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\S 1. Introduction.

In this paper we consider the nonlinear second order functional differential
equation with advanced argument

(1) $[r(t)y^{\prime}(t)]^{\prime}+f(y(g(t)), t)=0$ .

The conditions we always assume for $r,$ $g,$ $f$ are as follows:

(a) $r(t)$ is continuous and positive for $ t\geqq\alpha$ ;
(b) $g(t)$ is continuous for $ t\geqq\alpha$ , and $g(t)\geqq t$ ;
(c) $f(y, t)$ is continuous for $|y|<\infty,$ $ t\geqq\alpha$ , and

$yf(y, t)>0$ for $y\neq 0,$ $ t\geqq\alpha$ .

It is convenient to classify equations of the form (1) according to the non-
linearity of $f(y, t)$ with respect to $y$ . Equation (1) is called superlinear if, for
each fixed $t,$ $f(y, t)/y$ is nondecreasing in $y$ for $y>0$ and nonincreasing in $y$ for
$y<0$ . It is called strongly superlinear if there exists a number $\sigma>1$ such that,
for each fixed $t,$ $f(y, t)/|y|^{\sigma}$ sgn $y$ is nondecreasing in $y$ for $y>0$ and nonincre-
asing in $y$ for $y<0$ . Equation (1) is called sublinear if, for each fixed $t,$ $f(y, t)/y$

is nonincreasing in $y$ for $y>0$ and nondecreasing in $y$ for $y<0$ . It is called
strongly sublinear if there exists a number $\tau<1$ such that, for each $t$ ,
$f(y, t)/|y|^{\tau}$ sgn $y$ is nonincreasing in $y$ for $y>0$ and nondecreasing in $y$ for $y<0$ .
This classification includes the corresponding classification of the equations of
the form

(2) $[r(t)y^{\prime}(t)]^{\prime}+y(g(t))F([y(g(t))]^{2}, t)=0$

as given in [6]. (See also [5] and [9].)

In what follows we restrict our discussion to those solutions $y(t)$ of (1)

which exist on some ray $[T_{y}, \infty$ ) and satisfy $sup\{|y(t)| : t\geqq T\}>0$ for every
$T\geqq T_{y}$ . Such a solution is said to be oscillatory if the set of its zeros is not
bounded; otherwise, it is said to be nonoscillatory. Equation (1) itself is called
oscillatory if all of its solutions are oscillatory.



542 T. KUSANO and H. ONOSE

The problem of oscillation of solutions of functional differential equations
with deviating arguments has received a wide attention during the last several
years. Among numerous papers dealing with this problem we refer in parti-
cular to [1-4, 6, 7, 10] for standard results regarding Equation (1) and/or

related second order equations. Most of the literature, however, has been
devoted to the investigation of differential equations with retarded arguments,
and very little is known about the oscillatory behavior of differential equa-
tions with advanced arguments.

The main purpose of this paper is to undertake an effort in the direction
of establishing oscillation and nonoscillation results for second order advanced
differential equations. Use is made of some of the results and techniques
developed in [6] for retarded differential equations of the form (2). We dis-
tinguish the two cases

(3) $\int_{\alpha}^{\infty}r(t)^{-1}dt<\infty$ ,

(4) $\int_{\alpha}^{\infty}r(t)^{-1}dt=\infty$ ,

and examine them separately in Sections 2 and 3. In each section to follow,

we present necessary and sufficient conditions for Equation (1) which is either
superlinear or sublinear to have nonoscillatory solutions with specific asymptotic
properties, and then we provide oscillation criteria for Equation (1) which is
either strongly superlinear or strongly sublinear. In particular, we are able
to give a characterization for the oscillation situation of the strongly super-
linear advanced equation (1). Thus it turns out that there is a remarkable
difference between the oscillatory character of advanced differential equations
and that of retarded differential equations.

\S 2. The case where $\int_{\alpha}^{\infty}r(t)^{-1}dt<\infty$ .

In this section we examine the advanced differential equation (1) for which
(3) is satisfied. We use the function $\rho(t)$ defined by

$\rho(t)=\int_{t}^{\infty}r(s)^{-1}ds$ .

A) Behavior of nonoscillatory solutions. We begin with two lemmas which
give useful information on the behavior of nonoscillatory solutions of (1).

LEMMA 1. Let (3) hold. If $y(t)$ is an eventually positive solution of (1),

then there are posiiive numbers $t_{1},$ $a_{1},$ $a_{2}$ such that

(5) $y(t)\geqq-r(t)y^{\prime}(t)\rho(t)$ for $t\geqq t_{1}$ ,
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and

(6) $a_{1}\rho(t)\leqq y(t)\leqq a_{2}$ for $t\geqq t_{1}$ .

This lemma can be proved exactly as in the proof of the lemma of Kusano
and Naito [6] concerning retarded differential equations of the form (2). The
proof is therefore omitted. Evidently, similar inequalities hold for an eventually
negative solutions of (1).

LEMMA 2. In addition to (3) assume that

(7) $\int^{\infty}\rho(t)|f(c, t)|dt=\infty$ for all $c\neq 0$ .

Then all nonoscillatory solutions of (1) tend to zero as $ t\rightarrow\infty$ .
PROOF. Let $y(t)$ be a nonoscillatory solution of (1). Without loss of

generality we may suppose that $y(t)>0$ for $t\geqq t_{1}$ . By Lemma 1 $y(t)$ is bounded
above. Multiplying (1) by $\rho(t)$ and integrating from $t_{1}$ to $t$, we get

$\rho(t)r(t)y^{\prime}(t)+y(t)-\rho(t_{1})r(t_{1})y^{\prime}(t_{1})-y(t_{1})$

(8)

$+\int_{t_{1}}^{t}\rho(s)f(y(g(s)), s)ds=0$ .

We examine the following two cases:

(9) $\int_{r_{1}}^{\infty}\rho(t)f(y(g(t)), t)dt=\infty$ ,

(10) $\int_{c_{1}}^{\infty}\rho(t)f(y(g(t)), t)dt<\infty$ .

Suppose (9) holds. Then, from (8) we see that $\rho(t)r(t)y^{\prime}(t)\rightarrow-\infty$ as $ t\rightarrow\infty$ .
Hence, there are numbers $t_{2}\geqq t_{1}$ and $M>0$ such that

$\rho(t)r(t)y^{\prime}(t)\leqq-M$ for $t\geqq t_{2}$ .

