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\S 0. Introduction.

The purpose of this paper is to investigate the groups of the pseudo-
diffeotopy classes of diffeomorphisms of manifolds, which are total spaces of
disk bundles over spheres or sphere bundles over spheres. The results are
applied to the diffeomorphism classification of simply-connected manifolds,
which are homological tori.

Let Diff $M$ denote the group of orientation preserving diffeomorphisms of
an oriented manifold $M$ and let $\tilde{\pi}_{0}$ (Diff $M$) denote the group of pseudo-diffeo-
topy classes of Diff $M$. Let $\mathcal{E}_{f}$ and $\mathscr{Z}_{f}$ be the $D^{q+1}$ bundle over $S^{p}$ and $S^{q}$

bundle over $S^{p}$ with characteristic map $f:S^{p- 1}\rightarrow SO_{q+1}$ . In \S 1, we study $\tilde{\pi}_{\alpha}$

(Diff $\mathcal{E}_{f}$). In case where $\mathcal{E}_{f}=S^{p}\times D^{q+1}$ , we prove the following theorem.
THEOREM 1.5. Let $p<2q-1$ . The order of $\tilde{\pi}_{0}$ (Diff $S^{p}\times D^{q+1}$) is equal to

the order of the direct sum group $\pi_{p}(SO_{q+1})\oplus Z_{2}$ .
The concordance classes of (framed) embeddings of $S^{q}$ in $gr_{f}$ are discussed

in \S 2. The set of framed embedding classes are related to the pairing

$F;\pi_{p-1}(SO_{q})\times\pi_{q}(S^{p})\rightarrow\pi_{q-1}(SO_{p})$

introduced by Wall [14]. In \S 3, we define a map $C$ from $\tilde{\pi}_{0}$ (Diff $S^{p}\times S^{q}$) to
$\Theta^{p+q+1}$ and study its properties. Making use of the results of \S $1\sim 3$ , the study
of $\tilde{\pi}_{0}$ (Diff $\mathcal{G}_{f}$) is carried out in \S 4. In case $g_{f}=S^{p}\times S^{q}$ , we obtain the follow-
ing theorem.

THEOREM 4.17. For $p<q<2p-4$, the order of $\tilde{\pi}_{0}$ (Diff $S^{p}\times S^{q}$) is equal to
the order of the direct sum group

$Z_{2}\oplus\pi_{p}(SO_{q+1})\oplus\pi_{q}(SO_{p+1})\oplus\Theta^{p+q+1}$ .
In \S 5, as an application of our results in \S 4, we deal with the classification

of manifolds which satisfy the conditions,

$\left\{\begin{array}{lllll}cM.\cdot losed & andsimp1y & & connected & \\H_{i}(M)=\{0Z & for & 0, & qp,+1, & p+q+1\\\pi_{p}(SO_{q+1})=0 & otherwise & & & \\<p<q2p-4\cdot & & & & \end{array}\right\}$ $(*)$
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and in \S 6, the conditions

$\left\{\begin{array}{llllll}M.\cdot & c1osed & and & simply & & connected\\H_{i}(M)=\{Z0 & & & for0, & p, & pq+1,+q+1\\\pi_{q}(M)=\pi_{q}(S^{p}) & & & otherwise & & \\<p<q2p-4. & & & & & \end{array}\right\}$ $(**)$

The classification of such manifolds in some cases were given by I. Tamura
[12], [13]. We fix a basis of p-dimensional homology group, and we identify
two manifolds if there exists a diffeomorphism preserving orientation and the
preferred basis. We divide such manifolds into some classes by the charac-
teristic class of the normal bundle of the generator of $H_{p}(M)$ . For each class
we give a group structure by ” connected sum along the cycle ‘ operation,
which extends the one defined by Novikov [10]. Then the calculation reduces
to the structures of the groups $\tilde{\pi}_{0}$ (Diff $\mathcal{E}_{f}$) and $\tilde{\pi}_{0}$ (Diff $\mathscr{Z}_{f}$). As corollaries of
our classification, for example, we have the following results

PROPOSITION 5.5. If $p\equiv 5,6(mod 8)$ , the number of differentiable manifolds
satisfying $(*)$ , modulo diffeomorphisms preserving orientation and the preffered
basis of p-dimensional homology group, is equal to

$\#(\pi_{q}(SO_{p+1})\oplus\Theta^{p+q+1})$ .

PROPOSITION 6.10. If $p\equiv 3,5,6,7(mod 8)$ , the number of differentiable
manifolds satisfying $(**)$ , up to modulo one point diffeomorphism preserving
orientation and basis, is equal to

$\#\{{\rm Im} s_{*} : \pi_{p}(SO_{p})\rightarrow\pi_{q}(SO_{p+1})\}$ ,

where $s_{*}$ is induced by the inclusion $s:SO_{p}\rightarrow SO_{p+1}$ .
A remark concerning the diffeotopy classes $\pi_{0}$ (Diff $e_{f}$) and $\pi_{0}$ (Diff $q_{f}$) is

given in \S 7, where we use the unpublished results due to Cerf [3]. In the
appendix, we give a counter example to the linearity of the map $C$ , using the
index theorem due to Hirzebruch [7], which also shows the existence of non-
trivial inertia group for some manifolds.

The author wishes to express his hearty thanks to Professor I. Tamura
for his guidance and many valuable suggestions and advices, especially, the
example in the appendix being pointed out by him, to M. Kato and K. Kawa-
kubo for several useful discussions and to T. Akiba who carefully read the
manuscript and gave helpful comments.
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Notations and Preliminaries.

Let $M$ be an oriented differentiable manifold of class $C^{\infty}$ . On the set of
orientation preserving diffeomorphisms of $M$, we define a topology by the $C^{\infty}-$

topology and a group structure by the composition of diffeomorphisms. Then
we have a topological group. We write this topological group as Diff $M$. The
arcwise connected components of Diff $M$, denoted by $\pi_{0}$ (Diff $M$), has also a
group structure inherited from Diff $M$. Given two elements $f$ and $g$ of Diff $M$,

we call $f$ and $g$ are diffeotopic if and only if there exists a diffeomorphism $H$

’of $M\times I$ onto itself such that
i) $H(x, t)=(H_{t}(x), t)$ ( $i$ . $e$ . level preserving)

ii) $H_{0}=f$, $H_{1}=g$ .
The map $H_{t}$ is called a diffeotopy connecting $f$ and $g$. Then it is known that
the arcwise connected classes and the diffeotopy classes agree bijectively. On
the other hand we call $f$ and $g$ are pseudo-diffeotopic if there exists a diffeo-
morphism $H^{\prime}$ of $M\times I$ such that $H^{\prime}|M\times 0=f,$ $H^{\prime}|M\times 1=g$. We shall write $\tilde{\pi}_{0}$

\langle Diff $M$) for the set of pseudo-diffeotopy classes, which also has a group struc-
ture induced from that of Diff $M$. Analogous to the diffeotopy extension theo-
rem, the following pseudo-diffeotopy extension theorem holds due to Smale’s
structure theorem [11].

THEOREM (Pseudo-diffeotopy extension theorem). Suppose $M^{n}$ is a closed
manifold with the dimension $n\geqq 5$ . Let $V$ be a submanifold of $M$ such that
$\pi_{1}(M-V)=0$ . If $e:V\times I\rightarrow M\times I$ is an embedding such that $e|V\times 0=identity$ ,
$e(V\times 1)\subset M\times 1$ , then

1) there exists a diffeomorphism $E$ of $M\times I$ onto itself which covers $e,$
$i$ . $e$ .

$E|V\times I=e$ .
2) there exists a diffeomorphism $h$ of $M$ which is pseudo-diffeotopic to the

identity and such that $h|V=e|V\times 1$ .
PROOF. 1) follows directly from Smale’s theorem [11, Corollary 3.2]. Now

prove 2). Let $E_{0}$ and $E_{1}$ be the restriction of $E$ to $M\times O$ and Mx l. Then the
diffeomorphism $E_{1}E_{0}^{-1}$ satisfies the condition for $h$ of 2). Indeed, $E_{1}E_{0}^{-1}|V$ is
equal to $e|V\times 1$ and the diffeomorphism $E$($E_{0}^{-1}$ xidentity) of $M\times I$ gives the
pseudo-diffeotopy connecting the identity and $E_{1}E_{0}^{-1}$ .

We call that two embeddings $e_{1}$ and $e_{2}$ of a differentiable manifold $W$ in
a differentiable manifold $N$ are concordant if there exists an embedding $H$ of
$W\times I$ in $N\times I$ which agrees with $e_{1}$ and $e_{2}$ on $W\times O$ and $W\times 1$ respectively,
and they are isotopic if $H$ is a level preserving embedding of $W\times I$ in $N\times I$.

Let $p\geqq 1$ and let $\mathcal{E}_{f}=\{E, S^{p}, D^{q+1}, SO_{q+1}\}$ be a fibre bundle with total space
$E$ , base space $S^{p}$ , fibre $D^{q+1}$ , structure group $SO_{q+1}$ and characteristic map
$f:S^{p-1}\rightarrow SO_{q+1}$ . We define $D_{+}^{n}=\{x= (x_{1}, x_{2}, \cdots , x_{n+1});|x|=1, |x_{1}|\geqq 0\}$ and $D_{-}^{n}$
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$=\{x= (x_{1}, x_{2}, \cdot.. , x_{n+1});|x|=1, |x_{1}|\leqq 0\}$ . Then $\mathcal{E}_{f}$ is obtained from the disjoint
union $D_{+}^{p}\times D^{q+1}UD_{-}^{p}\times D^{q+1}$ by identifying $(x, y)\in\partial D_{+}^{p}\times D^{q+1}$ with $\tilde{f}(x, y)$

$\in\partial D_{-}^{p}\times D^{q+1}$ , where the attaching map $\tilde{f}:S^{p-1}\times D^{q+1}\rightarrow S^{p-1}\times D^{q+1}$ is defined
by $\tilde{f}(x, y)=(x, f(x)y)$ . Let $q_{f}=\{F, S^{p}, S^{q}, SO_{q+1}\}$ be the sphere bundle associated
with $e_{f}$ . If $p<q,$ $\{f\}$ , the homotopy class of $f$, is an image of $\{g\}\in\pi_{p-1}(SO_{q}\rangle$

by the homomorphism indeed by the inclusion $s:SO_{q}\rightarrow SO_{q- 1}$ . Then $g_{f}$ admits
a cross section and the exact sequence of the homotopy groups of $g_{f}$ decom-
poses into split short exact sequences. Hence

$\pi_{i}(F)\approx\pi_{i}(S^{p})\oplus\pi_{i}(S^{q})$ for $i\geqq 2$ .
The homology group of $F$ are as follows,

$H_{i}(F)=|0Z$
for $i=0,$ $p,$ $q,$ $p+q$

otherwise .

