})$ with respect to the reduced norm $\|\cdot\|_r$ defined as

$$||x||_r = \sup\{||(\operatorname{Ind} \rho)(x)|| : \rho \in \operatorname{Rep} \mathfrak{A}\}.$$

Then it can be considered as the quotient C^* -algebra of the enveloping C^* -algebra $C^*(\mathfrak{A}; \alpha)$ of $L^1_{\alpha}(G; \mathfrak{A})$ by the ideal $\bigcap_{\rho \in \mathbf{Rep} \mathfrak{A}} (\operatorname{Ind} \rho)^{-1}(0)$.

In what follows, we construct a "dual" C^* -crossed product based on $C^*_r(\mathfrak{A}; \alpha)$, which will be isomorphic to the tensor product $\mathfrak{A} \, \hat{\otimes}_* \mathcal{C}(L^2(G))$ of \mathfrak{A} and the C^* -algebra $\mathcal{C}(L^2(G))$ consisting of all compact operators on $(L^2(G))$ in later.

Taking the uiversal representation of $\mathfrak A$ on a Hilbert space $\mathfrak H$, we may assume by [4] that $C_r^*(\mathfrak A;\alpha)$ is acting on $L^2(G;\mathfrak H)$ in such a way that

(2.4)
$$(x\xi)(g) = \int_{\mathcal{G}} \alpha_{\mathcal{G}}^{-1} [x(h)] \xi(h^{-1}g) dh$$

for every $x \in L^1_\alpha(G; \mathfrak{A})$ and $\xi \in L^2(G; \mathfrak{H})$.

Let β be an isomorphism of $C^*_r(\mathfrak{A};\alpha)''$ into the full operator algebra $\mathfrak{L}(L^2(G\times G;\mathfrak{H}))$ of all bounded linear operators on $L^2(G\times G;\mathfrak{H})$ such that

(2.5)
$$\beta \lceil \overline{l}(a) \rceil = \overline{l}(a) \otimes 1_{L^{2}(G)}$$
$$\beta \lceil \overline{\lambda}(h) \rceil = \overline{\lambda}(h) \otimes \lambda(h)$$

for every $a \in \mathfrak{A}$ and $h \in G$, where l is the identity representation of \mathfrak{A} on \mathfrak{H} and λ is the left regular representation of G on $L^2(G)$. Actually, according to [3], the mapping β cited above can be guaranteed at least one. Then we have by (2.4) and (2.5) that

(2.6)
$$\beta(x) = \int_{G} \bar{l} [x(g)] \bar{\lambda}(g) \otimes \lambda(g) dg$$

for every $x \in L^1_\alpha(G; \mathfrak{A})$.

Let $C_0(G)$ be the C^* -algebra of all complex valued continuous functions on G vanishing at infinity.

For each $x \in C_7^*(\mathfrak{A}; \alpha)$ and $f \in C_0(G)$, we denote by f * x the operator $(1_{L^2(G;\mathfrak{P})} \otimes L_f)\beta(x)$ on $L^2(G \times G;\mathfrak{P})$ where L is the natural representation of $C_0(g)$ on $L^2(G)$.

Now we define a dual C^* -crossed product $C^*_a(C^*_r(\mathfrak{A}; \alpha); \beta)$ of $C^*_r(\mathfrak{A}; \alpha)$ by β as the C^* -algebra generated by f*x, $x \in C^*_r(\mathfrak{A}; \alpha)$, $f \in C_0(G)$. This definition can be considered as a C^* -algebra version of Nakagami's model in von Neumann algebras ([3]). In the next section, we shall show the algebra defined above is isomorphic to the tensor product $\mathfrak{A} \widehat{\otimes}_* \mathcal{C}(L^2(G))$ of \mathfrak{A} and the C^* -algebra $\mathcal{C}(L^2(G))$ of all compact operators on $L^2(G)$.

§ 3. Non abelian duality for C^* -crossed products.