Dividing the above inequality by $\rho(t)r(t)$ and integrating give

$y(t)-y(t_{2})\leqq-M\int_{t}^{c_{2}}(\rho(s)r(s))^{-1}ds=M$ log $[\rho(t)/\rho(t_{2})]$ .

Since $\rho(t)\rightarrow 0$ as $ t\rightarrow\infty$ , it follows that $ y(t)\rightarrow-\infty$ as $ t\rightarrow\infty$ . This contradicts the
positivity of $y(t)$ . Consequently, (9) cannot hold. Now, since (10) holds, letting
$ t\rightarrow\infty$ in (8), we see that

$\varliminf_{t}[\rho(t)r(t)y^{\prime}(t)+y(t)]$

exists and is finite. We claim that $\lim_{t\rightarrow\infty}y(t)$ exists as a finite number. In fact,

if this is false, then there are numbers $\xi$ and $\eta$ such that
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$\lim_{t\rightarrow}\inf_{\infty}y(t)<\xi<\eta<\lim_{t\rightarrow}\sup_{\infty}y(t)$ .

We are able to choose an increasing sequence $\{\tau_{\nu}\}_{\nu=1}^{\infty}$ with the following pro-
perties:

(11) $\varliminf_{\nu}\tau_{v}=\infty$ , $y^{\prime}(\tau_{\nu})=0$ , $\nu=1,2,$ $\cdots$ ,

(12) $ y(\tau_{2\nu- 1})<\xi$ , $ y(\tau_{2v})>\eta$ , $\nu=1,2,$ $\cdots$ .
In view of (11) the limit

$\varliminf[\rho(\tau_{v})r(\tau_{\nu})y^{\prime}(\tau_{\nu})+y(\tau_{\nu})]=\varliminf_{\nu}y(\tau_{\nu})$

exists. This, however, is a contradiction to (12). Therefore, there exists a
finite limit $y(\infty)=\lim_{t\rightarrow\infty}y(t)$ . If $y(\infty)>0$ , then there are positive constants $c_{1},$ $c_{2}$

such that

(13) $c_{1}\leqq y(g(t))\leqq c_{2}$ for $t\geqq t_{1}$ .

Using (10) and (13) we readily conclude that

$\int_{t_{1}}^{\infty}\rho(t)f(c_{1}, t)dt<\infty$

$\int_{t_{1}}^{\infty}\rho(t)f(c_{2}, t)dt<\infty$

if (1) is superlinear,

if (1) is sublinear.

This contradiction shows that $y(\infty)=0$ . Thus the proof is complete.
B) Existence of nonoscillatory solutions. According to inequality (6) of

Lemma 1, among possible nonoscillatory solutions of Equation (1), those which
are asymptotic to nonzero constants as $ t\rightarrow\infty$ may be regarded as the “maxi-
mal” solutions, and those which are asymptotic to functions of the form $a\rho(t)$ ,
$a\neq 0$ , as $ t\rightarrow\infty$ may be regarded as the “minimal” solutions. In case Equation
(1) is either superlinear or sublinear necessary and sufficient conditions for
the existence of nonoscillatory solutions of these two special kinds can be
established without difficulty.

THEOREM 1. Let (1) be either superlinear or sublinear. Assume that (3)
holds. Then, a necessary and sufficient condition for (1) to have a nonoscillatory
solution $y(t)$ such that $\varliminf_{t}y(t)/\rho(t)=const$ . $\neq 0$ is that

(14) $\int^{\infty}|f(c\rho(g(t)), t)|dt<\infty$ for some $c\neq 0$ .

THEOREM 2. Let (1) be either suPerlinear or sublinear. Assume that (3)
holds. Then, a necessary and sufficient condition for (1) to have a nonoscillatory
solution $y(t)$ such that $\varliminf_{t}y(t)=const$ . $\neq 0$ is that
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(15) $\int^{\infty}\rho(t))f(c, t)|dt<\infty$ for some $c\neq 0$ .

In [6, Theorems 1 and 2] it is shown that the same conclusions of the
above theorems hold for the retarded differential equation (2). It is easily
seen that the arguments used in [6] apply equally well to the case of the
advanced equation (1). Since the theorem corresponding to Theorem 2 is
proved in full detail in [6], we give here only the proof of Theorem 1.

PROOF OF THEOREM 1. (Necessity) Let $y(t)$ be a nonoscillatory solution
with the property $\lim_{t-}y(t)/\rho(t)=k\neq 0$ . We may suppose that $k>0$ . There are
positive numbers $t_{1},$ $c_{1},$ $c_{2}$ such that

(16) $c_{1}\rho(g(t))\leqq y(g(t))\leqq c_{2}\rho(g(t))$ for $t\geqq t_{1}$ .

Since $y(t)\rightarrow 0$ as $t\rightarrow\infty,$ $y^{f}(t)\leqq 0$ eventually. Take $t_{1}$ so large that $y^{\prime}(t)\leqq 0$ and
(5) hold for $t\geqq t_{1}$ . From (5) and (16) we get

(17) $-r(t)y^{\prime}(t)\leqq c_{2}$ for $t\geqq t_{1}$ .
Integrating (1) from $t_{1}$ to $t$ and using (17), we find

(18) $\int_{t_{1}}^{\infty}f(y(g(t)), t)dt<\infty$ .

From (16) and (18) it follows that

$\int_{t_{1}}^{\infty}f(c_{1}\rho(g(t)), t)dt<\infty$

$\int_{t_{1}}^{\infty}f(c_{2}\rho(g(t)), t)dt<\infty$

if (1) is superlinear,

if (1) is sublinear.

(Sufficiency) Suppose (14) holds with $c>0$ . A similar argument can be
applied if $c<0$ . Put $a=c/2$ if (1) is superlinear and $a=c$ if (1) is sublinear.
Choose $T>0$ so large that

(19) $\int_{T}^{\infty}f(c\rho(g(t)), t)dt<\frac{a}{2}$ .

We wish to obtain the required solution as a solution of the following integrar
equation

(20) $y(t)=a\rho(t)+\rho(t)\int_{T}^{t}f(y(g(s)), s)ds+\int_{t}^{\infty}\rho(s)f(y(g(s)), s)ds$ .

