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§0. Introduction.

G. Shimura has studied about the arithmetic of Hermitian forms over a
quadratic extension K of an algebraic number field of finite degree k (cf. [7]).
He proved that the special unitary class number of an indefinite Hermitian
form is 1, and that the unitary class number of such a form can be described
in terms of the class number of K.

Our purpose is to determine the (special unitary, and unitary) class numbers
of definite Hermitian forms. In general, this problem does not seem to be
easy. We have been able to get only very partial solutions.

M. Kneser has developed a method to determine the class numbers of
definite quadratic forms in small numbers of variables with simple discriminants
[4]. His method can be applied to determine the class numbers of certain
families of Hermitian forms.

In particular, we get the following:

Let K=Q(~/—1), k=@Q. Take a vector space V over K with the bases
vy, -+, Uy Let H be the Hermitian form determined by

Hw,;, v))=20,;.
Let
L= il Ziv/ =170,
be the lattice in V.

In this case, it turns out that the unitary class number ¢, of the lattice
L and the special unitary class number ¢! of L, have the relation: ¢, <c}
=(n,4) ¢, where (n,4) is the G.C.D. of n and 4; ¢!=1if ¢,=1.

Moreover, we have ¢,>1 if n=5, and ¢;=c,=c;=c, =1, ¢;=2, ;=3
and ¢;=4. (In fact we can directly apply the results of M. Kneser to get
¢;=1for i=1,2,3,4) ¢.=3 or 4.

In §1, we investigate the relations of the unitary class numbers and the
special unitary class numbers. We will discuss about Kneser’s method in §2.
In the last section, we will calculate the above ¢,’s.

I am grateful to Prof. M. Kneser and the referee of this paper who gave
me helpful advice.
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§1. Unitary class numbers and special unitary class numbers.

1.1. Let & be an algebraic number field of finite degree and K be a quad-
ratic extension of 2. We denote by ©; (resp. ©x) the ring of integers in k
(resp. K); and by o the Galois involution of K/k.

Let V be a finite dimensional vector space over K supplied with a non-
degenerate Hermitian form H which is sesqui-linear with respect to o.

We put

G=SU(V,H), G=U(V,H)
and understand them to be k-rational points of algebraic groups defined over k.

Let L, M be ©@g-lattices in V (i.e. they are finitely generated ©g-submodules
of V and each of them contains a system of bases of V). We define

L= M (resp. L~M)

if and only if there exists an element g of G (resp. of é) such that L=gM,
and in that case we say that L and M belong to the same G (resp. G)-class.
For any prime ideal p in k2, we set

Ly=L®0y, Vi=VQ&ky,

where @, is the ring of p-adic integers, and k, is the p-adic number field.

By G, etc., we denote the p-édic completion of G etc..

Two lattices L and M are said to be of the same G (resp. 6)-genus, if and
only if L, and M, belong to the same G, (resp. CN}p)-class for each prime ideal
p in k. By (L); (resp. (L)z) we denote the set of all the lattices in V belonging
to the same G (resp. 5)—genus as L.

The number of G (resp. é)-classes among (L) (resp. (L)) is knownjto}be
finite; we denote this number by c!'(L, V) (resp. c¢(L, V).

1.2. Given lattices L and M, it is known that there exist @y-ideals} i;, &;
and elements e; in V (=1, .--, n) such that ¢;,D&,,,,

L=dJe+ - +dge,
M= A&+ w4ty

The family of ideals {&,, ---, &,} is uniquely determined by L and M (cf.
Ch. III, § 22). We denote
e<L’ M): {81’ R 8n}

and call each of £/’s an elementary divisor of M with respect to L.
We further define

d(L, My=TIé&;.
=1

d(L, M) is the ©g-ideal generated by det (g) where g runs over the elements
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of endomorphisms of V sending L into M.
Note that d(L, M)=0g if L= M.
Also, we put
C(K/k) = {det (g)| g € G}
={ae K|N@@)=a-a’=1}
Co(K/k)={det ()|g= G},
where 5L (resp. G) is the subgroup of G (resp. G) consisting of the elements
which stabilize L.
Denoting by Uy the group of units in @, we have:

1.3. LEMMA. Suppose k is totally real and K is totally imaginary. Then
we have

UgN\CK/k)= Uk = the set of roots of unity in K.

