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§1. Introduction.

Let I" be the modular group SL(2, Z) and '=GL*(2, Q). Let H be the
complex upper half plane {zC; Imz>0}. We define the action of an

element (¢ Z) of GL*2, R) on H by

az+b
cz+d

for ze H. Then I" and I’ operate on H. Let J(2) be the standard modular
function of level one. Then the classical theory of complex multiplication
shows:

THEOREM C. If z€ H is fixed by some non-scalar element of I') z is an
algebraic number and J(2) generates an abelian extension of Q(2).

On the other hand, T. Schneider obtained the following theorem:

THEOREM T. Let z= H be an algebraic number. Suppose that z is not
fixed by any non-scalar element of I'. Then J(2) is a transcendental number.

In this paper, we shall give a generalization of Theorem T.

Let B be an indefinite quaternion algebra over the rational number field
Q, © a maximal order of B, I' the group of all the units of © of reduced
norm one, and I" the group of all the invertible elements of B with positive
reduced norm. Now we fix an irreducible representation X of B into M,(R)
so that the image X(B) is contained in M,(Q), where @ is the algebraic closure
of @ in C. Then we may regard I" and I’ as subgroups of GL*(2, R) acting
on H. As a generalization of the function J/, G. Shimura has constructed a
holomorphic map ¢ from H into a projective space P?, satisfying the following
conditions (cf. Shimura [4], §9): (i) ¢ induces a biregular isomorphism from
I'\H onto an algebraic curve in P'; (ii) if z is fixed by some non-scalar
element of I, ¢(2) generates an abelian extension over a certain imaginary
quadratic field. We shall call the map ¢ the Shimura map.

Now our main result can be stated as follows:

Z —>
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THEOREM 1. Let z< H be an algebraic number. Suppose z is not fixed by
any non-scalar element of I'. Then ©(2) is not algebraic.

It should be noted that the generalization from Theorem T to our theorem
is not trivial. We use the fact that the commutor of X(B) in M,C) is the
set of scalar matrices. Therefore our method cannot be applied to a more
general case in which I” is the Siegel modular group or the unit group of a
quaternion algebra over a totally real algebraic number field of degree > 1.

§2. A reformulation of Lang’s result.

In [2], S. Lang considered the transcendency of the moduli of abelian
varieties. In this section, we shall prove a theorem about the endomorphisms
of abelian varieties, which is, though stronger than the corresponding
2 of Lang [2], essentially proved in his paper.

Let K be a finite algebraic number field, A an abelian variety defined
over K. Moreover suppose every endomorphism of A is defined over K. Let
T\(A) be the tangent space of A at its origin. Let {e,,:--,e,} be a K-base of
T,(A), and identify T,(A) with C™ by

T(A)> ze,+ -+ +z,2, «<—> (24, -+ ,2,) = C".
Then C” can be considered as a covering of A in a natural manner. Let
to: C"— A be the covering map and D=¢3(0). Then ¢, induces a biregular
isomorphism C"/D= A. Let M be the set of meromorphic functions on C"
which are invariant under the translations of the elements of D and K-rational
as functions on A.

THEOREM 2. Let L be a C-linear endomorphism of C*. Then the following
two statements are equivalent.

(i) L maps DRzQ into DR;Q, i.e., L is an element of End (A)R;Q.

(ii) There are n elements x,, -, x, of DXz Q which are linearly independent
over C and which are mapped into DR ;Q by L. Moreover the matrix represen-
tation of L by the C-base {e,,---,e,} of C™ is contained in M,(K).

PROOF. * First we shall show that (i) implies (ii). Multiplying by some
natural number if necessary, we may assume that L is an endomorphism of
A. Then, if f belongs to M, foL also belongs to M. For ze C", we define

. n . 3
its: components zy, -+, 2, by z= 3] z;e;. Since {e,, -, e,} gives-a K-base of
k=1
the tangent space of the origin of A, [%f(zl,---,zn)] belongs to K
i 2=0

whenever f(2)=f(z, -+, 2, belongs to M and —a—az—ff(zl,---,z,,) is finite at

zy=++=2,=0. Let f;, -, f, be n elements of M satisfying (—a%fj)(mz 0ij»

where d;; is the Kronecker delta. Let (a;;) be the matrix representation of



270 Y. MoRrITA

L by the C-base e,,---,¢, of C*. Then
0 n 0
[ 0z; fj(Lz)l:o :lg:l aki(_a%:fj)(o) = &y

Therefore a;; belongs to K. Since the first assertion of (ii) is obvious, we
see that (i) implies (ii).

For the proof of the fact that (ii) implies (i), we need a few preparatory
lemmas. Let g(2) be a meromorphic functions on C*. Then we say that the
order of g(2) is not greater than p if there exist a constant ¢ and two entire
functions g(2) (t=1,2) such that g(2)=g,(2)/g,(2), £.(2)*+0 and |g(2)|=

exp (c|z|®), where |z|*= i‘ |z,]1% for z=1(z,, -+, 2,).
y=1
LEMMA 1. Let

0)=_3, exp 2ni{5-r[m+g 1+ (m+ )+ 1)}

be a 0-function, where g and h are real n-vectors, r is a complex symmetric
matrix with positive imaginary part and t[m+gl="*(m+g)r(m+g). Then there
is a constant ¢ satisfying |0(2)| < exp (c|z|?.