To solve (20) via Schauder’s fixed point theorem we introduce the linear space
$C_{\rho}[T, \infty)$ of all continuous functions $ y:[T, \infty$ ) $\rightarrow R$ such that

$\Vert y\Vert_{\rho}=\sup\{\rho(t)^{-1}|y(t)| : t\geqq T\}<\infty$ .

It is clear that $ C_{\rho}[T, \infty$ ) is a Banach space with norm $\Vert\cdot\Vert_{\rho}$ . We define the
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operator $\Phi$ by

$(\Phi y)(t)=a\rho(t)+\rho(t)\int_{T}^{t}f(y(g(s)), s)ds+\int_{t}^{\infty}\rho(s)f(y(g(s)), s)ds$ ,

and seek a fixed point of $\Phi$ in the set $ Y=\{y\in C_{\rho}[T, \infty$ ) $:a\rho(t)\leqq y(t)\leqq 2a\rho(t)$

for $t\geqq T$ }, which is a bounded, convex and closed subset of $ C_{\rho}[T, \infty$). For
this purpose we shall show that $\Phi$ is continuous and maps $Y$ into a compact

subset of $Y$.
i) $\Phi$ maPs $Y$ into $Y$. If $y\in Y$, then clearly, $(\Phi y)(t)\geqq a\rho(t),$ $t\geqq T$, and in

view of (19)

$(\Phi y)(t)\leqq a\rho(t)+\rho(t)\int_{T}^{\infty}f(y(g(s)), s)ds$

$\leqq a\rho(t)+2\rho(t)\int_{T}^{\infty}f(c\rho(g(s)), s)ds$

$\leqq 2a\rho(t)$ , $t\geqq T$ .
ii) $\Phi$ is continuous. Let $\{y_{n}\}$ be a sequence of elements of $Y$ such that

$\lim_{n\rightarrow\infty}\Vert y_{n}-y\Vert_{\rho}=0$ . Since $Y$ is closed, $y\in Y$ and

$|(\Phi y_{n})(t)-(\Phi y)(t)|\leqq\rho(t)\int_{T}^{\infty}F_{n}(s)ds$ ,

where
$F_{n}(s)=|f(y_{n}(g(s)), s)-f(y(g(s)), s)|$ .

It follows that

(21) $\Vert\Phi y_{n}-\Phi y\Vert_{\rho}\leqq\int_{T}^{\infty}F_{n}(s)ds$ .
Since

$\varliminf F_{n}(s)=0$ and $F_{n}(s)\leqq 4f(c\rho(g(s)), s)$ for $s\geqq T$ ,

we apply the Lebesgue dominated convergence theorem to conclude from (21)

that $\lim_{n\rightarrow\infty}\Vert\Phi y_{n}-\Phi y\Vert_{\rho}=0$ . This proves the continuity of $\Phi$ .
iii) $\Phi Y$ is Precompact. It suffices to show that the family of functions

$\{\rho^{-1}\Phi y:y\in Y\}$ is uniformly bounded and equicontinuous on $[T, \infty$). Since the
uniform boundedness is obvious, we need only to demonstrate the equicontinuity.
This will be accomplished if we show that, for any given $\epsilon>0$, the interval
$[T, \infty)$ can be decomposed into a finite number of subintervals in such a way
that on each subinterval all functions of the family have oscillations less than
$\epsilon$ ; see Levitan [8, \S 3].

If $y\in Y$, then we have for $t_{2}>t_{1}\geqq T$

$(\rho^{-1}\Phi y)(t_{2})-(\rho^{-1}\Phi y)(f_{1})=\int_{t_{1}}^{t_{2}}f(y(g(s)), s)ds$

(22)

$+\rho(t_{2})^{-1}\int_{\iota_{2}}^{\infty}\rho(s)f(y(g(s)), s)ds-\rho(t_{1})^{-1}\int_{t_{1}}^{\infty}\rho(s)f(y(g(s)), s)ds$
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$=\int_{t_{1}}^{r_{2}}f(y(g(s)), s)ds-\rho(t_{2})^{-1}\int_{t}^{\downarrow 2}\rho(s)f(y(g(s)), s)dsl$

(23)

$+[\rho(t_{2})^{-1}-\rho(t_{1})^{-1}]\int_{\iota_{1}}^{\infty}\rho(s)f(y(g(s)), s)ds$ .
From (22) we obtain

$|(\rho^{-1}\Phi y)(t_{2})-(\rho^{-1}\Phi y)(t_{1})|\leqq 3\int_{\iota_{1}}^{\infty}f(y(g(s)), s)ds\leqq 6\int_{t_{1}}^{\infty}f(c\rho(g(s)), s)ds$ .

By (19) the last integral tends to zero as $ t_{1}\rightarrow\infty$ , so, given an $\epsilon>0$, there exists
$T^{*}>T$ such that

$|(\rho^{-1}\Phi y)(t_{2})-(\rho^{-1}\Phi y)(t_{1})|<\epsilon$ if $t_{2}>t_{1}\geqq T^{*}$ .

This shows that the oscillations of all $\rho^{-1}\Phi y,$ $y\in Y$, on $[T^{*}, \infty$ ) are less than
$\epsilon$ . Now, let $T\leqq t_{1}<t_{2}\leqq T^{*}$ . Then, in view of (23) and (19) we see that

$|(\rho^{-1}\Phi y)(t_{2})-(\rho^{-1}\Phi y)(t_{1})|\leqq 2\int_{t_{1}}^{t_{2}}f(c\rho(g(s)), s)ds$

$+2\rho(t_{1})\rho(t_{2})^{-1}\int_{t_{1}}^{t_{2}}f(c\rho(g(s)), s)ds$

$+2\rho(t_{2})^{-1}|\rho(t_{2})-\rho(t_{1})|\int_{t_{1}}^{\infty}f(c\rho(g(s)), s)ds$

$\leqq a\rho(T^{*})^{-1}|\rho(t_{2})-\rho(t_{1})|+2[\rho(T)\rho(T^{*})^{-1}+1]\int_{t_{1}}^{t_{2}}f(c\rho(g(s)), s)ds$ .

This ensures the existence of $\delta>0$ such that for all $y\in Y$

$|(\rho^{-1}\Phi y)(t_{2})-(\rho^{-1}\Phi y)(t_{1})|<\epsilon$ if $ t_{2}-t_{1}<\delta$ .