Proor. Firstly, we shall see that given any isomorphism z of K onto one
of its conjugates, r commutes with the complex conjugation ¢. We may write
K=kWd), d=kCR,d<0. Given an element a =a-+b+/d, (a, b k), in K, we
have o=@+ (WA, a7, b5, d° € R, (Vd)Y =ev/d", e=+1, and a°=a—bVd.
From this we get at once a™ = a°F.

Now suppose a belongs to C(K/k). Then we have, for any <,

la”|?=a" - (a") =(ax-a”) =1.
Hence, if « is also an integer (in particular if a« € Ug), then
ae Uk.
This completes the proof.

1.4, LeEMMA. Situation being the same as in the previous Lemma, the index

CUxNC(K/R): CL(K/k)] divides the greatest common divisor (dim V, |Uk|).

Proor. Firstly, let us note that in general C,(K/k) is contained in Ugk
N C(K/E). To see this, it is enough to show that

Cu(K/BE)C Ug.
Let ge 5L. Then d(gL, L)=(det g)=d(L, L)=0g. Thus det g Uy as desired.
Now, in virtue of the Lemma 1.3, it is enough to show that

U CLK/R), where n=dim V.

This is again obvious because if u is an element of UL, then the linear trans-
formation u -1 clearly belongs to G;. This completes the proof.
Generally, we put

d=[UxrNCK/k): CL(K/E)].
Thus d; =1 if, in the above,
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dim V, |Ux)=1.

1.5. PROPOSITION. Suppose dj is finite. Then among the lattices M such
that (L) =(M)g, L~M, there are at most d; G-classes.

Proor. (L) =(M)s implies that d{L, M)=0g. And now we have ge G
such that M= gL, therefore, ©x = (det g). Hence

detges Uxg N\CK/E).

Now suppose we have another such lattice M’ and M’'=g’L. If there exists
an element s € G, such that det g=det g’ - dets, then

M=g' .s-g* M, gl-s-gleq,
thus
M =M.
This proves the proposition.
1.6. Suppose that
L=Jv | L’ (orthogonal sum),
where 1 is an Og-ideal, v is an element of V, and L’ is a sub-lattice of L.
Then it is clear that we have

CuK/Ry=UxgNCEK/ER).

1.7. Now, we decompose (L)z using an equivalence relation = defined by:

For M, M’ = (L), we put M= M’ if and only if there exists an element
g in G such that

(gM)g=(M")g .

It was proved by G. Shimura [7] that, (L)z is decomposed into s(L)

=-classes, where
s(Ly=[C:C"] or [C:CT-LCWL): T(LY]

according as dim V is odd or even, where C is the group of ideal classes in
K; C’ is the subgroup of C consisting of the classes containing c-invariant
ideals; and

Cy= IO/ k) CralEa [ o)
¢ running over the ramifying ideals in k2, Ky =KXk,; and
O(L) = {(a) € C(L) | @y =u - Crq(Ky/ ko) for u e Ug, N(u)=1}

(cf. [7], 5.27, 5.28; Here we do not have to assume that (V, H) is indefinite.)
Nextly, we put

(L, V)=the number of G-classes among {(Me(L)g|M=L}.

If Lys form a system of representatives of =-classes, we have:
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s(L)
oL, V=&l V).
Jj=1

Hence, by Proposition 1.5, 1.4, we obtain the following :
1.8. PROPOSITION.
1) We have, in general,

s(L)
oL, VY=L, V).
j=1
@) If we have Cy(K/k)=UxNC(K/E) for all M e (L)z, then,
s(L)
(L, VYy=2c'(L;, V).
J=1
B) If K is totally imaginary and k is totally real, then we have

dim V, [UkDe(L, V)z;ﬁfcl@j, V).

§2. Class numbers of modular normal lattices.

2.1. Let us recall some definitions. We denote by
p(L) =the ©g-ideal generated by H(x)= H(x, x), x L,
toL) =the O-ideal generated by H(x, y), x,y L.

L is said to be normal if and only if p(L)= p,(L).
We put
L¥={xe V|H(L, x) COg} .

L is said to be (y(L)—) modular if and only if L= pu(L)L*. (cf.[6])

The following proposition is known [2].