The proof of this lemma is easy and left to the reader.

COROLLARY. Let C*/D be an abelian variety. Let f(2) be a meromorphic
Sunction on C™ invariant under the translations by the elements of D. Then
the order of f(2) is not greater than 2.

PrROOF. Since f(2) is a meromorphic function on the abelian variety C"/D,
it can be written as a rational function of some f-functions of the above form
(cf. ex., [1], §2). Therefore the order of f(2) is not greater than 2.

LEMMA 2. Let K be a finite algebraic number field. Let g, -+, gy be mero-
morphic functions on C™ whose orders are not greater than a certain real

number p. Suppose that the partial derivation —2— maps the ring K[ gy, -+, 8u]
i

into itself for every i. Moreover suppose that there are n C-linearly independent
elements x,, x,, -+, x, 0f C™ such that g,(2) (=1,2,---, M) belongs to K for any
z2e Zx,+2Zx,+ -+ +Zx,. Then the transcendental degree of K(gy, -+, 8u) over
K is not greater than n.

Proor. This lemma is a special case of Lang [2], p. 181, Theorem 1.

LEMMA 3. Let C*/D be a complex torus. Let g(z) and f(2), f(2), -+, fm(2)
be meromorphic functions on C™. Suppose f(2), -, fu(2) are invariant under
the translations by the elements of D, and

g@"+f(Dg@™+ -+ +fu()=0.

Then there is a natural number d such that g(dz) is invariant under the trans-
lations by the elements of D.
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PROOF. Let V be a proper analytic subset of C™ such that g(z), fi(2), -+,
Sn(2) are holomorphic on C"—V. By the assumption, f;(z-+Ilw)=f,(z) for any
weD, leZ and j=1, ---, m. Therefore

gztloy"+f(2)g(z+1lwy" 1+ - +fn(2)=0.
Now we fix w and put
Su,={zeC"—V | g(z+Lw)=gz+Lo)} .
‘Then, since the number of the distinct roots of
X" fUDX™ e 4 () =0

is at most m, we see that the sets S,;,;, (0=1[,<I,<m) cover C*"—V. Since
these S,,,;, are analytic subsets of C"—V, there are some [, [, € Z satisfying
Si,1,=C"—V. Therefore there are [, =[,(w), [,=[,(w) € Z such that g(z+[,w)
=g(z+Lw) for all ze C"—V, hence g(z+lLw)=g(z+Lw) for all zC".
Putting k(w)=L(w)—[(®), we have g(z+k(w)w)=g(z) for all z€C". Let
{w,, -+, w,,} be a Z-base of D, and d be the least common multiple of k(w,),
, k(w,,). Then d has the required property of our lemma. Q.E.D.
Now we shall start the proof of the fact that (ii) implies (i).
Let M be as before. If f= M, we can write

) fa4w) = T a@b,w)/ X e,@)dsw)

with a;, b;, ¢;, d; € M, since M is the function field of the abelian variety C"/D.
Let w, be a point on C™ which gives a generic point of C"/D over K. We
see that the left hand side of (x) is defined at z=0, w=w, Therefore the
Tight hand side of (%) is also defined at z=0, w=w,. Hence it belongs to the
local ring at z=0, w=w,. Therefore we may assume that a,0), ¢c;(0)e K
and Zc,(O)a’ (w,)#0. Then, since {z;} corresponds to a K-base of T,(A),

aj

(O)e K. From (%), we have

(a%f)(wo =[ 2 sGtuw]

(2 2 (05, (W) (0 (wi)— <z:az<0>m<wo>>(2a L (0)dyw o>)
(20wl

"Therefore —aZL € M whenever fe M.
k

Now let fi(2), -+, f.(2) be n elements of M which are algebraically
independent over K and defined at 0. Since M is finite algebraic over
K(fy, -+, fa), the integral closure of K[ f,, -+, f»] in M is a finite K[ fy, =, fn]-
umodule. Let {hy, -, h,} be a finite set of elements of M such that K[hy, -+, Anl
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is the integral closure of K[ f,, -, f»] in M. Then h;0) (j=1, -+, m) is also
defined. Since ?azih"(z) (zé C™) is defined whenever h;(2) is defined, —a%i—h,
belongs to thelintegral closure of C[Ay, -+, h,] in M@xC. But we have seen
above that ‘a%;"’f belongs to M. Therefore it belongs to K[hy, -, hnl-

Therefore ‘ai_. maps K[h,, <+, h,] into itself.