Consequently, we can divide the interval $[T, T^{*}]$ , and hence the whole interval
$[T, \infty)$ , into a finite number of subintervals on each of which every $\rho^{-1}\Phi y$,
$y\in Y$, has oscillation less than $\epsilon$ . It follows that $\overline{\Phi Y}$ is a compact subset of $Y$ .

From the preceding observations we see that Schauder’s fixed point theo-
rem can be applied to the operator $\Phi$ . Let $y\in Y$ be a fixed point of $\Phi$ . Then,
by the definition of $\Phi,$ $y(t)$ is a solution of the integral equation (20) for $t\geqq T$.
Since, by l’Hospital’s rule,

$\lim_{t\rightarrow\infty}\frac{y(t)}{\rho(t)}=\lim_{\iota\rightarrow\infty}\frac{y^{\prime}}{\rho’}(t)(t)^{-}=a+\int_{T}^{\infty}f(y(g(s)), s)ds$

$\leqq a+2\int_{T}^{\infty}f(c\rho(g(s)), s)ds\leqq 2a$ ,

we conclude that $y(t)$ is a solution of Equation (1) with the required asymptotic
property. This completes the proof of Theorem 1.

An important special case of (1) is the following generalized Emden-Fowler
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equation

(24) $[r(t)y^{\prime}(t)]^{\prime}+p(i)|y(g(t))|^{\gamma}$ sgn $y(g(t))=0$

where $\gamma$ is a positive constant and $p(t)$ is a continuous and nonnegative func-
tion on $[\alpha, \infty$).

COROLLARY 1. (i) Equation (24) has a nonoscillatory solution $y(t)$ such
that $\lim_{t\rightarrow\infty}y(t)/\rho(t)=const$ . $\neq 0$ if and only if

$\int^{\infty}[\rho(g(t))]^{\gamma}p(t)dt<\infty$ .

(ii) Equation (24) has a nonocsillatory solution $y(t)$ such that $\lim_{t\rightarrow\infty}y(t)=const$ .
$\neq 0$ if and only if

$\int^{\infty}\rho(t)p(t)dt<\infty$ .

C) Oscillation criteria. The object of this subsection is to present oscilla-
tion criteria for Equation (1) which is either strongly superlinear or strongly
sublinear. We start with the strongly superlinear case for which a charac-
terization of the oscillation situation can be established.

THEOREM 3. Let (1) be strongly superlinear. Assume that (3) holds. Then,
a necessary and sufficient condition for (1) to be oscillatory is that

(25) $\int^{\infty}|f(c\rho(g(t)), t)|dt=\infty$ for all $c\neq 0$ .

PROOF. That (25) is necessary follows from Theorem 1. To prove the
sufficiency part suppose there exists a nonoscillatory solution $y(t)$ of (1). With-
out loss of generality we may suppose that $y(t)>0$ for $t\geqq t_{0}$ . Obviously, $y(g(t))$

$>0$ for $t\geqq t_{0}$ . From (1) $[r(t)y^{\prime}(t)]^{\prime}\leqq 0$ for $i\geqq t_{0}$ , so that $r(t)y^{\prime}(t)$ is nonincreas-
ing. Hence, $y^{\prime}(t)$ is eventually of constant sign. We show that $y^{f}(t)<0$ even-
tually. Let $c>0$ be given arbitrarily but fixed. Take $t_{1}\geqq t_{0}$ so large that
$\rho(g(t))\leqq c$ for $t\geqq t_{1}$ . By the superlinearity and the monotonicity of $\rho(t)$ we
have

(26) $cf(c\rho(g(t)), t)\leqq\rho(t)f(c, t)$ for $t\geqq t_{1}$ .
Since (25) and (26) imply (7), it follows from Lemma 2 that $y(t)\rightarrow 0$ as $ t\rightarrow\infty$ .
This rules out the possibility that $y^{\prime}(t)>0$ for $t\geqq t_{0}$ , so there exists $t_{2}>t_{1}$ such
that $y^{f}(t)<0$ for $t\geqq t_{2}$ .

By Lemma 1 the following inequalities hold:

(27) $y(t)\geqq-r(t)y^{\prime}(t)\rho(t)\geqq k\rho(t)$ , $t\geqq t_{2}$ ,

where $k=-r(t_{2})y^{\prime}(t_{2})>0$ . Using (27) and the strong superlinearity, we get

(28) $[y(g(t))]^{-\sigma}f(y(g(t)), t)\geqq[k\rho(g(t))]^{-\sigma}f(k\rho(g(t)), t)$ ,
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where $\sigma>1$ is the strong superlinearity constant. With the help of (27), (28)
and the decreasing property of $r(t)y^{\prime}(t)$ we obtain

$\{-[-r(t)y^{\prime}(t)]^{1-\sigma}\}^{\prime}=(\sigma-1)[-r(t)y^{f}(t)]^{-\sigma}f(y(g(t)), t)$

$=(\sigma-1)[-r(t)y^{\prime}(t)]^{-\sigma}\cdot[y(g(t))]^{\sigma}\cdot[y(g(t))]^{-\sigma}f(y(g(t)), t)$

(29) $\geqq(\sigma-1)[-r(g(t))y^{\prime}(g(t))]^{-\sigma}\cdot[-r(g(t))y^{\prime}(g(t))\rho(g(t))]^{\sigma}$ .
. $[k\rho(g(t))]^{-\sigma}f(k\rho(g(t)), t)$

$=(\sigma-1)k^{-\sigma}f(k\rho(g(t)), t)$ .
An integration of (29) yields

$(\sigma-1)k^{-\sigma}\int_{t_{2}}^{t}f(k\rho(g(s)), s)ds\leqq[-r(t_{2})y^{\prime}(t_{2})]^{1-\sigma}-[-r(t)y^{\prime}(t)]^{1-\sigma}$ ,

which implies $\int_{t_{2}}^{\infty}f(k\rho(g(t)), t)dt<\infty$ , a contradiction to (25). It follows that

Equation (1) cannot possess nonoscillatory solutions, and the proof is complete.
COROLLARY 2. Consider Equation (24) with $\gamma>1$ . Assume that (3) holds.

Then, a necessary and sufficient condition for (24) to be oscillatory is that

$\int^{\infty}[\rho(g(t))]^{\gamma}p(t)dt=\infty$ .

Next, we provide an oscillation criterion for the strongly sublinear equa-
tion (1).