Obviously the $\cdot$ total space $E$ of $\mathcal{E}_{f}$ is homotopy equivalent to $S^{p}$ . Both $E$ and
$F$ can be naturally regarded as smooth manifolds with an orientation. We
again denote these oriented smooth manifolds by $\mathcal{E}_{f}$ and $q_{f}$ . The manifold
$q_{f}$ can be regarded as the boundary of $\mathcal{E}_{f}$ . The groups Diff $e_{f}$ and Diff $g_{f}$

are taken in this sense.

\S 1. Computation of $\tilde{\pi}_{0}(Diff \mathcal{E}_{f})$ .
In this section we define homomorphisms

$A;\tilde{\pi}_{0}(Diff\mathcal{E}_{f})\rightarrow Z_{2}$

and
$B:\pi_{p}(SO_{q+1})\rightarrow Ker$ A ,

and study the images and the kernels of these homomorphisms.
An element $x\in Diff\mathcal{E}_{f}$ induces an automorphisms of $H_{*}(e_{f})$ . In particular

an automorphism of $H_{p}(\mathcal{E}_{f})\approx Z$. Obviously the automorphism group of $H_{p}(\mathcal{E}_{f}\rangle$

is isomorphic to $Z_{2}$ . Since it is a pseudo-diffeotopy invariant, we have a well-
defined homomorphism

$A;\tilde{\pi}_{0}(Diff\mathcal{E}_{f})\rightarrow Z_{2}$ .
In order to compute $KerA$ , we will define a homomorphism $B$ from $\pi_{p}(SO_{q+1})$

to $Ker$ A. Given $a\in\pi_{p}(SO_{q+1})$ , we can take a $C^{\infty}$-map $r:S^{p}\rightarrow SO_{q+1}$ , which
represents $a$ and is the identity on the upper hemi-sphere $D_{+}^{p}$ of $S^{p}$ . Recall
that

$\mathcal{E}_{f}=D_{+}^{P}\times D^{q+1}UD_{-}^{p}\times D^{q+1}$ .
We define the diffeomorphism $b(r)$ of $e_{f}$ by
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$b(r)(x, y)=\left\{\begin{array}{l}(x,y) onD_{+}^{p}\times D^{q+1}\\(x,r(x)y) onD_{-}^{p}\times D^{q+1}.\end{array}\right.$

Since this diffeomorphism $b(r)$ keeps the zero cross section fixed, its pseudo-
diffeotopy class belongs to $Ker$ A. We will show that the pseudo-diffeotopy
class of $b(r)$ does not depend on the $(C^{\infty_{-}})$ homotopy class of representative $r$ .
If we take another representative $r^{\prime}$ , there exists a $C^{\infty}$-map $F:S^{p}\times I\rightarrow SO_{q+1}$

which equals $r$ on $S^{p}\times 0$ , equals $r^{\prime}$ on $S^{p}\times 1$ , and is the trivial map on $D_{\dashv}^{p}\times I$.
Construct the level preserving diffeomorphism $H$ of $e_{f}\times I$ by

$H(x, y, t)=\left\{\begin{array}{l}(x,y,t) onD_{+}^{p}\times D^{q+1}\times I\\(x,F(x,t)y,t) onD^{\underline{p}}\times D^{q+1}\times I.\end{array}\right.$

This gives a diffeotopy connecting $b(r)$ to $b(r^{\prime})$ . Hence we define a map

$B:\pi_{p}(SO_{q+1})\rightarrow Ker$ A

by $B(a)=\{b(r)\}$ . This is clearly a homomorphism.
The next proposition holds.
PROPOSITION 1.1. In case $p<2q-1$ , the homomorphism $B:\pi_{p}(SO_{q+1})\rightarrow Ker$ A

is epimorphic.
PROOF. $Givenx\in KerA,$ $1eth\in DiffS_{f}$ be its representative. $Letc:S^{p}\rightarrow e_{f}$

be the zero cross section of $\mathcal{E}_{f}$ and let $[S^{p}]\in H_{p}(S^{p})$ be a fixed generator.
Then $c_{*}[S^{p}]$ is a generator of $H_{p}(\mathcal{E}_{f})\approx Z$. As $x$ belongs to $KerA,$ $h_{*}(c_{*}[S^{p}])$

is equal to $c_{*}[S^{p}]$ . Since $\pi_{p}(\mathcal{E}_{f})\approx H_{p}(e_{f})$ by Hurewicz theorem, the embeddings
$c$ and $hc:S^{p}\rightarrow e_{f}$ are homotopic. By the results of Haefliger [4], since $p<2q-1$ ,
they are also diffeotopic. According to the diffeotopy extension theorem the
diffeotopy connecting $hc(S^{p})$ to $c(S^{p})$ is covered by a diffeotopy of $\mathcal{E}_{f}$ . There-
fore we can take $h^{\prime}$ in the diffeotopy class of $h$ such that $h^{\prime}$ keeps $c(S^{p})$

invariant. Let $T$ be the tubular neighborhood of $c(S^{p})$ , which is the disk
bundle, radius of the fibre being a half of that of $\mathcal{E}_{f}$ . By the uniqueness
theorem of tubular neighborhood, we can take $h^{\prime\prime}$ in the diffeotopy class of $h^{\prime}$

so that $h^{\prime\prime}$ restricted on $T$ is a bundle map with the base space $c(S^{p})$ fixed.
Moreover it is diffeotopic to a map le which is a bundle map on $T$ and does
not move $T\cap D_{+}^{P}\times D^{q+1}$ . Complement $\mathcal{E}_{f}-T$ is diffeomorphic to $q_{f}\times I$, where
$g_{f}$ is the boundary of $e_{f}$ . So we identify $\partial T$ with $S_{f}^{7}\times 1$ and $8_{f}-T$ with
$q_{f}\times I$ by the natural diffeomorphism. Let $k^{\prime}$ be a diffeomorphism of $\mathcal{E}_{f}$ , which
is defined by

$k^{\prime}=\{(k|\partial \mathcal{T})\times identitykonT$

on $\mathcal{E}_{f}-T=g_{f}\chi I$ .
We will give a pseudo-diffeotopy $Q$ connecting $k$ with $k^{J}$ (cf. Wall [14, Lemma
8]). By the usual ‘ normalization process ‘ we replace $k$ in its diffeotopy class
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by a diffeomorphism ‘ constant ’ near $g_{f}\times 0$ and near $q_{f}\times 1,$ $i$ . $e.$ , having there
the form $k(p, u)=(k(p), u)$ . Write $k(p, r)=(p^{\prime}(r), \lambda(p, r)r)$ on $q_{f}\times I$. Then
define the map $Q:g_{f}\times I\times I\rightarrow q_{f}\times I\times I$ by

$Q(p, u, t)=(p^{\gamma}(r), \lambda(p, r)u, \lambda(p, r)t)$ $r^{2}=t^{2}+u^{2}\leqq 1$

$=(p^{\prime}(1), \lambda(p, 1)u, \lambda(p, 1)t)$ $r^{2}=t^{2}+u^{2}\geqq 1$ .
Then $Q(p, u, 0)=(k(p, u),$ $0$) and $Q(p, u, 1)=(k|\partial T, u, 1)$ . Moreover our condi-
tion on $k$ ensures that $Q$ is indeed a diffeomorphism. Hence combining $Q$ with
the identity map on $T\times I$, we obtain a desired pseudo-diffeotopy. Since $k^{\gamma}$ is
in ${\rm Im} B$ , the homomorphism $B$ is surjective, which completes the proof.

Let $\{f\}$ be the homotopy class of characteristic map $f$ and let

$R=(^{-1}01$ . .
$01)\in O_{q+1}$ be the reflection. Denote by $R^{\#}$ the operation of $R$ on

$\pi_{p-1}(SO_{q+1})$ by the inner automorphism. The operation $R^{\#}$ may be non-trivial
since $R$ is not arcwise connected to the identity element $e$ of $O_{q+1}$ . Concerning
the image of the homomorphism $A;\tilde{\pi}_{0}(Diffe_{f})\rightarrow Z_{2}$ , we have the next pro-
position.

PROPOSITION 1.2. Suppose $p<2q-1$ . The homomorphism A is surjective if
and only if $R^{\#}\{f\}=-\{f\}$ .

PROOF. Suppose that there exists an orientation preserving diffeomorphism
$h$ of $e_{f}$ which maps a generator of $H_{p}(e_{f})\approx Z$ to the other generator. By the
same argument of the above proof of Proposition 1.1, we can take in the dif-
feotopy class of $h$ a diffeomorphism $k$ which is a bundle map of $\mathcal{E}_{f}$ onto itself
mapping the base space by degree $-1$ . Let $D^{q+1}$ be a fibre over a point.
Then by the condition that $k$ is orientation preserving, $k|D^{q+1}$ must be con-
tained in the component of $O_{q+1}$ , which does not contain the identity. Let

$S=(_{0}^{1}-11$ . .
$01)\in O_{p+1}$ be the reflection, which, consequently, maps $D_{+}^{p}$ (resp.