2.2. PROPOSITION. Given modular lattices L and M. Then (L)g = M)z if
and only if p(L)= p(M), p(L)=p(M).

2.3. PROPOSITION. Suppose dimV =3, C=C’, and L is normal. Let M
eL)g, and p be any prime ideal in k. Let §=9pOx. Then there exists an
element g in G such that all the elementary divisors of M with respect to gL
are H-powers. ‘

PrROOF. It is known that if L is normal then @(L) = (L) (cf. [2]). Hence,
in the above, we have s(L)=1. Therefore, in view of 1.7, there exists an
element g in G such that (gLl)g =M )q.

Also by the assumption, V, is indefinite. Hence, by the Strong Approxi-
mation Theorem for G [5], we get the above result.

24. From now on we assume that

h(K)=the class number of K=1.
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Any lattice L has a base as Og-module; say {v,, ---,v,}. We define

d(L) =det (H(v,, v;)))NUg .
We see at once that
d(M)=N((L, M))-d(L).

From this we get easily the following lemma:
2.5. LEMMA. Suppose we have

LDOM, d(Ly=d(M).
Then we have

L=M.
2.6. LEMMA. Suppose we have
L)g = M)z .
Then we have
d(L)=d(M).

PrOOF. We have
d(M)=N(d(L, M))-d(L).
Let us put
N@d(L, M))=(a).
By the assumption we have
aesNU, for all the prime ideal p in k.

Hence we have
ae U, "NK.

Therefore, our assertion is reduced to the following lemma.
2.7. LemMA. If i(K)=1, then we have

Uis"NK=NUg.
PrROOF. It is enough to show that if N(a)=©, then Nae NU, But
N(e) =@, implies that
(@) = A~° for an ideal .4, in K.
Now we have .4, = (q;) so that
a=al"°-u,
for an element u in Ug. Therefore,

Na=Nu.
This completes the proof.
2.8. Now we are going to introduce ¢ Kneser’s method’. For that purpose
we need the following conditions besides h(K)=1:
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1) dimV =3,

2) L is modular and normal,

3) There exists a prime ideal P, in K such that PZ=B,, Nx,e(Bo) = 2).
We put N(B,)=9p,. 9, is 2 prime ideal in k.

2.9. Let M be a lattice belonging to (L)z (M= L). Our purpose is to find
out a way to see if L~ M. We are going to build a ‘chain’ connecting L and
M. In view of Proposition 2.3, we may assume that all the elementary divisors
of M with respect to L are PB,-powers. In view of Lemmas 2.5, 2.6, we may
assume that there exists an element x, contained in L°~\MN\By'L, where L°
is the set-theoretical complement of L in V. Let us put

L={ye L|H(x, ) € u L)},
L/ :OKJCO—\—-Z: .

L’ is the first ‘link’ in our chain.
2.10. PROPOSITION. Situations being same as in 2.9, we have

d(L)y=d(L"),
[L':L'AM]=5 [L: LAM].
PrRoOF. We give a proof although the argument runs parallel to that of

M. Kneser in [4].
By the assumption in 2.8, we have:

Suppose (a)=()=P;!, then a+becOk.

Hence, if x, x’ € L~ L° then we have x+x’ < L.
Also we have
LODLOB,L.

Therefore there exists a base {v,, ---,v,} of L such that
L=0xi+ =+ +OxvitBvisat -+ +Bova -
So, by what was said above, we get:

d(L, L)DB, -
Hence

[L:L1<2.
Using the assumption that L is modular, we get:

[(L:L]=2, dL,L)=%,.

Similarly we get

d(L', L)y=3,.
(Box, € L because M (L)g, po(M)=po(L). So, we can use a similar argument
as above.)
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Hence
dll’, L)=0g,
and so,
d(Ly=d(L").
Also, by definition,
LNnM=LNM,

this implies that
[L:L'"M1=[L:L~M]
=[L:L\M]
1
=5 [L: LAM].

This completes the proof.

2.11. If L’ is again modular and p(L’)= g,(L), then we can continue the
above process and build the next link. Especially, if L is unimodular (.e.
Ox-modular), then we have d(L)=d(L’)=NUg. And as p,(L)C O, it turns
out that L’ is also unimodular (cf. 4.2 in [2]). In this case, if we can show
somehow that L~L’, L’~L” (=the second link) etc., then it follows that L~M.

2.12. The following facts will be used later to simplify the process of
building the chain:

1) If there exists an element x in L such that H(x,, x) € (L), then we
may replace x, by x,—x.