THEOREM 4. Lel (1) be strongly sublinear. In addition to (3) assume that
$g^{\prime}(t)\geqq 0$ for $ t\geqq\alpha$ . Then, a sufficient condition for (1) to be oscillatory is that

(30) $\int^{\infty}\rho(g(t))|f(c, t)|dt=\infty$ for all $c\neq 0$ .

PROOF. Let $y(t)$ be a nonoscillatory solution of (1). Suppose that $y(t)>0$

for $t\geqq t_{0}$ . Since (30) implies (7), by Lemma 2 it follows that $y(t)\rightarrow 0$ as $ t\rightarrow\infty$ .
Hence there is $t_{1}>t_{0}$ such that $y^{\prime}(t)<0$ for $t\geqq t_{1}$ . Integrating (1) from $t_{1}$ to $t$

and using the fact that $r(t)y^{f}(t)$ is nonincreasing, we obtain

$-r(g(t))y^{\prime}(g(t))\geqq\int_{t_{1}}^{t}f(y(g(s)), s)ds$ , $t\geqq t_{1}$ ,

which yields

(31) $-y^{\prime}(g(t))g^{\prime}(t)\geqq\frac{g^{\prime}(t)}{r(g(t))}\int_{t_{1}}^{t}f(y(g(s)), s)ds$ , $t\geqq t_{1}$ .
Now it holds that

$\{-[y(g(t))]^{1-\tau}\}^{\prime}=(1-\tau)[y(g(t))]^{-\tau}\frac{g^{\prime}(t)}{r(g(t))}\int_{t_{1}}^{t}f(y(g(s)), s)ds$

(32)
$\geqq(1-\tau)\frac{g^{\prime}(t)}{r(g(t))}\int_{t_{1}}^{t}[y(g(s))]^{-\tau}f(y(g(s)), s)ds$ ,
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where $\tau<1$ is the strong sublinearity constant. Here we have used (31) and
the decrcasing character of $y(t)$ . There is a constant $k>0$ such that $y(g(t))\leqq k$

for $t\geqq t_{1}$ , so by the strong sublinearity of (1)

(33) $[y(g(t))]^{-\tau}f(y(g(t)), t)\geqq k^{-\tau}f(k, t)$ , $t\geqq t_{1}$ .

From (32) and (33) it follows that

$\{-[y(g(t))]^{1-\tau}\}^{\prime}\geqq(1-\tau)k^{-\tau}\frac{g^{\prime}(t)}{r(g(t))}\int_{t_{1}}^{t}f(k, s)ds$ .

An integration of the above inequality yields

(34) $(1-\tau)k^{-\tau}\int_{\iota_{1}}^{t}(\int_{g(s)}^{g(t)}\frac{d\sigma}{r(\sigma)})f(k, s)ds\leqq[y(g(t_{1}))]^{1-\tau}-[y(g(t))]^{1-\tau}$

Letting $ t\rightarrow\infty$ in (34) we obtain

$\int_{t_{1}}^{\infty}\rho(g(s))f(k, s)ds<\infty$ ,

which contradicts (30). A parallel argument holds if we assume that $y(t)<0$

for $t\geqq t_{0}$ . This finishes the proof.
COROLLARY 3. Consider Equation (24) with $0<\gamma<1$ . In addition to (3) assume

tkat $g^{j}(t)\geqq 0$ for $ t\geqq\alpha$ . A sufficient condition for (24) to be oscillatory is that

$\int^{\infty}o(\sigma(t))p(t)dt=\infty$ .
From Theorem 2 it follows that if Equation (1), whether superlinear or

sublinear, is oscillatory, then

(35) $\int^{\infty}\rho(t)|f(c, t)|dt=\infty$ for all $c\neq 0$ .

For the oscillation of the strongly sublinear equation (1) there is a gap be-
tween the necessary condition (35) and the sufficient condition (30). Clearly,
this gap is caused by the presence of the advanced argument $g(t)$ . The fol-
lowing example shows that (35) is not sufficient for the strongly sublinear
equation (1) to be oscillatory.

EXAMPLE 1. Consider the advanced equation

$[t^{3}y^{\prime}(t)]^{\prime}+t[y(t^{3})]^{1/3}=0$ ,

which has a nonoscillatory solution $y(t)=t^{-1}$ . Obviously, (35) is satisfied but
(30) is violated.

It may happen, however, that (35) ig identical with (30). This is the case,
for instance, if $g(t)\equiv t$, or if $r(t)$ and $g(t)$ are subject to one of the following
restrictions:
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(I) $r(t)$ is asymptotic to $cl(\log t)^{\alpha}$ as $ t\rightarrow\infty$ , and $\lim_{t-}\sup_{\infty}g(t)/t^{\beta}<\infty$ , where
$c>0,$ $\alpha>1$ and $\beta\geqq 1$ ;

(II) $r(t)$ is asymptotic to $ct^{p}$ as $ t\rightarrow\infty$ , and $\lim_{t\rightarrow}\sup_{\infty}g(t)/t<\infty$ , where $c>0$

and $p>1$ ;
(III) $r(t)$ is asymptotic to $ce^{qt}$ as $ t\rightarrow\infty$ , and $g(t)=t+\tau(t),$ $0\leqq\tau(t)\leqq M$, where

$c>0,$ $q>0$ and $M>0$ .
In each of these cases (35) becomes a necessary and sufficient condition for
the strongly sublinear equation (1) to be oscillatory. It might be a question
of interest to characterize completely the oscillation of the general advanced
equation (1) which is strongly sublinear.

\S 3. The case where $\int_{\alpha}^{\infty}r(t)^{-1}dt=\infty$ .

We now turn to the advanced differential equation (1) for which (4) is
satisfied. In what follows we use the function $R(t)$ defined by

$R(t)=\int_{\alpha}^{t}r(s)^{-1}ds$ .
A) Behavior of nonoscillatory solutions. We need the following lemma

which describes the possible behavior of nonoscillatory solutions of (1).

LEMMA 3. Let (4) hold. If $y(t)$ is an eventually positive solution of (1),

then there are positive numbers $t_{1},$ $a_{1},$ $a_{2}$ such that

(36) $y^{\prime}(t)>0$ for $t\geqq t_{1}$ ,

and

(37) $a_{1}\leqq y(t)\leqq a_{2}R(t)$ for $t\geqq t_{1}$ .

We omit the proof of this lemma, since it is essentially the same as that
of the lemma of Bykov and Merzlyakova [3]. Clearly, similar inequalities
hold for an eventually negative solution of (1).