Throughout this section, we use the same symbols as in the previous section. Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system and $C^*_r(\mathfrak{A}; \alpha)$ be the reduced C^* -crossed product of \mathfrak{A} by α acting on $L^2(G; \mathfrak{P})$ in such a way as (2.4). By definition, the dual C^* -crossed product $C^*_d(C^*_r(\mathfrak{A}; \alpha); \beta)$ of $C^*_r(\mathfrak{A}; \alpha)$ by β is acting on $L^2(G \times G; \mathfrak{P})$.

Let us compute the operator f * x for $x \in L^1_\alpha(G; \mathfrak{A})$ and $f \in C_0(G)$. By (2.6), we see that

$$(3.1) f * x = (1_{L^{2}(G;\mathfrak{P})} \otimes L_{f})\beta(x)$$

$$= \int_{G} (1_{L^{2}(G;\mathfrak{P})} \otimes L_{f})(\overline{l} [x(g)] \overline{\lambda}(g) \otimes \lambda(g)) dg$$

$$= \int_{G} \overline{l} [x(g)] \overline{\lambda}(g) \otimes L_{f} \lambda(g) dg$$

on $L^2(G \times G; \mathfrak{H})$ for every $x \in L^1_{\alpha}(G; \mathfrak{A})$ and $f \in C_0(G)$.

On the other hand, we consider the C^* -dynamical system $(\mathfrak{A} \hat{\otimes}_* C_0(G), G, \alpha \otimes \tau)$ where τ is the shift action of G on $C_0(G)$. Then one can associate the reduced

 C^* -crossed product $C^*_r(\mathfrak{A} \, \hat{\otimes}_* C_0(G); \alpha \otimes \tau)$ of $\mathfrak{A} \, \hat{\otimes}_* C_0(G)$ by $\alpha \otimes \tau$. Let $\operatorname{Ind}(l \otimes L)$ be the induced representation of $C^*_r(\mathfrak{A} \, \hat{\otimes}_* C_0(G); \alpha \otimes \tau)$ on $L^2(G \times G; \mathfrak{P})$ associated to $l \otimes L$. Since $l \otimes L$ is faithful on $\mathfrak{A} \, \hat{\otimes}_* C_0(G)$ (cf: [6]), it follows by [4] that $\operatorname{Ind}(l \otimes L)$ is faithful.

For $x \in L^1_{\alpha \otimes \tau}(G; \mathfrak{A} \otimes C_0(G))$, we compute Ind $(l \otimes L)(x)$ as follows:

$$(3.2) \qquad [\operatorname{Ind}(l \otimes L)(x)\xi](g, h)$$

$$= \int_{\mathcal{G}} [\overline{l \otimes L}(x(k))\overline{\lambda}(k)\xi](g, h)dk$$

$$= \int_{\mathcal{G}} [\alpha_{g}^{-1} \otimes L \circ \tau_{g}^{-1})(x(k))\xi(k^{-1}g, \cdot)](h)dk$$

for every $\xi \in L^2(G \times G; \mathfrak{H})$. Let K(G) be the set of all complex valued continuous functions on G with compact support. Taking $x=f_1\otimes a\otimes f_2$, $\xi=\xi_1\otimes \eta\otimes \xi_2$ in (3.2) $(a\in \mathfrak{U}, f_i\in K(G), \eta\in \mathfrak{H}, \xi_i\in L^2(G))$, we have that

Ind
$$(l \otimes L)(f_1 \otimes a \otimes f_2)(\xi_1 \otimes \eta \otimes \xi_2)(g, h)$$

$$= \int_G [f_1(k)\alpha_g^{-1} \otimes L \circ \tau_g^{-1}(a \otimes f_2)\xi_1(k^{-1}g)(\eta \otimes \xi_2)](h)dk$$

$$= \int_G [f_1(k)\xi_1(k^{-1}g)(\alpha_g^{-1}(a)\eta \otimes L_{\tau_g^{-1}(f_2)}\xi_2)](h)dk$$

$$= \int_G f_1(k)\xi_1(k^{-1}g)(L_{\tau_g^{-1}(f_2)}\xi_2)(h)\alpha_g^{-1}(a)\eta dk$$