$D_{-}^{p})$ onto itself. Recall $e_{f}=D_{+}^{p}\times D^{q+1}\cup D_{-}^{p}\times D^{q+1}$ . By using the diffeotopy
$\sim f$

extension theorem, we can take $k^{\prime}$ in the diffeotopy class of $k$ such that

$|$ $k^{\prime}(x,y)=(Sx,m(x)y);(x,y)\in^{p}D^{p}k^{\prime}(x, y)=(Sx,Ry);(x,y)\in D_{+}\times_{-}D_{\times D^{q+1}}^{q+1}$

where $m$ is a $C^{\infty}$-map: $D_{-}^{p}\rightarrow O_{q+1}$ . Since $k^{\prime}(x, y)=(Sx, Ry)$ for $(x, y)\in\partial D_{+}^{p}\times D^{q+1}$ ,

we have $k^{\gamma}(x^{\prime}, y^{\prime})=(Sx^{\prime}, f(Sx^{\prime})Rf^{-1}(x^{\prime})y^{\prime})$ for $(x^{\prime}, y^{\prime})\in\partial D^{\underline{p}}\times D^{q+1}$ . Therefore
the map $m$ restricted on $\partial D_{-}^{p}=S^{p-1}$ is equal to $f(Sx^{\prime})Rf^{-1}(x^{\prime})$ . Since the map
$m$ is extendable to $D_{+}^{p}$ , the homotopy class $R^{- 1}m|S^{p-1}$ : $S^{p-1}\rightarrow SO_{q+1}$ is equal to
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zero. Hence it follows that $R^{\#}\{f\}=-\{f\}$ . Conversely, if $R^{\#}\{f\}=-\{f\}$ , such
$m|S^{p-1}$ is extendable to $D^{p}$ and we have an orientation preserving diffeomor-
phism which is mapped by A non-trivially, which completes the proof.

If the associated sphere bundle $q_{f}$ has a cross section, then $R^{\#}\{f\}=\{f\}$ .
Consequently $R^{\#}\{f\}=-\{f\}$ if and only if $2\{f\}=0$ . In case $p<q$ , if $p\not\equiv 3$

$(mod 4)$ , then $\pi_{p}(SO_{q+1})=0$ or $Z_{2}$ ; so $R^{\#}\{f\}=-\{f\}$ and the homomorphism A
is surjective. If $p<q$ and $p\equiv 3(mod 4)$ , then $\pi_{p}(SO_{q+1})\approx Z$. Consequently
$R^{\#}\{f\}=-\{f\}$ if and only if $\{f\}=0$ , that is if and only if the bundle $e_{f}$ is
trivial.

Define the group $X$ by

$X=0$ if $R^{tt}\{f\}\neq-\{f\}$

$X=Z_{2}$ if $R^{\#}\{f\}=-\{f\}$ ,

then combining Propositions 1.1 and 1.2, we have the following theorem.
THEOREM 1.3. Let $p<2q-1$ , then the order of $\tilde{\pi}_{0}(Diffe_{f})$ is equal to the

order of the direct sum group
$\pi_{p}(SO_{q+1})/KerB\oplus X$ .

In case $e_{f}=S^{p}\times D^{q+1}$ , we obtain the results more precisely.
PROPOSITION 1.4. If $\mathcal{E}_{f}$ is a trivial bundle and $p<2q-1$ , then the homo-

morphism $B$ is a monomorphism, hence isomorphism.
PROOF. From the condition $p<2q-1$ , it follows that $q\geqq 2$ . Suppose that

two diffeomorphisms $\tilde{r}_{1}$ and $\tilde{r}_{2}$ of $S^{p}\times D^{q+1}$ defined by $\tilde{r}_{i}(x, y)=(x, r_{i}(x)y)$ are
pseudo-diffeotopic, where $r_{i}$ are $C^{\infty}$-maps: $S^{p}\rightarrow SO_{q+1}(i=1,2)$ . Let $S^{p+q+1}$

$=S^{p}\times D^{q+1}UD^{p+1}\times S^{q}$ be the decomposition. Then the two embeddings of
$S^{p}\times D^{q+1}$ in $S^{p+q+1}$ obtained from the natural embeddings followed by $\tilde{r}_{i}$ are
concordant. Let $C_{p}^{q+1}$ be the concordance classes of embeddings of $S^{p}$ in $S^{p+q+1}$

and let $FC_{p^{+1}}^{q}$ be the concordance class of orientation preserving embeddings
of $S^{p}\times D^{q+1}$ in $S^{p+q+1}$ . Then according to Haefliger [4], since $q+1\geqq 3,$ $C_{p}^{q+1}$ and
$FC_{p^{+1}}^{q}$ have abelian group structures and the next exact sequence holds

$\rightarrow C_{p+1}^{q+1}\rightarrow^{\partial}\pi_{p}(SO_{q+1})\rightarrow^{j}FC_{p}^{q+1}\rightarrow^{\pi}C_{p}^{q+1}\rightarrow$ .
Here the map $\partial$ is given by taking the characteristic class of normal bundle,
$j$ is defined by changing trivializations of the bundle $S^{p}\times D^{q+1}$ and $\pi$ is a
natural projection. Since $\partial:C_{p+1}^{q+1}\rightarrow\pi_{p}(SO_{q+1})$ is the zero map for $p<2q[6$ , Cor.
6.10], $\pi_{p}(SO_{q+1})$ is mapped injectively in $FC_{p}^{q+1}$ . Hence the above embeddings
are pseudo-diffeotopic if and oniy if $r_{i}$ belongs to the same class of $\pi_{p}(SO_{q+1})$ ,
which completes the proof.

The following theorem is a direct consequence of Propositions 1.2 and 1.4.
THEOREM 1.5. If $p<2q-1$ , the order of $\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})$ is equal to the
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order of the direct sum group
$\pi_{p}(SO_{q+1})\oplus Z_{2}$ .

Let us study the group structure of $\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})$ . There exists an
orientation preserving diffeomorphism 1 of $S^{p}\times D^{q+1}$ , defined by $(x, y)\rightarrow(R_{p+1}x$ ,
$R_{q+1}y)$ , where $R_{p+1}$ and $R_{q+1}$ are reflections contained in $O_{p+1}$ and $O_{q+1}$ respec-
tively. This diffeomorphism $l$ is order 2 and mapped non-trivially by A.

LEMMA 1.6. Let $p<2q-1$ . If $R^{\#}\{g_{i}\}=-\{g_{i}\}$ , where $\{g_{i}\}$ are generators
$of$ homotopy group $\pi_{p}(SO_{q+1})$ , then the diffeomorphism 1 commutes with any ele-
ment of $Ker$ A.

PROOF. Let $a$ be an element of $Ker$ A. Then by Proposition 1.1, we can
take a representative $h$ of $a$ which is a bundle map of $S^{p}\times D^{q+1}$ defined by
\langle $x,$ $y$) $\rightarrow(x, r(x)y)$ , where $r$ is a $C^{\infty}$-map: $S^{p}\rightarrow SO_{q+1}$ . Then $l^{-1}hl$ maps $(x, y)$ to
$(x, R^{-1}r(Sx)Ry)$ . The homotopy class of $R^{-1}r(Sx)R:S^{P}\rightarrow SO_{q+1}$ is equal to
$R^{\#}\{-r\}\in\pi_{p}(SO_{q+1})$ . Since $R^{\#}\{g_{i}\}=-\{g_{i}\}$ , it follows that $R^{\#}\{-r\}=-R\#\{r\}$

$=\{r\}$ . Hence the diffeomorphism $l^{-1}hl$ is diffeomorphic to $h$ , which completes
the proof.

Let $L$ be the group generated by $l$, which is isomorphic to $Z_{2}$ . Since 1 is
mapped by A non-trivially, we can write $\tilde{\pi}_{0}(DiffS^{P}\times D^{q+1})=Ker$ A. $L$ . Further
$KerA\cap L=$ {identity}. Therefore the next theorem follows directly from
Lemma 1.6.

THEOREM 1.7. Let $p<2q-1$ . If $R^{\#}\{g_{i}\}=-\{g_{i}\}$ , where $\{g_{i}\}$ are generators

of homotopy groups $\pi_{p}(SO_{q+1})$ , then $\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})$ is isomorphic to
$\pi_{p}(SO_{q+1})\oplus Z_{2}$ .

\S 2. Embeddings of sphere in sphere bundle.

In this section we assume that $p$ and $q$ satisfy the equation $p<q<2p-3$ .
Let $Q_{q}^{p}(f)$ be the set of concordance classes of embeddings of $S^{q}$ in $q_{f}$ whose
homotopy classes fall on the fixed generator 1 of $\pi_{q}(S^{q})$ by the natural projec-
tion $p_{*}:$ $\pi_{q}(S^{i_{f}})\approx\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})\rightarrow\pi_{q}(S^{q})$ . Since $p<q<2p-3$ , by Haefliger’s
theorem [4], any homotopy class is realizable by a differentiable embedding
and two homotopic embeddings are diffeotopic. Since two concordant embed-
dings are homotopic, $Q_{q}^{p}(f)$ corresponds bijectively to the homotopy group
$p_{*}^{-1}(1)\approx\pi_{q}(S^{p})$ . Therefore we can define an abelian group structure on the set
$Q_{q}^{p}(f)$ by that of $\pi_{q}(S^{p})$ . We will give a geometric interpretation of this struc-
ture. Take two copies of $\mathcal{E}_{g},$

$D^{q}$ bundle over $S^{p}$, and denote them by $e_{g}^{+}$ and
$e_{g}^{-}$ , where $s_{*}\{g\}=\{f\},$ $s$ being the inclusion $SO_{q}\rightarrow SO_{q+1}$ . By identifying their
boundaries by the identity map, we have a manifold which is diffeomorphic
to $q_{f}$ . We fix this diffeomorphism. Further identify $S^{q}$ with the fibre in $e_{f}$
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over a fixed point $x_{0}$ . Then we have
LEMMA 2.1. Any embedding $d$ of $S^{q}$ in $\mathscr{Z}_{f}$, whose concordance class is an

element of $Q_{q}^{P}(f)$ , is isotopic to an embedding $e$ such that
i) $e|D_{-}^{q}$ is the identity embedding

ii) $e(IntD_{+}^{q})\subset Inte_{g}^{+}$ .
PROOF. Let $c:S^{p}\rightarrow e_{g}^{-}$ be the zero cross section. Then the homological

intersection number of $c(S^{p})$ and $d(S^{q})$ is equal to one. By the method of
Whitney [15], since $p<q<2p-3$ we can take an embedding $b$ of $S^{p}$ in $gr_{f}$ in
the homotopy class of $c:S^{p}\rightarrow q_{f}$ such that $b(S^{p})$ intersects transversely at one
point $x$ with $d(S^{q})$ . By Haefliger [4], there exists a diffeotopy $H_{t}$ of $g_{f}$ mov-
ing $b(S^{p})$ to $c(S^{p})$ and $x\in b(S^{p})$ to $y=c(S^{P})\cap p^{-1}(x_{0})\in c(S^{P})$ . Then $H_{1}d(D^{\underline{q}})$ and
$D_{-}^{q}$ are fibres over $y$ of tubular neighborhoods. Therefore by the tubular
neighborhood theorem, there exists a diffeotopy $K_{t}\xi scuh$ that $K_{0}$ is the identity
and