B) Existence of nonoscillatory solutions. Lemma 3 tells us that, among
all nonoscillatory solutions of (1), those which are bounded can be regarded
as the ”minimal” solutions, and those which are asymptotic to functions of
the form $aR(t),$ $a\neq 0$, as $ t\rightarrow\infty$ can be regarded as the ”maximal” solutions.
Necessary and sufficient conditions for the existence of these two special types
of nonoscillatory solutions are given in the following theorems.

THEOREM 5. Let (1) be either superlinear or sublinear. Assume that (4)

holds. Then, a necessary and sufficient condition for (1) to have a nonoscillatory
solution $y(t)$ such that $\lim_{t\rightarrow\infty}y(t)/R(t)=const$ . $\neq 0$ is that
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(38) $\int^{\infty}|f(cR(g(t)), t)|dt<\infty$ for some $c\neq 0$ .

THEOREM 6. Let (1) be either superlinear or sublinear. Assume that (4)

holds. Then, a necessary and sufficient condition for (1) to have a bounded non-
oscillatory solution is that

(39) $\int^{\infty}R(t)|f(c, t)|dt<\infty$ for some $c\neq 0$ .

We shall only prove Theorem 6, since the proof of Theorem 5 is very
similar.

PROOF OF THEOREM 6. (Necessity) Let $y(t)$ be a bounded nonoscillatory
solution of (1). We may suppose that $y(t)>0$ for $t\geqq t_{1}$ , since the case $y(t)<0$

can be handled similarly. By (36) $y^{\prime}(t)>0$ for $t\geqq t_{1}$ , so there are positive con-
stants $c_{1},$ $c_{2}$ such that

\langle 40) $c_{1}\leqq y(g(t))\leqq c_{2}$ for $t\geqq t_{1}$ .

Multiplying (1) by $R(t)$ and integrating from $t_{1}$ to $t$, we have

$R(t)r(t)y^{\prime}(t)-y(t)-R(t_{1})r(t_{1})y^{\prime}(t_{1})+y(t_{1})$

$+\int_{t_{1}}^{t}R(s)f(y(g(s)), s)ds=0$ ,

which implies in view of the boundedness of $y(t)$ and the positivity of $y^{\prime}(t)$

that

(41) $\int_{t_{1}}^{\infty}R(t)f(y(g(t)), t)dt<\infty$ .

From (40) and (41) we readily have

$\int_{t_{1}}^{\infty}R(t)f(c_{1}, t)dt<\infty$ if (1) is superlinear,

$\int_{t_{1}}^{\infty}R(t)f(c_{2}, t)dl<\infty$ if (1) is sublinear.

(Sufficiency) Suppose (39) holds with $c>0$ . Put $a=c/2$ if (1) is superlinear
and $a=c$ if (1) is sublinear. Choose $T>0$ so large that

(42) $\int_{T}^{\infty}R(t)f(c, t)dt<\frac{a}{2}$

and consider the integral equation

(43) $y(t)=a+\int_{T}^{t}R(s)f(y(g(s)), s)ds+R(t)\int_{t}^{\infty}f(y(g(s)), s)ds$ .

A solution of (43) is clearly a solution of Equation (1). We introduce the
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Banach space $ CB[T, \infty$) of all bounded continuous functions $ y:[T, \infty$ ) $\rightarrow R$ with
norm

$\Vert y\Vert=\sup\{|y(t)| : t\geqq T\}$ .
We define the operator $\Psi$ by

$(\Psi y)(t)=a+\int_{T}^{t}R(s)f(y(g(s)), s)ds+R(t)\int_{t}^{\infty}f(y(g(s)), s)ds$ .

A fixed point of $\Psi$ is sought for in the set $ Y=\{y\in CB[T, \infty$) $:a\leqq y(t)\leqq 2a$ for
$t\geqq T\}$ , which is a bounded, closed and convex subset of $ CB[T, \infty$).

i) $\Psi$ maps $Y$ into $Y$. If $y\in Y$, then $(\Psi y)(t)\geqq a,$ $t\geqq T$, and by (42)

$(\Psi y)(t)\leqq a+\int_{T}^{\infty}R(s)f(y(g(s)), s)ds$

$\leqq a+2\int_{T}^{\infty}R(s)f(c, s)ds\leqq 2a$ , $t\geqq T$ .

ii) $\Psi$ is continuous. Let $\{y_{n}\}$ be a sequence of elements of $Y$ such that
$\lim_{n\rightarrow\infty}\Vert y_{n}-y\Vert=0$ . Since $Y$ is closed, $y\in Y$, and

$|(\Psi y_{n})(t)-(\Psi y)(t)|\leqq\int_{T}^{\infty}G_{n}(s)ds$ , $t\geqq T$ ,

where
$G_{n}(s)=R(s)|f(y_{n}(g(s)), s)-f(y(g(s)), s)|$ .

It follows that

(44) $\Vert\Psi y_{n}-\Psi y\Vert\leqq\int_{T}^{\infty}G_{n}(s)ds$ .

Noting that $\lim_{n-}G_{n}(s)=0$ and $G_{n}(s)\leqq 4R(s)f(c, s)$ for $s\geqq T$ and applying the

Lebesgue dominated convergence theorem, we obtain from (44) that
$\lim_{n\rightarrow\infty}\Vert\Psi y_{n}-\Psi y\Vert=0$, proving the continuity of $\Psi$ .

iii) $\Psi Y$ is precompact. It suffices to prove that $\Psi Y$ is equicontinuous on
$[T, \infty)$ . Let $y\in Y$ and $t_{2}>t_{1}\geqq T$. Then, we have

$(\Psi y)(t_{2})-(\Psi y)(t_{1})=\int_{t_{1}}^{t_{2}}R(s)f(y(g(s)), s)ds$

(45)

$+R(t_{2})\int_{\iota_{2}}^{\infty}f(y(g(s)), s)ds-R(t_{1})\int_{\iota_{1}}^{\infty}f(y(g(s)), s)ds$

$=\int_{t_{1}}^{r_{2}}R(s)f(y(g(s)), s)ds-R(t_{2})\int_{t_{1}}^{t_{2}}f(y(g(s)), s)ds$

(46)

$+[R(l_{2})-R(t_{1})]\int_{\iota_{1}}^{\infty}f(y(g(s)), s)ds$ .
Using (45) we have
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$|(\Psi y)(t_{2})-(\Psi y)(t_{1})|\leqq 3\int_{t_{1}}^{\infty}R(s)f(y(g(s)), s)ds$

$\leqq 6\int_{t_{1}}^{\infty}R(s)f(c, s)ds$ .