$$= \int_G f_1(k)\xi_1(k^{-1}g)f_2(gh)\xi_2(h)\alpha_g^{-1}(a)\eta dk$$

$$= \int_G f_1(k)[a'f_2'\lambda(k)'(\xi_1 \otimes \eta \otimes \xi_2)](g, h)dk,$$

where

$$\begin{cases} (a'\zeta)(g, h) = \alpha_g^{-1}(a)\zeta(g, h) \\ (f'\zeta)(g, h) = f(gh)\zeta(g, h) \\ (\lambda'(k)\zeta)(g, h) = \zeta(k^{-1}g, h) \end{cases}$$

for every $a \in \mathfrak{A}$, $f \in K(G)$, and $\zeta \in L^2(G \times G; \mathfrak{P})$. Therefore, it follows that

(3.3)
$$\operatorname{Ind}(l \otimes L)(f_1 \otimes a \otimes f_2) = \int_{\mathcal{G}} f_1(k) a' f'_2 \lambda(k)' dk$$

for every $a \in \mathfrak{A}$, and $f_i \in K(G)$. Let W be the unitary operator on $L^2(G \times G; \mathfrak{H})$ so that $(W\zeta)(g, h) = \zeta(g, g^{-1}h)$ for all $\zeta \in L^2(G \times G; \mathfrak{H})$. Then we have by (3.3) that

(3.4)
$$\operatorname{Ad}(W) \circ \operatorname{Ind}(l \otimes L)(f_1 \otimes a \otimes f_2)$$

$$= \int_{G} f_1(k) a'(1_{L^2(G; \mathfrak{D})} \otimes L_{f_2})(\overline{\lambda}(k) \otimes \lambda(k)) dk$$

$$= \int_{G} (\overline{l} [(f_1 \otimes a)(k)] \otimes 1_{L^2(G)})(\overline{\lambda}(k) \otimes L_{f_2} \lambda(k)) dk$$

$$= \int_{G} \overline{l} [(f_1 \otimes a)(k)] \overline{\lambda}(k) \otimes L_{f_2} \lambda(k) dk.$$

By (3.1) and (3,4), we deduce that

$$f_2 * (f_1 \otimes a) = Ad(W) \circ Ind(l \otimes L)(f_1 \otimes a \otimes f_2)$$

for every $a \in \mathfrak{A}$ and $f_i \in K(G)$. Therefore, we obtain by definition that

$$C_d^*(C_r^*(\mathfrak{A}; \alpha); \beta) = \operatorname{Ad}(W) \circ \operatorname{Ind}(l \otimes L) [C_r^*(\mathfrak{A} \widehat{\otimes}_* C_0(G); \alpha \otimes \tau)],$$

which implies the following proposition:

PROPOSITION 3.1. Let $(\mathfrak{A}, G, \alpha)$ be a C^* -dynamical system. Then the dual C^* -crossed product $C^*_{\mathfrak{C}}((C^*_{\mathfrak{C}}(\mathfrak{A}; \alpha); \beta))$ of $C^*_{\mathfrak{C}}(\mathfrak{A}; \alpha)$ by β is isomorphic to the reduced C^* -crossed product $C^*_{\mathfrak{C}}(\mathfrak{A} \otimes_* C_0(G); \alpha \otimes \tau)$ of $\mathfrak{A} \otimes_* C_0(G)$ by $\alpha \otimes \tau$, where $\tau_{\mathfrak{C}}(f)(h) = f(g^{-1}h)$ for every $f \in C_0(G)$.

As we have seen in the abelian case, using the automorphism Φ of $\mathfrak{A} \diamondsuit_* C_0(G)$ such that

$$\mathbf{\Phi}(x)(g) = \alpha_{\sigma}^{-1}[x(g)] \qquad ([4]),$$

we deduce the following proposition.

PROPOSITION 3.2. The C*-algebra $C_r^*(\mathfrak{A} \widehat{\otimes}_* C_0(G); \alpha \otimes \tau)$ is isomorphic to the reduced C*-crossed product $C_r^*(\mathfrak{A} \widehat{\otimes}_* C_0(G); l \otimes \tau)$ of $\mathfrak{A} \widehat{\otimes}_* C_0(G)$ by $l \otimes \tau$.