2y If g éL, then we may replace x, by gx,.

3) Suppose we have B, =(a,), Nd—a, =1.

If there exists an element ¢ in V such that {=x,mod L, and «a,H(x,, )
=1mod %, H({)=1, then we have L~L".

PrROOF FOR 3): Let s, be an element of GL(V) defined by

Saot(2) ZZ*aoﬁigfz(bt’)‘ :

Then s,,; belongs to &, and we have

Sa'g,t * sao,t =1.
And we h~ve

Sagt(L)=1L.

This completes the proof.

Also, let us note that to construct L/, we do not have to use the existence
of M. We just have to pick up an element x, & B;'L "\ L° such that H(x,) € O
and put L' =0gx,+L, as in 2.9.
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§ 3. Calculation of ¢, (n 7).

3.1. In this section we put
k=Q, K=QW-1), $,=01-v-1),
V=Va={vy, =+, nlx,
H@y v) =0y,  L=Ly=30xv:.
L is unimodular and normal. Also in view of 1.5, 1.8, we have
(L, Vi)=c'(L, Va)»
if dim V is odd; and in general, ¢(L, V,) < (L, V,) < (n, Hc(L, V,). We denote
(L, Vy)=¢p
(L, Vi) =cq.

3.2. It is known that (M)z=(L)z if and only if M is unimodular and
normal (cf. [Z].

Also, generally, if the Hermitian vector space V is definite, then any lattice
M can be decomposed uniquely into orthogonal sum of indecomposable sub-
lattices [3] Hence, if ¢,=1 then ¢, =1 for m <n. (Because if M is of rank
m, unimodular, normal, then we have

M1 Ly p~Ly.)

3.3. Now we are going to apply Kneser’s method to determine ¢,’s for
n<7. Firstly let us note that the residue class of 2= (2) is represented!by
(0,1, 1—4/—1,4/—1}.

Using 2.12 1), we may assume that
o= v 1 ZWG: n;=1 or ~—1.

By 2.12 2), we may further put
1
1—+/—1;

As H(x,) € Ok, we have s=0 mod 2.
We look at several possible cases:

Xog= —F——F—=

Zv,.

1 §=2:—
In this case, we have L’'~L.
Proor. Put

€1 =%y
1

e, — t\/TTT (v1_vz) - xo_(1+ '\/:—1-)7)2
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and
e, =v; for 1=3.

e;s are all elements of L. We have H(e;, e;) =0;;. Hence by Lemma 2.5,

n
we have X 0xe; =1L/, i.e. L'~L.

=1
This implies that ¢;=1, and therefore ¢, =c,=1.
2) s=n=4-51—
This time L’ is not normal and does not belong to the same genus as L.
ProoF. Let z=uax,+y<L’, ye L. Then

y=2>a;v; such that > a,e%f,.
And we have
H(z) = H(ax))-+H(y) mod 2

= H(axy)+N(X a;) mod 2

=0 mod 2.
As we have

ML C L) C 5 L),
so0 we have
wLY=(2).

This completes the proof.
3 s=n=2-5;, s, is odd, s;,=3:—
In this case we have (L) =(L)y and L'+ L. Hence ¢, > 1.

PROOF. H(xy)=s,, but as v,+v, belongs to L’ (H@,+v,)=2), we have
p(L)=0g. So in view of Proposition 2.2, we have (L)g=(L)g. Now let
z=ax,+y be an element of L/, where

V=2 a;v;, Ya,eRB,.
It follows that

Hz)=3 N(T:\g/”_;fJ“ai)
_ %_ S N(ata(l—v—=1). @

Here, if a+a,(1—+/—1)=0 for any i, then ze L; and so ze L which implies
that H(z)=0 mod 2.

If on the other hand a-+a,(1—+/—1) =0 for all i, then they are positive
integers and so in (i), we have H(z) > 1.

Thus H(z) is never equal to 1.

This proves that L’ +# L.

In particular, ¢, >1, if n=6.

3.4. Proceeding to the next step, we will construct our second link L”
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starting from L. Now we have
Li=L"= OKyo+£/ ’
where
YoEPFL NMNLS,
L'={ze L'|H(y,, 2) € Ok} .

We have the following possibilities :
a) yo=Py'L.
In this case we may assume that n=s. And we have two possible cases:

1) yo—**l*j/ Zvl, m=0mod2, m<n/2, and LI~L} L L, ,

2) Y= *T_':/Zf—lrzvﬁrvmﬂ, m=0 mod 2, m=n/2.