$\left\{\begin{array}{l}K_{1}H_{1}d|D_{-}^{q}=identity\\K_{1}H_{1}d(IntD_{+}^{q})\subset Int\mathcal{E}_{q}^{+}.\end{array}\right.$

Hence the embedding $K_{1}H_{1}d$ is the required embedding $e$ .
Analogously we have;
LEMMA 2.1’. Any embedding $d$ of $S^{q}$ in $S^{i_{f}}$ whose concordance class is an

element of $Q_{q}^{p}(f)$ , is isotopic to an embedding $e^{\prime}$ such that
i) $e^{\prime}|D_{+}^{q}$ is the identity embedding

ii) $e^{\prime}(IntD^{\underline{q}})\subset Inte_{g}^{-}$ .
Let $a_{1}$ and $a_{2}$ be two elements of $Q_{q}^{p}(f)$ . We can represent $a_{1}$ by $e_{1}$ which

satisfies conditions (i) and (ii) of Lemma 2.1 and $a_{2}$ by $e_{2}$ which satisfies (i)
and (ii) of Lemma 2.1’. The class $a_{1}+a_{2}$ is defined as the class represented by
the embedding defined by

$(e_{1}+e_{2})(x)=\left\{\begin{array}{l}e_{1}(x) forx\in D_{+}^{q}\\e_{2}(x) forx\in D_{-}^{q}.\end{array}\right.$

Since the homotopy class of $a_{1}+a_{2}$ is given by the sum of those of $a_{1}$ and $a_{2}$ ,
this definition of the sum actually agrees with the preceding one defined by
$\pi_{q}(S^{p})$ , and so $a_{1}+a_{2}$ is well-defined.

Let
$\alpha_{f}$ ; $Q_{q}^{p}(f)\rightarrow\pi_{q-1}(SO_{p})$

be a map which associates to the embedded sphere the characteristic class of
its normal bundle. It does not depend on the concordance class and the map
$\alpha_{f}$ is well-defined. By the above interpretation of the sum operation in $Q_{q}^{p}(f)$ ,
it is easy to see that $\alpha_{f}$ is a homomorphism.

Let $FQ_{q}^{p}(f)$ be the set of concordance classes of orientation preserving
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embeddings of $S^{q}\times D^{p}$ in $S^{7_{f}}$ whose homotopy classes fall on the fixed generator
1 of $\pi_{q}(S^{q})$ by the natural projection $p_{*}:$ $[S^{q}\times D^{P}, g_{f}]\approx\pi_{q}(S^{\gamma_{f}})\approx\pi_{q}(S^{q})\oplus\pi_{q}(S^{P})\rightarrow$

$\pi_{q}(S^{q})(p<q<2p-3)$ , Let $i$ be the isomorphism $Q_{q}^{P}\approx\pi_{q}(S^{p})$ . Let $t\in i(Ker\alpha_{f})$

$\subset\pi_{q}(S^{p})$, then there exist some elements in $FQ_{q}^{p}(f)$ whose homotopy class is
equal to $1+t\in\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})$ . Denote by $tFQ_{q}^{p}(f)$ such subset of $FQp(f)$ .
Then the set $FQ_{q}^{p}(f)$ is equal to the disjoint union

$\bigcup_{t\in i(Ker\alpha_{f)^{t}}}FQ_{q}^{p}(f)$ . We now
study $tFQ_{q}^{p}(f)$ . Let $a$ and $b$ be two embeddings of $S^{q}\times D^{P}$ in $S_{f}^{i}$ representing
elements $x$ and $y$ respectively, where $x,$ $y\in tFQ_{q}^{p}$ . Let $S^{q}\times 0$ be the zero cross
section of the trivial bundle $S^{q}\times D^{p}$ over $S^{q}$ . Then, since $q<2p-3$, by Hae-
fliger, there exists a diffeotopy connecting the identity and a diffeomorphism
$h$ of $q_{f}$ such that $ha|S^{q}\times 0=b|S^{q}\times 0$ . Further by the tubular neighborhood
theorem, we can take $h$ so that $ha$ and $b$ differ by a bundle map of $S^{q}\times D^{p}$,
which corresponds to an element of $\pi_{q}(SO^{p})$ . Hence the number of elements
of $tFQ_{q}^{p}(f)$ does not exceed the order of $\pi_{q}(SO_{l})$ . But they are not the same,
because two embeddings of $rFQ_{q}^{p}(f)$ differing by a non trivial bundle map may
be concordant. Let $S_{f}(t)$ be the subset of $\pi_{q}(SO_{p})$ , consisting of those elements
$\gamma\in\pi_{q}(SO_{p})$ such that there exists two concordant embedding $c$ and $d$ of $\iota FQ_{q}^{p}$

which differ by a bundle map of $S^{q}\times D^{p}$ corresponding to the element $\gamma$ . This
is a well-defined subgroup. Therefore the set $\iota FQ_{q}^{p}(f)$ corresponds bijectively
to the group $\pi_{q}(SO_{p})/S_{f}(t)$ and we can write $FQ_{q}^{p}(f)=_{t\in\dot{\iota}}\bigcup_{(Ker\alpha_{f)}}\pi_{q}(SO_{p})/S_{f}(t)$ .

Let $a$ and $b$ embeddings of $S^{q}\times D^{p}$ in $q_{f}$ whose concordance classes belong
to $FQ_{q}^{p}(f)$ , and let the homotopy classes of $a$ and $b$ be $1+t_{1}$ and $1+t_{2}$ respec-
tively, where $t_{1},$ $t_{2}\in\pi_{q}(S^{p})$ . Then the next lemma is easy to see.

LEMMA 2.2. Suppose that there exists a diffeomorphism $k$ of $S^{\gamma_{f}}$ such that
$ka=b$ , then $S_{f}(t_{1})=S_{f}(t_{2})$ .

REMARK. Let $x$ be an element of $Ker\alpha_{f_{0}}\in Q_{q}^{p}(f_{0})$ , where $f_{0}$ is the constant
characteristic map. Then later in \S 4, it will be proved that $S_{f_{0}}(i(x))=S_{f_{0}}(0)$ ,
where $0$ is the trivial element of $\pi_{q}(S^{p})$ .

The next lemma is also easy to prove.
LEMMA 2.3. A framed embedding $e:S^{q}\times D^{p}\rightarrow g_{f}$ representing an element

of $FQ_{q}^{p}(f)$ , is concordant to the identity embedding if and only if there exists
an orientation preserving embedding of $D^{q+1}\times D^{p}$ in $e_{f}$ which is an extension
of $e$ .

PROPOSITION 2.4. Suppose $p<q<2p-4$, then $S_{f}(0)$ is equal to the image of
$\alpha_{sf}$ : $Q_{q+1}^{p}(sf)\rightarrow\pi_{q}(SO_{p})$ , where $sf:S^{p-1}\rightarrow SO_{q+2}$ is the composition of $f$ with the
inclusion $s:SO_{q+1}\rightarrow SO_{q+2}$ .

PROOF. Given $\lambda\in Q_{q+1}^{p}(sf)$ , by Lemma 2.1, we can take a representative
$e:S^{q+1}\rightarrow s^{\gamma_{sf}}$ such that $e(IntD_{+}^{q+1})\subset Inte_{f}^{+}$ and $e|D_{-}^{q+1}$ is the identity map.
Then $\alpha_{sf}(\lambda)$ can be regarded as the difference between the natural trivialization
of the $D^{p}$-bundle $S^{q}\times D^{p}$ in $S^{7_{f}}=\partial e_{f}^{+}$ and the trivialization induced from the
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frame over $e|D_{+}^{q+1}$ . Let $h:S^{q}\times D^{p}\rightarrow q_{f}$ denote the framed embedding induced
from $e|D_{+}^{q+1}$ . Since $h$ is extendable to an embedding $h^{\gamma}$ : $D^{q+1}\times D^{p}\rightarrow \mathcal{E}_{f}^{+}$ , it is
concordant to the identity by Lemma 2.3. Hence we have $\alpha_{sf}(\lambda)\subset S_{f}(0)$ . Con-
versely given $\mu\in S_{f}(0)$ , define a diffeomorphism $\tilde{\mu}$ of $S^{q}\times D^{p}$ by $\tilde{\mu}(x,$ $ y\rangle$

$=(x, \mu(x)y)$ and define an embedding $e(\mu)$ of $S^{q}\times D^{p}$ by the identity embedding
composed with $\tilde{\mu}$ . Then by definition, $e(\mu)$ is concordant to the indentity. By
Lemma 2.3, it is extendable to an embedding $k$ of $D^{q+1}\times D^{p}$ in $e_{f}$ . Let
$k‘=k|D^{q+1}\times 0$ . Define an embedding $l$ of $S^{q+1}$ in $q_{sf}$ by the identity embedding
on $D_{-}^{q+1}$ (we identify $D_{-}^{q+1}$ with the fibre of $\mathcal{E}_{f}^{-}$ ) and by $k^{\prime}$ on $D_{+}^{q+1}(k^{\prime} : D_{+}^{q+1}\rightarrow \mathcal{E}_{f}^{+})$ .
Then $\alpha_{sf}(l)=\mu$ , which shows that $\mu\in{\rm Im}\alpha_{sf}$ . The proof is complete.

If the bundle is trivial, we can also define $S_{f_{0}}(t)\in\pi_{q}(SO_{p})$ and $Q_{q}^{p}(f_{0})$ for
$q<p$ as in the case $p<q<2p-3$ . But for $q<p$ , since $\pi_{q}(S^{p})=0,$ $Q_{q}^{p}(f_{0})$ is the
trivial group. The proof of the next lemma is analogous to Proposition 2.4.

LEMMA 2.5. Suppose $q+1<p$ , then $S_{f_{0}}(0)$ is the trivial group.
Let $p<q<2p-2$ . Given $x\in\pi_{q}(S^{p})$ , choose an embedding $h$ of $S^{q}$ in $g_{f}$

whose homotopy class is equal to $0+x\in\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})\approx\pi_{q}(g_{f})$ . Define a map
$F_{f}$ : $\pi_{q}(S^{p})\rightarrow\pi_{q-1}(SO_{p})$ by taking the characteristic class of the normal bundle
of $h(S^{q})$ . By the Haefliger’s theorem [4] and the Wall’s result [14, Lemma 1],

this map $F_{f}$ is well-defined. For $p<q<2p-3$ , we have denoted by $i$ the iso-
morphism $Q_{q}^{p}(f)\approx\pi_{q}(S^{p})$ . Concerning the homomorphism $\alpha_{f}$ ; $Q_{q}^{p}(f)\rightarrow\pi_{q-1}(SO_{p})$ ,
we have the next theorem (cf. Wall [14, Theorem 1]).

