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Suppose that <a, b> is an irreducible subgroup of the real special linear
group SL(2, R) with tra=a, trb=8, trab=y. Let a=2, f=2. Purzitsky
and Rosenberger [9] proved that y=afB+2 or y<—2 are the necessary and
sufficient conditions for <a,b> to be the discrete free product of cyclic group
{ay and <b)>. For a, B=C, suppose that |a|=2|8]|=2 and {q,b) is not a free
product of <{a) and <{b). What can we say about the freeness of the groups
{a™ b™) for some integer n? In the present paper we shall discuss this question.

It was shown (cf. Theorem 3.5) that if tra=2=trb then a,b can be
reduced simultaneously into the form:

1 0 1 r—2
, r#2
1 1 0 1

respectively. In this case, a positive integer n can be chosen such that
|n(y—2)1 24

so that <a" b) is free by a result of Chang, Jennings and Ree [1], even though
{a, by need not be free. Consequently <a” b™) is free for some integer sufficiently
large. However if the traces of both a and b are not equal to 2, then it is not
so obvious that we conclude about the freeness of <a” b®>. We shall show that
if |a]>2, |B]>2, and {a, by is irreducible then there always exists an integer
n such that {a* b™) becomes a free group. We shall prove that if the trace
of one of the a and b is 2 while that of the other is >2, and a,b are non-
trivial elements in SL(2, R), then <a" b™) is free for sufficiently large n.
Throughout this paper, R and C stand for the sets of real and complex num-
bers respectively. I denotes the 2xX2 identity matrix. Explanation for other
concepts can be found in Dixon [2) or Wehrfritz [10].

Before we prove our main theorems, we mention some of the results used
to prove them.

1. PING PONG LEMMA OF MACBEATH [4]. Let A and B be groups of
permutations of a set 2 and let G be the group generated by A and B together.
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Suppose that 2 contains two disjoint non-empty sets I' and 4 such that each
non-trivial element of A maps I’ into 4 and each non-trivial element of B maps
4 into I'. Then either G is the free product of its subgroups A and B or else
both A and B have order 2 and G is a dihedral group.

For another proof of Macbeath’s lemma see Lyndon and Ullman [3].

2. LEMMA. Let {a,b) be an irreducible subgroup of SL(2,C) with tr a=2,
tr b=p, trab=y. Then a and b can be brought, by conjugation, simultaneously

PrROOF. Follows from the Proof of Theorem 3.1 [5].

3. LEMMA (Theorem 3.6 [5]). Let G=<a,b) be an irreducible subgroup of
SL(2,C), 2 a characteristic voot of a and p a characteristic root of b. Then a
and b can be brought, by conjugation, simultaneously into the form:

o) (60

21z 127, lplzle.

where

Now we prove the main result of this paper.

4. THEOREM. For an irreducible subgroup {a,b> of SL(2,C) with tr a=«,
tr b=p, trab=y, let |a|>2, |B|>2. Then {a™ b™) is free for some sufficiently
large n.

Proor. Step I. By Lemma 3, we can take a and b as

P
a= , b= .
g ! 0 pt

Let a, b denote the induced projective transformations of the projective line
CU{c0}. Then

@)=, b@=LEEL, zecU(e},
n(z)— Az n( gy 22T (= ")

where
g=¢/Q=2"Y, p'=n/(g—p).
Step 2. If z+#0, then

nra A
a (Z)’— E’(Z”—Z'")z+l‘”

and if z#1/&’ and z+#o0

1/& as n—oo
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- A"
a (z)= E’(Z‘"—Z%z—l—l” 0 as n—oo,

Similarly, if z=0, then

b(z) = ﬂ”z+n;t(_pgl"—u‘”)

0 as n—oo

and if z#—»’ and z+# o,

bn(z) = L2 (")
#1&
Step 3. Choose disjoint open sets A,, A4,, By, B, of C*=C\U {0} such that
0 A, 1/&’A,, oB,, —p’eB,. Such sets always exist, for example, for
suitably small ¢>0, one can take:

7’ as n—co,

A, ={zeC*: |z|<e}, Ay={zeC*: |z—1/§'| <&},
B,={zeC*: |1/z|<¢}, B,={zeC*: |z+7'|<e}
where 1/&’#—7’ for otherwise &p=—(A—2"")(g—p™) which is a condition of
reducibility of <a,b) by 3.8, [6]. Put
A=AVA,, B=B,UB,.
Step 4. For each z€B, z#x
a’(z) — 1/’ A and a™™(z)— 04 as n—oo
and a™(0)=a ™(0)=1/&’. Hence, for sufficiently large n,
ar"(B)C A.
Likewise, for all ze A, z#0
b*(z) —> co€B and B ™(z) — —7’'<B as n—oo
and b"(0)=oc0, b "(0)==—7’. Hence, for sufficiently large n,
b*"(A)C B.
By the Ping Pong Lemma 1 of Macbeath {a* b™> is a free group on two
generators a” and b" for sufficiently large n, as required.

As has already been mentioned if tra=a=2, trb=8=2 and <{q,b) is an
irreducible subgroup then <{a" b™) is free for some positive integer n. In the
next theorem, we show that a similar statement is valid if the trace of at least
one of the matrices a or b is 2 while that of the other >2 and a,b=SL(2, R).

5. THEOREM. Let {a,b)> be an irreducible subgroup of SL(2, R) such that
the trace of at least one of the matrices a, b, say of a, is 2 and trb>2. Then

{a™ b™y is free for some positive integer n.
Proor. If the trace of at least one of the matrices a or b, say of a, is 2
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then by Lemma 2 we can conjugate a and b and transform them simultaneously

into the form
R T
a, = ’ b1:
1 1 —1/(r—8) B

where 8=trb, y=trab and y+p in the case when {q, b) is irreducible. Clearly,
{a", b™) is free if and only if <{a?, b7 is free. We have the following two cases
to discuss

(i) y—pB=x>0. In this case

Cie s
arb,=| .
—1/x nx+p

Hence, {a?, b,> is, by the theorem of Purzitsky and Rosenberger [7, 9] free
provided that

nx+p=px2+2
that is, if

nx=p42. )

Since x=y—f8>0, and B is a fixed real number >2, a positive integer n can
be chosen such that the inequality (1) is satisfied.
Hence, <a?, b,> and consequently, {a”, b™) is free for some positive integer n.
(i) y—p=—x<0 so that x>0. In this case, we consider the group {af, by*).

Since
i_l: ( ‘B x) :b/
-1/x 0

( )
al b —_

we have

so {at, b’y is, by the theorem of Purzitsky and Rosenberger [7, 9], free if

nx+pB=26+2
that is if,
nx=B+2. (2)

As before, since x>0 and j3 are fixed real numbers >2, an n can be chosen
such that the inequality (2) is satisfied. Hence <a?,b’) and so also {a” b™) is
free for some positive integer n. This completes the proof of the theorem.
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