1

b) y,e& ByL. Then
Vo= 2 <201+TU3>+ 1— '\/ 1 EU] (+vm+l)’

where ¢ =1, 3, 1—-2v/—1, —(1+2+//—1). And if in this case n=s, then n=0 (4).

PrOOF. If y,=uv,, then L” = L. Because, if z= L/, z=ax,+y, y= L, then
H@,, axp))=a/(1—~/—1)= Ok Hence ze L,and L” C L. So, in view of Lemma
25, we have L7 =1L.

Now we have L’ o v,—v,, therefore by 2.12. 1), we may replace v, by v,
if y,e L. Hence we may assume that y,e L.

Suppose that y, e Byl

To show that we get 1) or 2) in this case, we can use an argument which
is almost identical with the one used by M. Kneser in [4]. For the sake of
completeness, however, we sketch an outline of the argument.

Using 2.12, we have

1 m 1 n
Yo :"‘ljx/jilj? NiVi (FVnsy) OF - 1—v—1 12 NiVi,
where 7, =1 or +/—1.
We can interchange 1 and +/—1 at even number of places. Thus

Vo= ov=T 2 E v; (+Vpe.) oOr . \/ = sz+7]nvn> .

From this, in view of 2.12. 1), we may assume that n=s in this case.

The latter case may be eliminated because if %,=1, then y,= L’ contra-
dicting the assumption that y,e L’/, while if »,=+/—1, then putting t=v,,
and using 2.12 3), we get L'~L".

m is even because H(y,) € Ok.
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In case

we have - \/ = }_‘_‘,vzef/.

Subtracting the latter from y, if necessary, we get 1).
On the other hand if

1
) m 2
Y= T ZUHrUmH, <n/z,
then we have
S S _ 1yt e L
1— \/71 lvl VT Vmaa (1 ’\/ 1) Elvle )

Subtracting this from y, and changing the order of the base, we get 2). Nextly,
let yozéﬁiaivi—{—yl (¢ B;'L), where y, is a linear combination of v;s for
j=s+1,--,n. Then B,v,C L’. Therefore none of a; =1, ---, s) is divisible
by $B,. Also we have

—+/—=1)y, and S, e L.

11— v 1 7
Therefore éaie (2). So, a;=1 or +/—1 mod 2.
1

Subtracting vectors of the form av,+bv,, where a and b are suitable
integers, we can put

1 s—1
Yo= ”2“( ; Civi‘l‘TU‘s) -+,
where ¢, is 1 or +~/—1.

Interchanging ~/—1 and 1 at even number of places, we may further
assume .

Vo=~ %7 (slivrf'ﬂ/’x) +;.

We have
s—1+7=0 mod 2,
s=0 mod 2.
Hence,
=1 mod 2.
Hence,

r=01—+=1)z,+1, 7,€{0, 1, 1—v/—1, v/—1}.
If y,eL,, then L7-=L" | Ln,

Generally, we have y, = 2 n;v;. By the argument as above, we

1 '\/ 1 s+1
may put
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h=—7—"7= 1— \/""1 EUJ (+Vmae)

s+1

Now if n=s, then we have

H(yp= 3 (n—14No).

But
Nz=1 mod 4.
Therefore
n=0 mod 4.
This completes the proof.
3.5. Incase y,= lr_;l/ 5 %vmtvmﬂ, m=0 mod 2, and n =m-2 we have
L'~L'. '
Proor. Put
t: 1 '\/ 1 ( '\/ l UTL 1 vn) .
Then

HH=1,
A=+ —=DH(yy t)=—+/—1=1 mod L, .
Therefore, using 2.12 3), we are done.
3.6. Suppose n=4, y,=- %f (Zg) vi—l—rm). In this case, we have the following
1
possibilities :
1) If =1 or 3, then L"~L,

2) If 1=1-2+/—1 or —(1+2+v—1), then L”~L’, and p(L")=(2).
PrROOF. 1)—i):—Case z=1. Put

]_ 4
= 2 211}1
Then

HH=1, 2H(y, H=1.
Hence, if we put

Siz)=2z—-2 ng.z(;)t) t,
for any element z in V, then
S;eG

and
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Si(yo) =0, .
[f we have
z=>auv,&L",
then
S>a,=0 mod 2.
Therefore,

2H(z, =0 mod 2,
Sxe L, ie SA"NCL.