THEOREM 2.6 (Wall). If $p<q<2p-3$ , we have

$\alpha_{f}(e)=F_{f}(i(e))+\partial(i(e))$ ,

where $\partial:\pi_{q}(S^{p})\rightarrow\pi_{q-1}(SO_{p})$ is the boundary operation of the homotopy exact
sequence of the fibration $SO_{p}\rightarrow SO_{p+1}\rightarrow S^{p}$ .

PROOF. The homotopy class of $e\in Q_{q}^{p}(f)$ is equal to $1+i(e)\in\pi_{q}(\Xi_{f})$ . We
represent 1 and $i(e)$ by spheres $S_{1}^{q}$ and $S_{2}^{q}$ transverse to each other. The
normal bundle of $S_{1}^{q}$ is trivial and the normal bundle of $S_{2}^{q}$ is characterized by
$F_{f}(i(e))$ . These spheres can be joined by a small tube obtained by thickening
an arc which joins $S_{1}$ to $S_{2}$ , but is disjoint from them except at the ends. We
obtain an immersed sphere $\tilde{e}(S^{q})$ in $\mathscr{Z}_{f}$ representing $1+i(e)$ with normal bundle
$F_{f}(i(e))$ . We must modify this to be an embedding and see how this changes
the normal bundle. For this modification, we choose an immersion $d$ of $S^{q}$ in
$S^{p+q}$ as follows. Consider $S^{p+q}$ as $S^{p}\times D^{q}UD^{p+1}\times S^{q-1}$ . Let $t:D^{q}\rightarrow S^{p}$ be a
map whose homotopy class relative to the boundary is equal to $-i(e)$ and let
$\mu:D^{q}\rightarrow SO_{p+1}$ be its lifting. We can take $\mu$ as a $C^{\infty}$-map. Then we define
an immersion $d:S^{q}=D_{+}^{q}UD_{-}^{q}\rightarrow S^{p}\times D^{q}\subset S^{p+q}$ by

$\left\{\begin{array}{l}d(q)=(p,q)\\d(q)=(\mu(q)p,q)\end{array}\right.$ $ififq\in D_{q}^{q}q\in D_{-\prime}^{+}$
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where $p$ is a $fix^{\mathfrak{Q}}.d$ point of $S^{p}$ . Then the normal bundle of $d(S^{q})$ in $S^{p+q}$ is
equal to $\partial(-i(e))=-\partial(i(e))$ . Take the relative connected sum of $(g_{f},\tilde{e}(S^{q}))$

with $(S^{p+q}, d(S^{q}))$ . In the new pair $(\mathcal{G}_{f}, e(S^{q}))$ , two hemispheres are embedded.
By the main theorem of Haefliger [5] and by our construction removing the
intersection invariant, this immersion $c$ is regularly homotopic to an embedding.
The normal bundle of $c(S^{q})$ is given by $F_{f}(i(e))-(-\partial(i(e))=F_{f}i(e)+\partial(i(e))$ , which
completes the proof of this theorem.

The map $F_{f}$ can be regarded as a part of a pairing

$F:\pi_{p-1}(SO_{q})\times\pi_{q}(S^{p})\rightarrow\pi_{q-1}(SO_{p})$ $(p<q<2p-2)$

by changing the characteristic class of the sphere bundle. Several properties
are described in Wall [14, Lemma 5], but complete homotopy-theoretic inter-
pretation is posed to be a problem. Obviously if the first variable is trivial,
$F$ is the zero map and we have $\alpha_{f_{0}}(e)=\partial(i(e))$ , where $f_{0}$ is the constant map.

\S 3. Map from $\tilde{\pi}_{0}(Diff S^{p}\times S^{q})$ to $\Theta^{p+q+1}$ .
At first we will define a map $C$ from $\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ to $\Theta^{p+q+1}$ , the group

of $p+q+1$ -dimensional homotopy spheres, for $3\leqq p<2q-1,3\leqq q<2p-1,$ $p\neq q$ .
Let $f$ be a representative of $x\in\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ . The manifold $c(f)$ is con-
structed from the disjoint sum $S^{P}\times D^{q+1}UD^{P+1}\times S^{q}$ by identifying $(u, v)\in S^{p}$

$\times\partial D^{q+1}$ with $f(u, v)\in\partial D^{p+1}\times S^{q}$ . Differentiable structure is defined on $c(f)$ by
the canonical way. It is easy to see by the Van Kampen theorem and the
Mayer-Vietoris exact sequence that $c(f)$ is simply connected and is a homology
sphere, hence a homotopy sphere. The orientation is chosen to be compatible
with that of $S^{p}\times D^{q+1}$ and so with the inverse orientation of $D^{p+1}\times S^{q}$ . We will
prove that an orientation preserving diffeomorphism class of the homotopy
sphere $c(f)$ is independent of the pseudo-diffeotopy class of the representative
$f$. Suppose $f^{\prime}$ be another representative of $x\in\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ . Then there
exists a diffeomorphism of $S^{p}\times S^{q}\times I$ onto itself which is equal to $f^{\prime}f^{-1}$ and to
the identity on $S^{p}\times S^{q}\times 0$ and $S^{p}\times S^{q}\times 1$ respectively. Consequently the diffeo-
morphism $f^{\prime}f^{-1}$ is extendable to a diffeomorphism $F$ of $D^{p+1}\times S^{q}$ . Define a map
$d$ from $c(f)$ to $c(f^{\prime})$ by

$d=\left\{\begin{array}{l}identity onS^{p}\times D^{q+1}\\F onD^{p+1}\times S^{q}.\end{array}\right.$

The map $d$ is well-defined and is an orientation preserving diffeomorphism.
Hence we define a map

$C:\tilde{\pi}_{0}(DiffS^{p}\times S^{q})\rightarrow\Theta^{p+q+1}$

by $C(x)=c(f)$ . Let $i$ be the identity map of $S^{p}\times S^{q}$, then obviously $c(i)=S^{p+q+1}$ ,
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$thenatural(p+q+1)$-sphere. But the mapCisnot necessarilya homomorphism.
The counter example will be given in the appendix. We write by $KerC$ the
subset of $\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ consisting of those elements that are mapped by $C$ to
the natural sphere. Let $\eta$ : Diff $S^{p}\times D^{q+1}\rightarrow DiffS^{p}\times S^{q}$ and $\omega$ : Diff $D^{p+1}\times S^{q}$

$\rightarrow DiffS^{p}\times S^{q}$ be the restriction map to their boundary and let $\eta_{*};$
$\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})$

$\rightarrow\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ and $\omega_{*}:$ $\tilde{\pi}_{0}(DiffD^{p+1}\times S^{q})\rightarrow\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ be the induced homo-
morphisms.

LEMMA 3.1. $KerC$ is equal to a subset consisting of elements expressed as
$\omega_{*}(\tilde{\pi}_{0}(DiffD^{p+1}\times S^{q}))\cdot\eta_{*}(\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1}))$ ,

where is the composition in $\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ .
PROOF. We may suppose $p<q$ . Assume that $\{f\}=x\in\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ be-

longs to $KerC$ , where $f\in DiffS^{p}\times S^{q}$ and $\{f\}$ means its pseudo-diffeotopy class.
Then there exists a diffeomorphism $d$ from $c(i)$ to $c(f)$ . Recall $c(i)=S^{p}\times D^{q+1}$

V $D^{p+1}\times S^{q},$
$c(f)=S^{p}\times D^{q+1}\bigcup_{f}D^{p+1}\times S^{q}$ . By the tubular neighborhood theorem

and by the Haefliger’s theorem, we can replace $d$ in its diffeotopy class such
that $d$ maps $S^{p}\times D^{q+1}$ onto $S^{p}\times D^{q+1}$ . Let $ e\in DiffS^{p}\times D^{q1}-\llcorner$ be the restriction of
$d$ on $S^{p}\times D^{q+1}$ . Then on the boundary of $D^{p+1}\times S^{q}$ , the diffeomorphism $d$ is
$equaltof\cdot\eta(e)$ . $Sinced|\partial D^{P+1}\times S^{q}isextendabletoD^{p+1}\times S^{q},$ $f\cdot\eta(e)\in\omega(DiffD^{p-\vdash 1}$

$\times S^{q})$ . Therefore $f\in\omega(DiffD^{p+1}\times S^{q})\cdot\eta(DiffS^{p}\times D^{q+1})$ and $x\in\omega_{*}(\tilde{\pi}_{0}(D\dot{i}ffD^{p+1}$

$\times S^{q}))\cdot\eta_{*}(\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1}))$ . Conversely let $y=\omega_{*}\{g\}\cdot\eta_{*}\{h\}\in\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ ,

$whereg\in Diff(D^{p+1}\times S^{q})andh\in Diff(S^{p}\times D^{q+1})$ . Remark that C(y) $=c(\omega(g)\cdot\eta(h))$

$=S^{p}\times D^{q+1}U_{\eta}D^{p+1}\omega(g)\cdot(h)\times S^{q}$ . Then we define a map $k:c(i)\rightarrow C(y)$ by

$k=\left\{\begin{array}{l}h^{-1}\cdot.S^{p}\times D^{q+1}\rightarrow S^{p}\times D^{q+1}\\g\cdot. D^{p+1}\times S^{q}\rightarrow D^{p+1}\times S^{q}.\end{array}\right.$

This is a well-defined (orientation preserving) diffeomorphism, which shows
that $y$ is contained in $Ker$ C.