PROOF. By (3.5), it is easy to see that Φ is an automorphism of $\mathfrak{A} \hat{\otimes}_* C_0(G)$. Since

$$\Phi \circ \alpha_{g} \otimes \tau_{g} \circ \Phi^{-1} = l \otimes \tau_{g}$$

for every $g \in G$, we have the conclusion.

Q.E.D.

Now we show the compatibility between reduced crossed products and tensor products with respect to $\|\cdot\|_*$ -cross norm which was announced in [4].

PROPOSITION 3.3. Let $(\mathfrak{A}, G, \alpha)$, (\mathfrak{B}, H, β) be two C^* -dynamical systems. Then for the C^* -dynamical system $(\mathfrak{A} \widehat{\otimes}_* \mathfrak{B}, G \times H, \alpha \otimes \beta)$, the reduced C^* -crossed product $C^*_r(\mathfrak{A} \widehat{\otimes}_* \mathfrak{B}; \alpha \otimes \beta)$ of $\mathfrak{A} \widehat{\otimes}_* \mathfrak{B}$ by $\alpha \otimes \beta$ is isomorphic to the tensor product $C^*_r(\mathfrak{A}; \alpha) \widehat{\otimes}_* C^*_r(\mathfrak{B}; \beta)$ of $C^*_r(\mathfrak{A}; \alpha)$ and $C^*_r(\mathfrak{B}; \beta)$.

PROOF. Let π (resp. ρ) be a faithful representation of $\mathfrak A$ (resp. $\mathfrak B$) on $\mathfrak S_{\pi}$ (resp. $\mathfrak S_{\rho}$). By [6], the tensor product $\pi\otimes\rho$ is faithful on $\mathfrak A \widehat{\otimes}_*\mathfrak B$. Consider the induced representation $\operatorname{Ind}(\pi\otimes\rho)$ of $C_r^*(\mathfrak A \widehat{\otimes}_*\mathfrak B; \alpha\otimes\beta)$ by $\pi\otimes\rho$. Then it is faithful ([4]). For $x\in\mathfrak A \widehat{\otimes}_*\mathfrak B$, and $f\in K(G\times H)$, we compute that

$$(3.6) \qquad [\operatorname{Ind}(\pi \otimes \rho)(f \otimes x)\xi_1 \otimes \xi_2](g_0, h_0)$$

$$= \iint_{G \times H} (\overline{\pi \otimes \rho} [f(g, h)x] \overline{\lambda}(g, h) \xi_1 \otimes \xi_2)(g_0, h_0) dg dh$$

for every $\xi_1 \in L^2(G; \mathfrak{H}_{\pi})$ and $\xi_2 \in L^2(H; \mathfrak{H}_{\rho})$.

Put $x=a\otimes b$ $(a\in\mathfrak{A},\ b\in\mathfrak{B})$, and $f=f_1\otimes f_2$ $(f_1\in K(G),\ f_2\in K(H))$ in (3.6), then it follows that

$$[\operatorname{Ind}(\pi \otimes \rho)(f_1 \otimes f_2 \otimes a \otimes b)(\xi_1 \otimes \xi_2)](g_0, h_0)$$

$$= \iint_{G \times H} f_1(g) f_2(h) [\overline{\pi \otimes \rho}(a \otimes b) \overline{\lambda}(g, h)(\xi_1 \otimes \xi_2)](g_0, h_0) dg dh$$

$$= \iint_{G \times H} f_1(g) f_2(h) \pi \circ \alpha_{g_0}^{-1}(a) \xi_1(g^{-1}g_0) \otimes \rho \circ \beta_{h_0}^{-1}(b) \xi_2(h^{-1}h_0) dg dh$$

$$= \left(\int_G f_1(g) \pi \circ \alpha_{g_0}^{-1}(a) \xi_1(g^{-1}g_0) dg \right) \otimes \left(\int_H f_2(h) \rho \circ \beta_{h_0}^{-1}(b) \xi_2(h^{-1}h_0) dh \right)$$