Hehce, by Lemma 2.5, we have S,(L”")= L.
1)—ii) :—Case =z =3.
In this case we set

€ =Yy V;—Vy, €=V Uy,
€3 =Yy U3y, e, = —yo+(1_\/;T)xo-
Then all the ¢;’s belong to L” and moreover we have
(H(e;, e) =14
Hence, by Lemma 2.5, we have L”~L.
2) i—
If c=1—24/—1, put
e, =~ =1, +v), e=0v,+1v,, e,=v,-F0;, €,=Yy,.
Then all the e;’s belong to L”.
If z=—1-+24/—1), put

fi=e (1=1,273), fi=~—1y,.
We have
fielL” for all 1.
Also we put

g=0—v=1)"' @ 4v,+vV—1v,—vV—1v,),
g ==V 1) (=0, =T v,— v/ —Lv,+v),
g =201—~—1)"v,=1++~1),,
£ (—v=1)" S,

Then all the gys belong to L’ and we have
(H(es e)) = (H(f4, [3) = (H(gi, 85)
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2 —1 —1 1)

1 2 1 1

1 1 2 1

1 — 1 2 (i=+-1).
det (H(e;, e))=1.

This implies that {e;}, { fi}, {g:} are all bases of the corresponding lattices.
And it is clear from the form of the above matrix that p(L”)=(2).

3.7. Summarizing the above, we get ¢,=1. (Because L is not normal.)
For n=>5, the above process yields two classes of unimodular and normal
lattices: Ly, and L; | L,. Namely ¢;=2. For n=6, we saw in 3.3 that L{ is
unimodular normal but L, L{ The second step (3.4) yields:

D Yo=A—~—=1)"'w,+vy),  L{~LiL Li~Ly 1 Li# L.

This L7 is again unimodular and normal, which has element x such that H(x)
=1. Hence LI»Li

2) Vo= (/=) S vy vy,  Li~L; (cf. 35).
1

Hence in this case we have ¢,=3.

From the above we can conclude that ¢f=3 or 4.

To see this let us decompose (L,)5 into three G-classes C,, C,, C, represented
by L, L L¢ respectively. We have CiN\(Lg)e=#90 for i=1,2,3 (cf. 1.7, 1.8,
and note that s(L;) =1 now). In view of 1.6, it is clear that C, (L) consists
of only one G-class for i=1,3. The number of G-class in C, "\ (L)s is one or
2 2=(6,4)=dim V,, |Uk|). cf. 1.5). Thus ¢{=3 or 4. Also, from the above,
it is clear that if ¢,=1 then ¢} —=1.

Likewise for n="7, we get besides three classes among unimodular and
normal lattices:

Ly, LiLLy, LilL,1Li, Lyl L,

the lattice L# which corresponds to the case:
1 & 1
Vo= 2”21)1)1"1(—‘1?\7:1—*7)7-

We can show that if x € LZ, then H(x)>1. Hence ¢,=4. In fact, let x=ay,
4z, zel’. If a=0, then in view of 3.3, we have H(x)>1. If a0, then

7
writing x; =Y a,v;, we see that none of a, is 0. Furthermore, Naig%f- for
1

1=1, ..., 6. This implies that H(x) >1. This completes the proof.
Thus we get the following Theorem :
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3.8. THEOREM. Situations being as in 3.1, we have
1) e,>1, cb>11if n=5; cpo,=ch if nis odd, ¢, <c, <(n, Hc, in general.
2) ag=c=c=c,=1,¢,=2, ¢,=3, ¢c,=4; cl=cl=cl=cl=1, ¢} =2, ¢s=3

or 4, ci=A4.
REMARKS (due to M. Kneser).
1. ¢;=1 for i=1, .-, 4 follows at once from Satz 1 of [4]. Because the

lattice L, can be identified with the lattice of rank 2n (with discriminant 1)
in the quadratic vector space of dim 2z (with the form given by 1,,). Then
the above mentioned Satz implies that there exists an element x in L, (n <4)
such that H(x)=1. This obviously leads to the desired resuit.

2. The lattices obtained above correspond to the ones in the respective
quadratic spaces as follows: Li=K,, Li=K,,, Ly =M,, (cf. [4] Satz 1).
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