Denote by $m$ the diffeomorphism of $S^{p}\times S^{q}$ defined by $m(x, y)=(R_{p+1}x, R_{q+1}y)$ ,

where $R_{p+1}$ and $R_{q+1}$ are reflections of $S^{p}$ and $S^{q}$ respectively.
LEMMA 3.2. Let $2\leqq p<2q-1,2\leqq q<2p-1$ . Then
i) the homomorphisms $\eta*and\omega_{*}$ are monomorphisms,

ii) $\eta_{*}(\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1}))\cap\omega_{*}(\tilde{\pi}_{0}(DiffD^{p+1}\times S^{q}))=\{i, m\}$ .
PROOF. To prove the injectivity of $\eta*$ ’ it is sufficient to show the injec-

tivity of $\eta*forKer$ A. By Proposition 1.4, $Ker$ A is isomorphic to $\pi_{p}(SO_{q+1})$ .
We identify them. We again use the Haefliger’s exact sequence

$j$

$\rightarrow C_{p+1}^{q+1}\rightarrow\pi_{p}(SO_{q+1})\rightarrow FC_{p}^{q+1}\rightarrow C_{p}^{q+1}\rightarrow$ ,

where $j$ is injective for $p<2q$ . Suppose that $\eta_{*}(r)=0$ , where $\{r\}\in\pi_{p}(SO_{q+1})$

$=Ker$ A. Then the diffeomorphism of $S^{p}\times S^{q}$ given by $(x, y)\rightarrow(x, r(x)y)$ is ex-
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tendable to a diffeomorphism of $D^{p+1}\times S^{q}$ . Let $S^{p+q+1}=D^{p+1}xS^{q}\bigcup_{i}S^{p}\times D^{q+1}$ be

the decomposition. Denote by $\tilde{r}$ the diffeomorphism of $S^{p}\times D^{q+1}$ defined by $\tilde{r}(x, y)$

$=(x, r(x)y)$ . Then $\tilde{r}$ is extendable to a diffeomorphism $h$ , where $h\in DiffS^{p+q+1}$ .
Given an element of $\pi_{0}(DiffS^{p+q+1})$ , we can choose a representative which fixes
$D^{p+q+1}$ . Consequently we can take $h^{\prime}$ which is an extension of $r$ such that $h^{\prime}$

is diffeotopic to the identity map of $S^{p+q+1}$ . Since the embedding $j(r)$ is defined
to be the identity embedding composed with $\tilde{r}$ , it follows that $j(r)=0$ . Since

$j$ is injective, $\eta*is$ also injective for $Ker$ A. The injectivity of $\omega_{*}$ is analogous

and i) follows. We will prove ii). First we study $\eta_{*}(KerA)\cap\omega_{*}(KerA)$

$=\eta_{*}(\pi_{p}(SO_{q+1}))\cap\omega_{*}(\pi_{q}(SO_{p+1}))$ . If $\eta_{*}(s)$ lies in $\omega_{*}(\pi_{q}(SO_{p+1}))$ , where $s\in\pi_{p}(SO_{q+1})$ ,

then the diffeomorphism $s:\sim S^{p}\times D^{q+1}\rightarrow S^{p}\times D^{q+1}$ defined by $s\sim(x, y)=(x, s(x)y)$ is
extendable to a diffeomorphism of $S^{p+q+1}$ . Similar argument as above shows
that $j(s)=0$ and consequently $\{s\}=0$ . Hence $\eta*(KerA)\cap\omega_{*}(KerA)$ contains
the class of the identity element only. Let us define the diffeomorphism $l$ of
$S^{p}\times D^{q+1}$ by $l(x, y)=(R_{p+1}x, R_{q+1}y)$ and diffeomorphism $l^{\prime}$ of $D^{p+1}\times S^{q}$ by $l^{\gamma}(x, y)$

$=(R_{p+1}x, R_{q+1}y)$ . Then $\eta(l)=\omega(l^{\prime})=m$ . By \S 1, any element of $\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})$

\langle resp. $\tilde{\pi}_{0}(DiffD^{p+1}\times S^{q}))$ which does not belong to $Ker$ A is written as $l\cdot r$ , where
$r\in\pi_{p}(SO_{q+1})$ . (resp. $l^{\prime}\cdot r^{\prime}$ , where $\gamma^{\prime}\in\pi_{q}(SO_{p+1})$). Obviously $\eta_{*}(l\cdot\pi_{p}(SO_{q+1}))$

$\cap\omega_{*}(\pi_{q}(SO_{p+1}))=\eta_{*}(\pi_{p}(SO_{q+1}))\cap\omega_{*}(l^{\prime}\pi_{q}(SO_{p+1}))=\phi$ . If $\eta_{*}(1\cdot s)=\omega_{*}(l^{\prime}\cdot t)$ , where
$\{s\}\in\pi_{p}(SO_{q+1})$ and $\{t\}\in\pi_{q}(SO_{p+1})$ , then it follows that $\eta_{*}(s)=\omega_{*}(t)$ . Hence
$\{s\}=\{t\}=0$ by the former part of this proof, which completes the proof of ii).

COROLLARY 3.3. The order of $KerC$ is equal to the order of the direci sum
group $\pi_{p}(SO_{q+1})\oplus\pi_{q}(SO_{p+1})\oplus Z_{2}$ for $3\leqq p<2q-1,3\leqq q\leqq 2p-1,$ $p\neq q$ .

PROOF. If $\omega_{*}(a)\cdot\eta_{*}(x)=\omega_{*}(a^{\gamma})\cdot\eta_{*}(x^{\prime})$ , where $a,$ $a^{\prime}\in\pi_{q}(SO_{p+1})$ and $x,$
$x^{\prime}$

$\pi_{p}(SO_{q+1})$ , then $\omega_{*}(a^{\prime})^{-1}\omega_{*}(a)=\eta_{*}(x^{\prime})\eta_{*}(x^{-1})$ . From Lemma 3.2 ii), they are equal
to zero, and the corollary follows by Lemma 3.2 i).

We identify $Ker$ A $\subset\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})$ with $\pi_{p}(SO_{q+1})$ and $KerA\subset\pi_{0}(DiffD^{p+1}$

$\times S^{q})$ with $\pi_{q}(SO_{p+1})$ for $2\leqq p<2q-1,2\leqq q\leqq 2p-1$ as before.
LEMMA 3.4. Suppose $3\leqq p<2q-4,3\leqq q<2p-4,$ $p\neq q$ . If an element

$J^{\sim_{\tau_{0}(DiffS^{p}\times S^{q})}}$ is written as $\omega_{*}(a)\cdot\eta_{*}(x)=\eta_{*}(x^{\prime})\cdot\omega_{*}(a^{\prime})$ , where $a,$ $a^{\prime}\in\pi_{p}(SO_{p+1})$

and $x,$ $x^{\prime}\in\pi_{p}(SO_{q+1})$ , and if $a,$
$a^{\prime}$ are suspension elements, then $a=a^{\prime}$ .

PROOF. We can take representatives $g,$ $ g^{\prime}\in$ Diff $S^{p}\times S^{q}$ of $\eta_{*}(b),$ $\eta_{*}(b^{\prime})$

respectively, which keeps $D_{+}^{p}\times S^{q}$ invariant. Let $s$ be the inclusion of $SO_{p}$ in
$SO_{p+1}$ . Since $a,$

$a^{\gamma}$ are suspension elements, there exists mapping $r_{i}$ : $S^{q}\rightarrow SO_{p}$

$(i=1,2)$ such that $s_{*}(r_{1})=a$ and $s_{*}(r_{2})=a^{\gamma}$ . Further we can regard that $r_{i}$

are $C^{\infty}$-maps. Hence we can take $f,$ $f^{\prime}\in DiffS^{p}\times S^{q}$ as respective representa-
tives of $\omega_{*}(a),$ $\omega_{*}(a^{\prime})$ which map $D_{+}^{p}\times S^{q}$ and $D_{-}^{p}\times S^{q}$ onto itself respectively
such that

$f(x, y)=(x, r_{1}(x)y)$ for $(x, y)\in D_{+}^{p}\times S^{q}$ or $D_{-}^{p}\times S^{q}$
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$f^{\prime}(x, y)=(x, r_{2}(x)y)$ for $(x, y)\in D_{+}^{p}\times S^{q}$ or $D_{-}^{p}\times S^{q}$ .
Consequently we have representatives $fg$ and $g^{\prime}f^{\prime}$ of $\omega_{*}(a)\cdot\eta_{*}(b)$ and $\eta_{*}(b^{\prime})$ .
$\omega_{*}(a^{\prime})$ respectively, which map $D^{\underline{p}}\times S^{q}$ onto itself by $f$ and $f^{\prime}$ . These are
pseudo-diffeotopic by our assumption $\omega_{*}(a)\cdot\eta_{*}(b)=\eta_{*}(b^{\prime})\cdot\omega_{*}(a^{\prime})$ . Hence
$f|D_{-}^{p}\times S^{q}$ and $f^{\prime}|D^{\underline{p}}\times S^{q}$ are concordant as embeddings of $D^{p}\times S^{q}$ in $S^{p}\times S^{q}$ .
Since these differ only by the bundle map $f^{\prime- 1}f$, the element $\{r_{2}^{-1}r_{1}\}\in\pi_{q}(SO_{p})$

lies in $S_{f_{0}}(0)$ of \S 2 (in case $q<p$ , generalized $S_{f_{0}}(0)$ of Lemma 2.5.). By Pro-
position 2.4 or by Lemma 2.5, the element $\{r_{2}^{-1}r_{1}\}$ lies in the image of the
boundary operator $\partial:\pi_{q+1}(S^{p})\rightarrow\pi_{q}(SO_{p})$ . This implies that $\{r_{1}\}$ and $\{r_{2}\}$ go
into the same element by $ S_{*}\ddagger$ $\pi_{q}(SO_{p})\rightarrow\pi_{q}(SO_{p+1})$ , which shows $a=a^{\prime}$ .

LEMMA 3.5. The map $C$ is surjective.
PROOF. Assume $p<q$ . Given a homotopy sphere $\Sigma$ , we can choose an

orientation reversing embedding $ i:S^{q}\times D^{p+1}\rightarrow\Sigma$ . The complement $\Sigma-Int(i(S^{q}$

$\times D^{p+1}))$ is simply connected and has the homotopy type of $S^{p}$ . Since
$p<\underline{p+}q\underline{+1}2$ and $\Sigma$ is $\pi$ -manifold, we can choose an orientation preserving

embedding $j:S^{p}\times D^{q+1}\rightarrow\Sigma-Int(i(S^{q}\times D^{p+1}))$ such that $j(S^{p}\times 0)$ represents the
generator of $H_{p}[\Sigma-Int\{i(S^{q}\times D^{p+1})\}]\approx Z$. By the h-cobordism theorem [11],
[X–Int $\{i(S^{q}\times D^{p+1})\}$] is diffeomorphic to $j(S^{p}\times D^{q+1})$ . Hence we can regard $\Sigma$

as the sum of $S^{q}\times D^{p+1}$ and $S^{p}\times D^{q+1}$ glued by an orientation preserving diffeo-
morphism. In case $p>q$ , the proof is similar.