$$= [(\operatorname{Ind} \pi)(f_1 \otimes a) \xi_1](g_0) \otimes [(\operatorname{Ind} \rho)(f_2 \otimes b) \xi_2](h_0)$$

$$= [(\operatorname{Ind} \pi)(f_1 \otimes a) \otimes (\operatorname{Ind} \rho)(f_2 \otimes b))(\xi_1 \otimes \xi_2)](g_0, h_0)$$

for every $\xi_1 \in L^2(G; \mathfrak{H}_{\pi})$ and $\xi_2 \in L^2(H; \mathfrak{H}_{\rho})$ when we identify $L^2(G \times H; \mathfrak{H}_{\pi} \otimes \mathfrak{H}_{\rho})$ as $L^2(G; \mathfrak{H}_{\pi}) \otimes L^2(H; \mathfrak{H}_{\rho})$ by the natural mapping. Therefore, we have that

(3.7)
$$\operatorname{Ind}(\pi \otimes \rho)(f_1 \otimes f_2 \otimes a \otimes b) = (\operatorname{Ind} \pi)(f_1 \otimes a) \otimes (\operatorname{Ind} \rho)(f_2 \otimes b)$$
$$= [(\operatorname{Ind} \pi) \otimes (\operatorname{Ind} \rho)][(f_1 \otimes a) \otimes (f_2 \otimes b)]$$

for every $a \in \mathfrak{A}$, $b \in \mathfrak{B}$, $f_1 \in K(G)$, and $f_2 \in K(H)$. By (3.7), we easily see that

Ind
$$(\pi \otimes \rho) [C_r^*(\mathfrak{A} \widehat{\otimes}_* \mathfrak{B}; \alpha \otimes \beta)]$$

= $(\text{Ind } \pi) \otimes (\text{Ind } \rho) [C_r^*(\mathfrak{A}; \alpha) \widehat{\otimes}_* C_r^*(\mathfrak{B}; \beta)].$

Since π (resp. ρ) is faithful on $\mathfrak A$ (resp. $\mathfrak B$), Ind π (resp. Ind ρ) is faithful on $C^*_r(\mathfrak A;\alpha)$ (resp. $C^*_r(\mathfrak B;\beta)$) (cf: [4]). So, (Ind π) \otimes (Ind ρ) is faithful on $C^*_r(\mathfrak A;\alpha)$ $\otimes_* C^*_r(\mathfrak B;\beta)$. This completes the proof. Q. E. D.

Applying the above proposition to the C^* -dynamical systems $(\mathfrak{A}, \{e\}, l)$ and $(C_0(G), G, \tau)$, we have by Proposition 3.1 and Proposition 3.2 the following:

PROPOSITION 3.4. The dual C*-crossed product $C_d^*(C_r^*(\mathfrak{A};\alpha);\beta)$ of $C_r^*(\mathfrak{A};\alpha)$ by β is isomorphic to the tensor product $\mathfrak{A} \widehat{\otimes}_* C_r^*(C_0(G);\tau)$ of \mathfrak{A} and $C_r^*(C_0(g);\tau)$.

In what follows, we shall show that $C_r^*(C_0(G); \tau)$ is isomorphic to the C^* -algebra $\mathcal{C}(L^2(G))$ of all compact operators on $L^2(G)$.

Let $\delta(f)=f(e)$ for every $f \in C_0(G)$. Then the direct sum $\bigoplus_{g \in G} \tau_g \circ \delta$ of $\tau_g \circ \delta$ is faithful on $C_0(G)$. Therefore, it follows by [4] that Ind δ is faithful on