NOVV let gl(z) = hl(z)y R gm(z): hm(Z), gm-!—l(z) = hl(LZ), Tty gzm(z) = hm(Lz)-
Since L can be represented by the base z,:-,z, as (a;;) with a;;€ K,

aaz-_ (t=1, -+, n) maps K[ gy, -+, Zom] into itself. Let x,,---, x, be n elements:

of DR®zQ with the property of (ii) of Here we may assume
Xy, ot Xy Lxy, -+, Lx, € D, since we can multiply x,, -+, x,, Lx,, -+, Lx, by
any large natural number. By the [Corollary] of Lemma 1 we can apply
Then we see that the transcendental degree of K(gy, -, Zm) iS
not greater than n. Since the transcendental degree of K(h,, ---, hy,) is n,
we see that h,(Lz2), .-, ha,(L2z) are algebraically dependent on K(hy, -, hn)-
Therefore, by there is a natural number d such that h,(dLz), ---,
hn(dLz) are meromorphic functions on C*/D. Since MK C=C(hy, - , hy),
we see that the map f(2)—f(dLz) induces a rational map of MRxC into
itself. Therefore dL induces an endomorphism of C"/D, so that L belongs
to End (A)Q:Q. Q.E.D.

§3. The proof of Theorem 1.

Now we shall prove [Theorem 1|, using of §2. First we shall
construct a family of abelian varieties following the methods of G. Shimura.

For any ze< H, put DZZX(O)(T)CCZ. Then D, is a lattice in C% Let p
be an element of © such that p? is a negative rational integer. Put

E,(X(a)(i), X(ﬁ)(i)) =trp,o(paB’), where a, = B, ’ and trp,, denote the

canonical involution and the reduced trace respectively. Then E, determines
a Riemann form on the complex torus C?%/D,. Let ¢* be a projective em-
bedding C?/D,— A,C P™ induced by E,. Let C, be the polarization of A,

which is induced by E,. Since O is a ring, X(y) (y €0) maps D,=X(O)(i>

into itself. Let 6,(y) denote the element of End(A,) defined by X(y). Then
0, gives a ring isomorphism from © into End (4,). Let P, be the isomorphism
class of the triple (4,, C,, 6;). Then the Shimura map ¢ has the following
property: Q(¢(2)) is the field of moduli of P,. (cf. Shimura [4], §9, [5], §5
and [7], §6, Theorem 6.7.) Therefore, if ¢(z) is algebraic, P, can be defined
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over a finite algebraic number field, i.e., A,, a fixed polar divisor of C, and
all elements of #,(0) can be defined over a common finite algebraic number
field (Shimura [6], p. 127, Proposition 1.5). Moreover, if z is not fixed by any
non-scalar element of I, End(A4,) coincides with 6,(©) (Shimura [6], p. 135,
Proposition 4.2).

Now assume z< H and ¢(z) are both algebraic and that z is not fixed by
any non-scalar element of I'. Then there is a finite algebraic number field K
satisfying the following conditions, (i) 6,(B)=End (4,)®zQ, (i) X(B) & My(K),
(iii) A,, every element of End (A4,) and z are all rational over K. We shall
prove by showing that these (i), (ii), (iii) lead to a contradiction.

Let ¢ be the canonical homomorphism from C? to C%*/D,. Let ¢*: C%/ D,
— A, be as before and ¢ be the composite map ¢*ogp: C?*— A,. Now fix a
K-base of the tangent space of the origin of A, and make a holomorphic map
£, from C? to A, as in § 2. Let B be the linear transformation of C? satisfying
¢=¢t,0B8. Then
(%) X(a)=pxa@p* (ac0)
is the analytic representation of the endomorphism #,(a) with respect to this
analytic coordinate system ¢,.

Now Z(a) belongs to M,(K) by the assumption X(®) S M,(K). Moreover,
since 6,(a) is an element of End (4,), X,(a) also belongs to M,(K) by (ii) of
Since BRq K = M,(K), we have M,(K)=BM,(K)B* from (xx).
‘Therefore a— BaBf™* (a=©) induces an automorphism of M(K). Therefore
we can write §=vya with yeC* and a € GL(2, K), and we have

Xo(@) = aX(@)a™,
z
D={va%(r)(1> * TEO}.
Let {yi=1, 72 75 74} be a Z-base of 0. Put
xn=vax(r)({)eD (=1234.

Here we may assume that x, and x, are linearly independent over C. More-
over we may assume

TsTeFTa>

since we may replace 7, by —7..
Now we note one fact. Let y,d= B. Then X (y)x;=2Xy(0)x, if and only

it x)(])=2@®(]), hence if and only if x(3n)(])=(7)- But, since

X0 = (Z 2) e M,(R) and z< R, the last condition implies a=1, b=,
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c=0, d=1, hence 6 'y =1. Therefore X,(y)x, =2X,(0)x, if and only if y=2a.
Let L be the C-linear endomorphism of C? which maps x; and x, onto x,

and x, respectively. Then L satisfies the statement (ii) of

(Observe that the vectors »~'x; have components in K, since z< K.) Therefore,

by L is an element of End (4,)®2,Q. Therefore, by the assump-
tion End (4,)Q,Q =0.(B), we may write L =X,(y) with some y & B. Then, by
the definition of L, we have

xo(T)x.l =L(x)=x3= xo(?’s)x1
and
xo(TTs)xl = XD(T)xz =Lx,=x,= Xo<74)x1 .

Therefore we have

T=7s
and
Tr2="74»
hence 7,7, =74 This contradicts our assumption 73y, # 7,. Q.E.D.
University of Tokyo
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