PROPOSITION 3.6. If $p<q$ and $\pi_{p}(SO_{q})=0$ , then
i) $\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ is abelian

ii) the map $C$ is a homomorphism.
PROOF. Let $f$ be an element of Diff $S^{p}\times S^{q}$ . Then, since $p<q$ and $\pi_{p}(SO_{q})$

$=0$ , we can take $f^{\gamma}$ in the diffeotopy class of $f$ such that it keeps $S^{p}\times D_{+}^{q}$

invariant, by first moving $f|S^{p}\times 0$ to the identity and next moving $f|S^{p}\times D_{+}^{q}$

to the identity by the tubular neighborhood theorem. Similarly, given
$g\in DiffS^{p}\times S^{q}$, we can take $g^{J}$ in the diffeotopy class of $g$, such that it keeps
$S^{p}\times D^{\underline{q}}$ invariant. Then we have $f^{\prime}g^{\prime}=g^{\prime}f^{\gamma}$ , which proves ii). To show ii), it
is sufficient to prove that $c(fg)$ is orientation preserving diffeomorphic to
$c(f)\#c(g)$ . We can take $f$ such that it fixes $S^{p}\times D^{q}$ as above. The manifold
$c(f)$ is made from $S^{p}\times D^{q+1}UD^{p+1}\times S^{q}$ attached their boundaries by $f$. Decom-
pose $D^{p+1}\times S^{q}$ as $D^{p+1}\times D_{-}^{q}UD^{p+1}\times D_{-}^{q}$ . Then manifold $c(f)$ is made by firstly
attaching $S^{p}\times D^{q+1}$ to $D^{p+1}\times D_{+}^{q}$ by the identity map from $S^{p}\times D_{+}^{q}\subset S^{p}\times\partial D^{q+1}$

$\subset\partial(S^{p}\times D^{q+1})$ to $S^{p}\times D_{+}^{q}\subset(D^{p+1}\times D_{+}^{q})$ , the resulting manifold being $(p+q+1)-$

dimensional disk, and secondly by attaching it to $D^{p+1}\times D^{\underline{q}}$ by an attaching
map $f;S^{p}\times D_{-}^{q}UD^{p+1}\times\partial D_{+}^{q}\rightarrow S^{p}\times D_{-}^{q}UD^{p+1}\times S^{q-1}\subset(D^{p+1}\times D_{-}^{q})$ which is equal
to $f$ on $S^{p}\times D^{\underline{q}}$ and equal to the identity on $D^{p+1}\times\partial D_{+}^{q}=D^{p+1}\times S^{q-1}$ . We can
regard $f\in DiffS^{p+q}$ . Let $p:\tilde{\pi}_{0}(DiffS^{p+q})\rightarrow\Theta^{p+q+1}$ be the natural isomorphism.
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Then $p(f)=c(f)$ by the above construction. Similarly we can choose $\tilde{g}\in$ Diff $S^{p+q}$ .
The connected sum operation corresponds to the composition of Diff $S^{p+q}$ .
Consequently $c(fg)=p(fg)=c(f)\#c(g)$ , which completes the proof.

As a consequence of these lemmas we have the following theorem.
THEOREM 3.7. If $3\leqq p<q<2p-1$ and $\pi_{p}(SO_{q})=0$ , then the order of

$\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ is equal to the order of the direct sum group
$\pi_{q}(SO_{p+1})\oplus\Theta^{p+q+1}\oplus Z_{2}$ .

This results will be extended to the case $\pi_{p}(SO_{q})\neq 0$ in the next section.

\S 4. Computation of $\tilde{\pi}_{0}(Diff \mathscr{F}_{f})$ .
In this section we will investigate $\pi_{0}(DiffS^{7_{f}})$ for $p<q<2p-3$ . This res-

triction of dimension is assumed throughout the present section. The study is
carried out as follows. First we define a homomorphism.

$A^{\prime}$ : $\tilde{\pi}_{0}(Diff\mathscr{F}_{f})\rightarrow z_{2}$ ,

by the induced automorphism of $H_{*}(\mathscr{Z}_{f})$ and investigate ${\rm Im} A^{\prime}$ . The group
$KerA^{\prime}$ is consisting of pseudo-diffeotopy classes of $gr_{f}$ which induce the identity
map in $H^{*}(\mathscr{Z}_{f})$ . in order to study $KerA^{\prime}$ , we define a homomorphism

$K:KerA^{\prime}\rightarrow\pi_{q}(S^{p})$ ,

by the induced automorphism of $\pi_{q}(S_{f}^{7})\approx\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})$ , and investigate ${\rm Im}$ K.
In order to study $KerK$ , we define a homomorphism.

$L:KerK\rightarrow\pi_{q}(SO_{p})/{\rm Im}\alpha_{f}$

by the induced automorphism of the tubular neighborhood of a fibre $S^{q}$, and
investigate ${\rm Im}$ L. For the study of $KerL$ , we define a homomorphism

$M:KerL\rightarrow\Theta^{p+q}/G_{f}$ .
The investigation of the image and the kernel of $M$ completes our calculation
of $\tilde{\pi}_{0}(Diffg_{f})$ .

(1) We will define the homomorphism $A^{\gamma}$ and study ${\rm Im} A^{\prime}$ . A diffeomor-
phism of $g_{f}$ induces an automorphism of $H_{*}(g_{f})$ . We have

$H_{i}(\mathscr{F}_{f})=\left\{\begin{array}{l}Z fori=0,p,q,p+q\\0 otherwise.\end{array}\right.$

By an orientation preserving diffeomorphism, generators of $H_{0}(s^{r_{f}})$ and $H_{p+q}(g_{f})$

must be mapped to the same generators. Furthermore by the Poincar\’e duality,
if a generator of $H_{p}(g_{f})$ is mapped to the other generator, so is the generator
of $H_{q}(\mathscr{F}_{f})$ . Therefore the induced automorphism group of $H_{*}(S^{i_{f}})$ is isomorphic
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to $Z_{2}$ . Hence we have a homomorphism

$A^{\prime}$ : $\tilde{\pi}_{0}(Diffq_{f})\rightarrow z_{2}$

analogous to the homomorphism $A:\tilde{\pi}_{0}(Diffe_{f})\rightarrow Z_{2}$ defined in \S 1. We have
the next proposition.

PROPOSITION 4.1. ${\rm Im} A={\rm Im} A^{\prime}$ .
The proof is postponed until the end of this section. We will investigate

$KerA^{\prime}$ next.
(2) We now define the homomorphism $K:KerA^{\prime}\rightarrow\pi_{q}(S^{p})$ and investigate

${\rm Im}$ K. Given an element $x\in KerA^{\prime}$ , let $ g\in$ Diff $\mathscr{Z}_{f}$ be its representative. The
diffeomorphism $g$ induces an automorphism of $\pi_{q}(q_{f})\approx\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})$ . By the
Hurewicz homomorphism the direct summand $\pi_{q}(S^{q})\approx Z$ is mapped isomor-
phically onto $H_{q}(\mathscr{Z}_{f})\approx Z$, and the direct summand $\pi_{q}(S^{p})$ is mapped to the zero
element. Since $\{g\}$ belongs to $KerA^{\prime},$ $g$ maps the generators of $H_{i}(q_{f})$ to the
same elements. Hence the induced automorphism $g_{*}$ of $\pi_{q}(q_{f})$ maps the ele-
ment $1+0$ to an element $1+k(g)$ , where $0$ denotes the trivial element of $\pi_{q}(S^{p})$ ,

1 denotes a generator of $\pi_{q}(S^{q})$ and $k(g)\in\pi_{q}(S^{p})$ . We define the map

$K:KerA^{\prime}\rightarrow\pi_{q}(S^{p})$

by $K(x)=k(g)$ . Obviously it is well-defined.
LEMMA 4.2. The map $K$ is a homomorphism.
PROOF. Let $g_{1}$ and $g_{2}$ be elements of Diff $9^{\gamma_{f}}$ , whose pseudo-diffeotopy

classes belong to $KerA^{\prime}$ . Since $p<q$ we can assume that $g_{i}(i=1,2)$ keeps
the cross section $c(S^{p})$ invariant. Hence $g_{i*}(0+x)=0+x$ , where $0+x\in\pi_{q}(S^{q})$

$\oplus\pi_{q}(S^{p})\approx\pi_{q}(g_{f})$ . Consequently we have $(g_{1}g_{2})_{*}(1+0)=g_{1*}(1+k(g_{2}))=g_{1*}((1+0)$

$+(0+k(g_{2})))=1+k(g_{2})+k(g_{1})$ , which completes the proof.
In our range of dimension, $p<q<2p-3$ , the isotopy classes of embeddings

of $S^{q}$ in $\mathscr{Z}_{f}$ correspond bijectively to the homotopy classes $\pi_{q}(\mathscr{Z}_{f})$ . We define
a map

$\beta_{f}$ : $\pi_{q}(S^{p})\rightarrow\pi_{q-1}(SO_{p})$

by defining $\beta_{f}(x)$ to be the characteristic class of the normal bundle to the
embedded $S^{q}$ in $g_{f}$ whose homotopy class is equal to $1+x\in\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})$

$\approx\pi_{q}(\mathcal{G}_{f})$ . We have defined the homomorphism $\alpha_{f}$ : $Q_{q}^{p}(f)\rightarrow\pi_{q-1}(SO_{p})$ and the
isomorphism $i:Q_{q}^{p}(f)\rightarrow\pi_{q}(S^{p})$ in \S 2. Then obviously $\beta_{f}=\alpha_{f}i^{-1}$ . By theorem
2.6, $\beta_{f}$ is a homomorphism and $\beta_{f}(x)=F_{f}(x)+\partial(x)$ . Obviously we have the
following lemma.