 $C_r^*(C_0(G); \tau)$. Computing the operator (Ind δ)(x) for $x \in K(G \times G)$, we see that

$$[(\operatorname{Ind} \delta)(x)\xi](g) = \int_{G} x(g, h)\xi(h^{-1}g)dh$$

$$= \int_{G} x(g, gh^{-1})\Delta(h)^{-1}\xi(h)dh$$

$$= \int_{G} y(g, h)\xi(h)dh$$

for every $\xi \in L^2(G)$, where $y(g, h) = x(g, gh^{-1})\Delta(h)^{-1}$. Since $x \in K(G \times G)$, $y \in L^2(G \times G)$. So $(\operatorname{Ind} \delta)(x)$ is an operator of Hilbert-Schmidt class. Hence $(\operatorname{Ind} \delta)(x) \in \mathcal{C}(L^2(G))$. Since $K(G \times G)$ is dense in $C_r^*(C_0(G); \tau)$, we have that

$$(\operatorname{Ind} \delta)[C_r^*(C_0(G); \tau)] \subset \mathcal{C}(L^2(G)).$$

Moreover, since δ is a character of $C_0(G)$ and τ is free on $C_0(G)$, it implies by [5] that Ind δ is an irreducible representation of $C_r^*(C_0(G);\tau)$ on $L^2(G)$. Therefore, we deduce by [1] that

$$(\operatorname{Ind} \delta)[C_r^*(C_0(G); \tau)] = \mathcal{C}(L^2(G)).$$

We now state the above argument as follows:

PROPOSITION 3.5. The reduced C*-crossed product $C_r^*(C_0(G); \tau)$ of $C_0(G)$ by τ is isomorphic to the C*-algebra $C(L^2(G))$ of all compact operators on $L^2(G)$.

Combining all the propositions that we obtained, we have the following theorem:

THEOREM 3.6. Let $(\mathfrak{A}, G, \alpha)$ be a C*-dynamical system, and $C_r^*(\mathfrak{A}:\alpha)$ be the reduced C*-crossed product of \mathfrak{A} by α acting on $L^2(G;\mathfrak{F})$ in such a way as (2.4). Then there exists an isomorphism β of $C_r^*(\mathfrak{A};\alpha)$ into the full operator algebra $\mathfrak{L}(L^2(G\times G;\mathfrak{F}))$ on $L^2(G\times G;\mathfrak{F})$ such that the dual C*-crossed product $C_d^*(C_r^*(\mathfrak{A};\alpha);\beta)$ of $C_r^*(\mathfrak{A}:\alpha)$ by β is isomorphic to the tensor product $\mathfrak{A} \otimes_* \mathcal{C}(L^2(G))$ of \mathfrak{A} and the C*-algebra $\mathcal{C}(L^2(G))$ of all compact operators on $L^2(G)$.

§ 4. Duality in the abelian case.

Suppose $(\mathfrak{A}, G, \alpha)$ is a C^* -dynamical system based on a locally compact abelian group G. According to [4], we can construct a C^* -dynamical system $(C^*_r(\mathfrak{A}; \alpha); \hat{G}, \hat{\alpha})$ based on the character group \hat{G} of G such that

$$\hat{\alpha}_{p}(x)(g) = \langle \overline{g, p} \rangle x(g)$$

for every $x \in L^1_\alpha(G; \mathfrak{A})$ and $p \in \hat{G}$. Let $C^*_r(C^*_r(\mathfrak{A}; \alpha); \hat{\alpha})$ be the reduced C^* -crossed product of $C^*_r(\mathfrak{A}; \alpha)$ by $\hat{\alpha}$. In what follows, we shall show that $C^*_r(C^*_r(\mathfrak{A}; \alpha); \hat{\alpha})$ is isomorphic to the dual C^* -crossed product $C^*_d(C^*_r(\mathfrak{A}; \alpha); \beta)$ of $C^*_r(\mathfrak{A}; \alpha)$ by β defined in the previous section.

Since we may assume that $C_r^*(\mathfrak{A}; \alpha)$ is acting on $L^2(G; \mathfrak{H})$ by the fashion as (2.4), it follows by (4.1) that

(4.2)
$$\hat{\alpha}_p = \operatorname{Ad}(\hat{U}_p) \text{ on } C_r^*(\mathfrak{A}; \alpha) \quad (p \in \hat{G}),$$

where $(\hat{U}_p\xi)(g)=\langle \overline{g,p}\rangle\xi(g)$ for every $\xi\in L^2(G;\mathfrak{P})$.