Since by (39) the last integral tends to zero as $ t_{1}\rightarrow\infty$ , given an $\epsilon>0$ , there
exists $T^{*}>T$ such that for all $y\in Y$,

(47) $|(\Psi y)(t_{2})-(\Psi y)(t_{1})|<\epsilon$ if $t_{2}>t_{1}\geqq T$ .
Using (46) we see that if $T\leqq i_{1}<t_{2}\leqq T^{*}$ , then

$|(\Psi y)(t_{2})-(\Psi y)(t_{1})|\leqq\int_{t_{1}}^{t_{2}}R(s)f(y(g(s)), s)ds$

$+R(t_{2})\int_{t_{1}}^{t_{2}}f(y(g(s)), s)ds+|R(t_{2})-R(t_{1})|\int_{\ell_{1}}^{\infty}f(y(g(s)), s)ds$

$\leqq aR(T)^{-1}|R(t_{2})-R(t_{1})|+4aR(T^{*})\int_{t_{1}}^{t_{2}}f(c, s)ds$ ,

which shows that there exists $\delta>0$ such that for all $y\in Y$,

(48) $|(\Psi y)(t_{2})-(\Psi y)(t_{1})|<\epsilon$ if $ t_{2}-t_{1}<\delta$ .
In view of (47) and (48) we are able to decompose the interval $[T, \infty$ ) into a
finite number of subintervals on each of which all functions $\Psi y,$ $y\in Y$, have
oscillations less than $\epsilon$ . Thus, $\Psi Y$ is precompact.

By Schauder’s fixed point theorem there exists $y\in Y$ such that $y=\Psi y$ .
Then, $y(t)$ is a solution to the integral equation (43), and since

$y^{f}(t)=r(t)^{-1}\int_{t}^{\infty}f(y(g(s)), s)ds>0$ ,

$y(t)$ goes monotonically to a positive limit in $[a, 2a]$ as $ t\rightarrow\infty$ . This completes
the proof.

COROLLARY 4. (i) Equation (24) which satisfies (4) has a nonoscillatory
solution $y(t)$ such that $\lim_{t\rightarrow\infty}y(t)/R(t)=const$ . $\neq 0$ if and only if

$\int^{\infty}[R(g(t))]^{\gamma}\beta(t)dt<\infty$ .

(ii) Equation (24) which satisfies (4) has a bounded nonoscillatory solution
if and only if

$\int^{\infty}R(t)p(t)dt<\infty$ .

C) Oscillation criteria. We provide oscillation criteria for Equation (1)
$whi^{\rho}hi^{r}$ either strongly superlinear or strongly sublinear. As in the preced-
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ing section a necessary and sufficient condition is obtained for the oscillation
of the strongly superlinear equation (1).

THEOREM 7. Let (1) be strongly superlinear. Supp0se (4) holds. Then, $a$

necessary and sufficient condition for (1) to be oscillatory is that

(49) $\int^{\infty}R(t)|f(c, t)|dt=\infty$ for all $c\neq 0$ .

PROOF. The necessity of (49) follows immediately from Theorem 6. To
prove that (49) is sufficient let $y(t)$ be a nonoscillatory solution of (1). We
may suppose that $y(g(t))>0$ for $t\geqq t_{1}$ . By Lemma 3 $y^{\prime}(t)>0$ for $t\geqq t_{1}$ . Inte-
grating (1) from $t$ to infinity, we have

$r(t)y^{\prime}(t)\geqq\int_{t}^{\infty}f(y(g(s)), s)ds$ , $t\geqq t_{1}$ .

Dividing the above by $r(t)$ and integrating from $t_{1}$ to $t$, we find

$y(t)\geqq\int_{t_{1}}^{t}R(s;t_{1})f(y(g(s)), s)ds$ , $t\geqq t_{1}$ ,

where

$R(t;t_{1})=\int_{t_{1}}^{t}r(s)^{-1}ds$ .

Since $y(t)$ is increasing and $g(t)\geqq t$, it follows that

(50) $y(g(t))\geqq\int_{t}^{\iota_{1}}R(s;f_{1})f(y(g(s)), s)ds$ , $t\geqq t_{1}.$

.

On the other hand, there exists a constant $k>0$ such that $y(g(t))\geqq k$ for
$t\geqq t_{1}$ , so that by the strong superlinearity

$f(y(g(s)), s)=[y(g(s))]^{\sigma}\cdot[y(g(s))]^{-\sigma}f(y(g(s)), s)$

(51)
$\geqq k^{-\sigma}[y(g(s))]^{\sigma}f(k, s)$ ,

where $\sigma>1$ is the strong superlinearity constant. Combining (50) with (51)
gives

(52) $[y(g(t))]^{-\sigma}\leqq k^{\sigma^{2}}(\int_{l}^{t},R(s;t_{1})[y(g(s))]^{\sigma}f(k, s)ds)^{-\sigma}$

Multiplying (52) by $R(t, t_{1})[y(g(t))]^{\sigma}f(k, t)$ and integrating over $[t_{2}, t],$ $t_{2}>t_{1}$ . we
obtain

$\int_{r_{2}}^{t}R(s;l_{1})f(k, s)ds\leqq\frac{k^{\sigma^{2}}}{\sigma-1}(\int_{t_{1}}^{v}R(s;t_{1})[y(g(s))]^{\sigma}f(k, s)ds)^{1-\sigma}|_{u=t}^{u=t_{2}}$

which yields $\int_{t_{2}}^{\infty}R(t;t_{1})f(k, t)dt<\infty$ , a contradiction to (49). The proof is there-

fore complete.
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COROLLARY 5. Consider Equation (24) with $\gamma>1$ . Supp0se (4) holds. Then,
(24) is oscillatory if and only if

$\int^{\infty}R(t)p(t)dt=\infty$ .

We now pass to the strongly sublinear equation (1).