Let l_r be the identity representation of $C_r^*(\mathfrak{A}; \alpha)$ on $L^2(G; \mathfrak{H})$. Then Ind l_r is the faithful representation of $C_r^*(C_r^*(\mathfrak{A}; \alpha); \hat{\alpha})$ on $L^2(G \times \hat{G}; \mathfrak{H})$. For $x \in C_r^*(\mathfrak{A}; \alpha)$, and $f \in L^1(G)$, we see that

(4.3)
$$(\operatorname{Ind} l_r)(f \otimes x) = \int_{\widehat{G}} \overline{l}_r [(f \otimes x)(p)] \overline{\lambda}(p) dp$$

$$= \int_{\widehat{G}} f(p) \overline{l}_r(x) (1_{L^2(G; \mathfrak{S})} \otimes \lambda(p)) dp .$$

Let F be the isometry mapping from $L^2(G \times \hat{G}; \mathfrak{H})$ onto $L^2(G \times G; \mathfrak{H})$ such that

$$(4.4) (F \xi)(g, h) = \int_{\widehat{g}} \langle \overline{h, p} \rangle \xi(g, p) dp$$

for every $\xi \in K(G \times \hat{G}; \mathfrak{H})$, the set of all \mathfrak{H} -valued continuous functions on $G \times G$ with compact support. Then we have by (4.3) and (4.4) that

$$(4.5) \qquad \operatorname{Ad}(F) \circ (\operatorname{Ind} l_r)(f \otimes x)$$

$$= \int_{\widehat{G}} f(p) \operatorname{Ad}(F) \circ \overline{l}_r(x) \operatorname{Ad}(F) \circ (1_{L^2(G; \mathfrak{P})} \otimes \lambda(p)) dp$$

$$= \operatorname{Ad}(F) \circ \overline{l}_r(x) \operatorname{Ad}(F) \circ (1_{L^2(G; \mathfrak{P})} \otimes \int_{\widehat{G}} f(p) \lambda(p) dp)$$

$$= \operatorname{Ad}(F) \circ \overline{l}_r(x) (1_{L^2(G; \mathfrak{P})} \otimes L_{\widehat{f}}),$$

where \hat{f} is the Fourier image of f. Moreover, it follows by (2.4) and (4.2) that for $a \in \mathfrak{A}$ and $f' \in K(G)$,

$$\begin{split} & [\operatorname{Ad}(F) \circ \overline{l}_r(f' \otimes a) \xi](g, h) \\ &= \int_{\widehat{G}} \langle \overline{h, p} \rangle \langle \overline{l}_r(f' \otimes a) F^* \xi)(g, p) dp \\ &= \int_{\widehat{G}} \langle \overline{h, p} \rangle [\widehat{\alpha}_p^{-1}(f' \otimes a) F^* \xi(g, p)] dp \\ &= \int_{\widehat{G}} \langle \overline{h, p} \rangle [U_p^*(f' \otimes a) \widehat{U}_p F^* \xi](g, p) dp \\ &= \int_{\widehat{G}} \langle \overline{h, p} \rangle \langle g, p \rangle \int_{G} \alpha_g^{-1} [(f' \otimes a)(k)] (\widehat{U}_p F^* \xi)(k^{-1}g, p) dk \ dp \end{split}$$

$$= \iint_{\widehat{G}\times G} \langle \overline{h,p} \rangle \langle k,p \rangle f'(k) \alpha_g^{-1}(a) (F^*\xi)(k^{-1}g,p) dk dp$$

$$= \iiint_{\widehat{G}\times G\times G} \langle \overline{hk^{-1},p} \rangle f'(k) \alpha_g^{-1}(a) \langle l,p \rangle \xi(k^{-1}g,l) dl dk dp$$

$$= \int_G f'(k) dk \iint_{\widehat{G}\times G} \langle h^{-1}l,p \rangle \alpha_g^{-1}(a) \xi(k^{-1}g,k^{-1}l) dl dp$$

$$= \int_G f'(k) \alpha_g^{-1}(a) \xi(k^{-1}g,k^{-1}h) dk$$

$$= \int_G f'(k) [(\overline{l}(a) \otimes 1_{L^2(G)}) (\overline{\lambda}(k) \otimes \lambda(k)) \xi](g,h) dk$$

$$= \int_G (\overline{l}[(f' \otimes a)(k)] \overline{\lambda}(k) \otimes \lambda(k) \xi)(g,h) dk$$

for every $\xi \in L^2(G \times G; \mathfrak{H})$. Therefore, we obtain by (2.6) that

(4.6)
$$\operatorname{Ad}(F) \circ \overline{l}_{\tau}(f' \otimes a) = \beta(f' \otimes a)$$

for every $a \in \mathfrak{A}$ and $f' \in K(G)$. By (4.5) and (4.6), we have that

(4.7)
$$\operatorname{Ad}(F) \circ (\operatorname{Ind} l_{r}) (f \otimes f' \otimes a)$$

$$= \operatorname{Ad}(F) \circ \overline{l}_{r} (f' \otimes a) (1_{L^{2}(G; \mathfrak{P})} \otimes L_{\widehat{f}})$$

$$= \beta (f' \otimes a) (1_{L^{2}(G; \mathfrak{P})} \otimes L_{\widehat{f}})$$

$$= [\overline{f} * (\overline{f}' \otimes a^{*})]^{*},$$

where \bar{f} is the complex conjugate of f. By the definition of $C_d^*(C_r^*(\mathfrak{A}; \alpha); \beta)$, we see by (4.7) that

Ad
$$(F) \circ (\text{Ind } l_r) [C_r^*(C_r^*(\mathfrak{A}; \alpha); \hat{\alpha})]$$

= $C_d^*(C_r^*(\mathfrak{A}; \alpha); \beta)$,

which means that $C_r^*(C_r^*(\mathfrak{A}; \alpha); \hat{\alpha})$ is isomorphic to $C_d^*(C_r^*(\mathfrak{A}; \alpha); \beta)$. Since G is abelian, we know by [4] that $C_r^*(\mathfrak{A}; \alpha)$ is identified with the C^* -crossed product $C^*(\mathfrak{A}; \alpha)$ of \mathfrak{A} by α .

Summing up the above argument, we deduce by Theorem 3.6 the following abelian version:

Theorem 4.1. Let $(\mathfrak{A} G, \alpha)$ be a C^* -dynamical system where G is abelian. Let \hat{G} be the dual group of G. Then there exists a C^* -dynamical system $(C^*(\mathfrak{A};\alpha);\hat{G},\hat{\alpha})$ such that the C^* -crossed product $C^*(C^*(\mathfrak{A};\alpha);\hat{\alpha})$ is isomorphic to the tensor product $\mathfrak{A} \otimes_* \mathcal{C}(L^2(G))$ of \mathfrak{A} and the C^* -algebra $\mathcal{C}(L^2(G))$ of all compact operators on $L^2(G)$ ([4]).

REMARK. In [2], Landstad also discussed a duality for C*-crossed products.

However, our dual object seems to be closer to Nakagami's one rather than Landstad's method.

References

- [1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
- [2] M.B. Landstad, Duality for dual covariance algebras, Preprint, Univ. of Trondheim, 1976.
- [3] Y. Nakagami, Dual action of a von Neumann algebra and Takesaki's duality for a locally compact group, to appear in Publ. Res. Inst. Math. Sci. Ser. A.
- [4] H. Takai, On a duality for crossed products of C*-algebras, J. Functional Analysis. 19 (1975), 25-39.
- [5] H. Takai, The Quasi-orbit space of continuous C*-dynamical systems, Trans. Amer. Math. Soc., 216 (1976), 105-113.
- [6] A. Wulfsohn, Le produit tensoriel de C*-algèbres, Bull. Sci. Math., 87 (1963), 13-27.

Shō IMAI Department of Mathematics Osaka University Toyonaka, Osaka Japan Hiroshi TAKAI Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya, Tokyo Japan