THEOREM 8. Let (1) be strongly sublinear. Supp0se (4) holds. If

(53) $\int^{\infty}\frac{R(t)}{R(g(t))}|f(cR(g(t)), t)|dt=\infty$ for all $c\neq 0$ ,

then (1) is oscillatory.
PROOF. Let $y(t)$ be a nonoscillatory solution of (1). We may suppose that

$y(g(t))>0$ for $t\geqq t_{1}$ . From (1), $r(t)y^{\prime}(t)$ is nonincreasing, and by Lemma 3 $y^{\prime}(t)$

$>0$ for $r\geqq r_{1}$ . We observe that

$y(t)>\int_{t_{1}}^{t}r(s)^{-1}r(s)y^{\prime}(s)ds\geqq r(t)y^{\prime}(t)\int_{\ell_{1}}^{t}r(s)^{-1}ds$ ,

that is,

(54) $y(t)>R(t;t_{1})r(t)y^{\prime}(t)$ , $t\geqq t_{1}$ .

On the other hand, from Lemma 3 it follows that there are positive num-
bers $t_{2}>t_{1}$ and $k$ such that

(55) $y(t)\leqq kR(t;t_{1})$ or $y(g(t))\leqq kR(g(t);t_{1})$ for $t\geqq t_{2}$ .

Noting that $y(g(t))\geqq y(t)$ and using (54) and (55) together with the strong
sublinearity with constant $\tau<1$ , we see that

$\{-[r(t)y^{\prime}(l)]^{1-\tau}\}^{\prime}=(1-\tau)[r(t)y^{\prime}(t)]^{--}f(y(g(t)), t)$

$=(1-\tau)[r(t)y^{\prime}(t)]^{-\tau}\cdot[y(g(t))]^{\tau}\cdot[y(g(t))]^{-\tau}f(y(g(t)), t)$

$\geqq(1-\tau)[r(t)y^{\prime}(t)]^{-\tau}\cdot[y(t)]^{\tau}\cdot[y(g(t))]^{-\tau}f(y(g(t)), t)$

$\geqq(1-\tau)k^{-\tau}[R(t;t_{1})]^{-}[R(g(t);l_{1})]^{-\tau}f(kR(g(t);t_{1}), t)$

$\geqq(1-\tau)k^{-\tau}[R(t;t_{1})/R(g(t);t_{1})]^{\sim}f(kR(g(t);t_{1}), t)$ .

An integration of the above shows that

$\int^{\infty}\frac{R(t}{R(g(t}j\underline{f}_{1}));t_{1}\overline{)}f(kR(g(t);t_{1}), t)dt<\infty$ ,

which contradicts (53). This completes the proof.
REMARK. If we assume, in addition to the hypotheses of Theorem 8, that
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$f(y, t)$ is nondecreasing in $y$ for each $t$, then we can replace (53) by the fol-
lowing weaker condition:

$\int^{\infty}|f(cR(t), t)|dt=\infty$ for all $c\neq 0$ .

On the basis of the above remark we have the following
COROLLARY 6. Consider Equation (24) with $0<\gamma<1$ . Supp0se (4) holds.

Then, (24) is oscillatory if

$\int^{\infty}[R(t)]^{\gamma}p(t)dt=\infty$ .

From Theorem 5 it follows that

(56) $\int^{\infty}|f(cR(g(t)), t)|dt=\infty$ for all $c\neq 0$ .

is a necessary condition for (1) which is either superlinear or sublinear to be
oscillatory. For the strongly sublinear equation (1) it may happen that (53)

is equivalent to (56). This is the case, for example, if $g(t)\equiv t$, or if $r(t)$ and
$g(t)$ satisfy one of the following conditions:

(I) $r(t)$ is asymptotic to $ct$ as $ t\rightarrow\infty$ , and $\lim_{t\rightarrow}\sup_{\infty}g(t)/t^{\beta}<\infty$ , where $c>0$

and $\beta\geqq 1$ ;
(II) $r(t)$ is asymptotic to $ct^{p}$ as $ t\rightarrow\infty$ , and $\lim_{t}\underline{\sup}g(t)/t<\infty$ , where $c>0$

and $p<1$ ;
(III) $r(t)$ is asymptotic to $ce^{-qt}$ as $ t\rightarrow\infty$ , and $g(t)=t+\tau(t),$ $0\leqq\tau(t)\leqq M$,

where $c>0,$ $q>0$ and $M>0$ .

In each of the above cases (56) is a necessary and sufficient condition in order
that the strongly sublinear equation (1) be oscillatory.

However, when $g(t)$ is a general advanced argument, as the following ex-
ample shows, there is a gap between (53) and (56) which prevents (56) from
being a sufficient condition for the oscillation of (1).

EXAMPLE 2. Consider the advanced equation

$[t^{-2}y^{\prime}(t)]^{\prime}+2t^{-4}[y(t^{3})]^{1/3}=0$ ,

which has a nonoscillatory solution $y(t)=t$ . As is easily seen, (56) is satisfied
but (53) is violated. We note that the associated ordinary differential equation

$[t^{2}y^{\prime}(t)]^{\prime}\perp 2t^{-4}[y(t)]^{1/3}=0$

is oscillatory.
We have been unable to bridge the gap between (53) and (56) to establish

a necessary and sufficient condition for the oscillation of the strongly sublinear
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equation (1).

CONCLUDING REMARKS. We remark that in the strongly superlinear case
the oscillatory behavior of Equation (1) satisfying (3) is considerably different
from that of Equation (1) satisfying (4). In fact, according to Theorem 7,
when (4) holds, Equation (1) and the corresponding ordinary differential equa-
tion

(57) $[r(t)y^{\prime}(t)]^{\prime}+f(y(t), t)=0$

exhibit the same oscillatory behavior. On the contrary, by Theorem 3, if (3)
holds, the oscillation of Equation (1) for some $g(t)$ implies that of Equation
(57), but the converse is not always true as the following example shows.

EXAMPLE 3. Consider the differential equations

$[t^{3}y^{\prime}(t)]^{\prime}+t^{9}[y(t)]^{3}=0$ ,

$[t^{3}y^{\prime}(t)]^{\prime}+t^{9}[y(t^{3})]^{3}=0$ .
The former is oscillatory by Theorem 3, whereas the latter possesses a non-
oscillatory solution $y(t)=t^{-1}$ .

We conclude with the remark that there is a remarkable difference be-
tween the oscillatory character of advanced differential equations of the form
(1) and that of retarded differential equations of the form (1). The difference
will be apparent if we compare our results (in particular, Theorems 3, 4, 7, 8)

with those obtained in [6] (in particular, Theorems 4, 5 of [6]).
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