LEMMA 4.3. The group ${\rm Im} K$ is a subgroup of $Ker\beta_{f}$ .
We will now investigate this subgroup ${\rm Im}$ K. Consider $q_{f}$ to be $e_{g}^{+}ue^{-}$

$=D_{+}^{p}\times D_{1}^{q}UD_{-}^{p}\times D_{1}^{q}U\mathcal{E}_{g}^{-}$ . Let $D^{p+q}$ be a fixed disc in the interior of $D_{+}^{p}\times D_{1}^{q}$ ,
and let $N$ denote the closure of $\mathscr{Z}_{f}-D^{p+q}$ . Given an element $x$ of $Ker\beta_{f}$ , we
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can choose an embedding $e:S^{q}\rightarrow N\subset q_{f}$ whose homotopy class is equal to
$1+x\in\pi_{q}(g_{f})$ . Since $x$ belongs to $Ker\beta_{f}$ , the tubular neighborhood of $e(S^{q})$ is
trivial. Hence we can extend $e$ to an embedding $d:S^{q}\times D^{p}\rightarrow N$, where $d|S^{q}$ xO
$=e$ . Let $S^{q}\times D^{p}=D_{+}^{p}\times D^{q}UD^{\underline{p}}\times D^{q}$ and $e_{g}^{-}=D_{+}^{p}\times D_{2}^{q}UD_{-}^{p}\times D_{2}^{q}$ be the de-
compositions. By Lemma 2.1, we can replace $d$ in its diffeotopy class by an
embedding satisfying;

i) $d|D_{-}^{p}\times D^{q}=canonical$ embedding of $D^{\underline{p}}\times D^{q}$ in $\mathcal{E}_{g}^{-}$

ii) $d(Int(D_{+}^{p}\times D^{q}))\subset Int(D_{+}^{p}\times D_{1}^{q})$ .
Let $W=d(S^{q}\times D^{p})Ue_{g}^{-}$ be the union space in $q_{f}$ . Since the zero cross section
of $\mathcal{E}_{g}^{-}$ and $d(S^{q}\times 0)$ generate $H_{p}(9^{i_{f}})$ and $H_{q}(g_{f})$ respectively, the inclusion $\partial W$

$\rightarrow N$–Int $W$ is a homotopy equivalence. Consequently $\partial N$ and $\partial W$ are h-cobor-
dant. Therefore by Smale’s theorem [11], $N$ and $W$ are diffeomorphic. Let
$j$ denote the diffeomorphism $N\rightarrow W$. Let $T_{0}=D^{\underline{p}}\times D_{1}^{q}UD^{\underline{p}}\times D_{2}^{q}=D^{p}\times S^{q}$ ,

which is the tubular neighborhood of the canonical fibre and let $V=\tau_{0}ue_{g}^{-}$ .
Then similarly as above $N$ and $V$ are diffeomorphic and we have a diffeo-
morphism $k:N\rightarrow V$. Write $T(x)$ for $d(S_{q}\times D_{p})$ . There exists a diffeomorphism
$l:V=\tau_{0}\cup e_{g}^{-}\rightarrow W=T(x)U\mathcal{E}_{g}^{-}$ defined by the identity on $\mathcal{E}_{g}^{-}$ and by a bundle
map from $T_{0}$ to $T(x)$ which is the identity on $T_{0}\cap \mathcal{E}_{g}^{-}=T(x)\cap \mathcal{E}_{g}^{-}$ . The diffeo-
morphism $j^{-1}lk:N\rightarrow N$ maps the homotopy class $1+0\in\pi_{q}(S^{q})\oplus\pi_{q}(S^{p})\approx\pi_{q}(N)$

$\pi_{q}(S^{i_{f}})$ to $1+x\in\pi_{q}(g_{f})$ . If this diffeomorphism $j^{-1}lk$ of $N$ is extendable to a
diffeomorphism of $q_{f}=NUD^{p+q}$ , then $X$ lies in ${\rm Im}$ K. To know this exten-
dability we now define the set map

$\Psi:Ker\beta_{f}\rightarrow$ { $Subsets$ of $\Theta^{p+q}$ } ,

where $\Theta^{p+q}$ is the group of $p+q$-dimensional homotopy spheres. Take two
copies of the disk bundles $\mathcal{E}_{f}$ . Attach them on the portions $N\subset\partial \mathcal{E}_{f}=S^{i_{f}}$ by
the map $j^{-1}lk:N\rightarrow N$. Then we obtain a $(p+q+1)$-dimensional manifold $X(l)$ .
Its boundary $\varphi(l)$ is a $(p+q)$-dimensional homotopy sphere, which naturally
corresponds to the obstruction of extension of $j^{-1}lk$ to a diffeomorphism of
whole $g_{f}$ . Changing $l$ by taking other bundle maps $T_{0}\rightarrow T(x)$ , we define a
subset $\Psi(x)$ of $\Theta^{p+q}$ by $\{\varphi(l)\}$ . If we define the map $l^{\prime}$ : $V=T_{0}Ue_{g}^{-}\rightarrow W$

$=T(x)Ue_{g}^{-}$ by a bundle map from $e_{g}^{-}\subset V$ to $e_{g}^{-}\subset W$ and by a bundle map
from $T_{0}$ to $T(x)$ , then the set $\{\varphi(l^{\prime})\}$ is equal to $\{\varphi(1)\}$ , because any bundle
map of $\mathcal{E}_{g}^{-}\subset q_{f}$ is extendable to a diffeomorphism of $\mathscr{Z}_{f}$ by the reflection to

$\mathcal{E}_{g}^{+}$ . Suppose we choose other embeddings $e^{\prime}$ : $S^{q}\rightarrow N$ and $d$ ’ : $S^{q}\times D^{p}\rightarrow N$.
Then by the Haefliger’s theorem [4], and by the tubular neighborhood theorem,
there exists a diffeomorphism $h$ of $S^{i_{f}}$ mapping $W=T(x)U\mathcal{E}_{g}^{-}$ to $W^{\prime}=T^{\prime}(x)$

$\cup e_{g}^{-}$ , where $T^{\prime}(x)=d^{\gamma}(S^{q}\times D^{p})$ such that $i^{\gamma}|T(x)$ and $i^{\prime}|\mathcal{E}_{g}^{-}$ are bundle maps
mapping $T(x)$ to $T^{\prime}(x)$ and $e_{g}^{-}\subset W$ to $e_{g}^{-}\subset W^{\prime}$ . Consequently the definition
$\Psi(x)$ does not depend on the choice of $T(x)$ . Hence we obtain the map
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$\Psi:Ker\beta\rightarrow$ { $Subsets$ of $\Theta^{p+q}$ }.

PROPOSITION 4.4. An element $x\in Ker\beta_{f}$ lies in ${\rm Im} K$ if and only if $\Psi(x)$

contains the natural sphere.
PROOF. Suppose $\Psi(x)$ contains the natural sphere. Then there exists a

diffeomorphism $l:V\rightarrow W$ mapping $T_{0}$ to $T(x)$ and $e_{g}^{-}\subset V$ to $e_{g}\subset W$ such that
$j^{-1}lk|\partial N=S^{p+q+1}$ is extendable to a diffeomorphism of $D^{p+q}$ . Hence $j^{-1}lk$ is
extendable to the diffeomorphism of $q_{f}$ , which shows that $x$ lies in ${\rm Im}$ K.
Conversely suppose that $y\in Ker\beta_{f}$ belongs to ${\rm Im}$ K. Then there exists a dif-
feomorphism $m$ of $g_{f}$ such that $jmk^{-1}$ is a diffeomorphism: $V=T_{0}U\mathcal{E}_{g}^{-}\rightarrow W$

$=T(y)Ue_{g}^{-}$ . We can suppose that both $m|T_{0}$ and $m|e_{g}^{-}$ are bundle maps and
the proposition holds.

The map $\Psi$ will be interpreted as a homomorphism.

$\Psi^{\prime}$ : $Ker\beta_{f}\rightarrow$ a factor group of $\Theta^{p+q}$

in Lemma 4.11.
We have shown in Lemma 4.3 that ${\rm Im} K$ is a subgroup of $Ker\beta_{f}$ . But we

have the next proposition.
PROPOSITION 4.5. If the bundle $g_{f}$ is trivial, then ${\rm Im} K$ is equal to $Ker\beta_{f}$ .
PROOF. Recall that $X(l)=e_{f}\cup e_{f}$ . The homology group of $X(l)$ is as

$j^{-1}lk$

follows.

$H_{i}(X(l))=\left\{\begin{array}{l}Z fori=0,p,q+1\\0 otherwise.\end{array}\right.$

The boundary $\partial X(l)$ is a homotopy sphere. A generator of p-dimensional
homology group of $X(l)$ can be realized by an embedded sphere $S^{p}$ . Its tubular
neighborhood $U$ is trivial by our assumption that $gr_{f}$ is trivial. Therefore we
can do the usual spherical modification [8]. We make a new manifold
$Y=(X(l)-U)UD^{p+1}\times S^{q}$ . Since $Y$ is contractible, the boundary of $Y$, which
is equal to $\varphi(l)$ is diffeomorphic to the natural sphere. The proposition follows
directly from Proposition 4.4.

Since $F_{f_{0}}$ is a trivial map for a trivial bundle $S^{7_{f_{0}}}$ , we obtain the following
corollary by combining Proposition 4.5 and Theorem 2.6.

COROLLARY 4.6. If the bundle is trivial, then ${\rm Im} K$ is isomorphic to the
image of the projection map $p_{*}:$ $\pi_{q}(SO_{p+1})\rightarrow\pi_{q}(S^{P})$ for $q<2p-3$ .

(3) At this stage we study $Ker$ K. For this purpose, we define a homo-
morphism $L:KerK\rightarrow\pi_{q}(SO_{p})/{\rm Im}\alpha_{f}$ and investigate ${\rm Im}$ L. Let $S^{q}$ be the can-
onical fibre of $\mathscr{Z}_{f}$ and let $T_{0}$ be the tubular neighborhood of $S^{q}$ which is a
trivial bundle. Let $(\kappa 1)$ be the subgroup of Diff $q_{f}$ consisting of diffeomor-
phisms which keep $S^{q}$ invariant and map $T_{0}$ by a bundle map, whose pseudo-
diffeotopy classes belongs to $Ker$ K. Let $g$ be an element of $(\kappa 1)$ . We define



20 H. SATO

$l(g)\in\pi_{q}(SO_{p})$ by the corresponding homotopy class of the bundle map. Then
$l:(\kappa 1)\rightarrow\pi_{q}(SO_{p})$ is a well-defined homomorphism. But if we regard $l$ as a
homomorphism: $KerK\rightarrow\pi_{q}(SO_{p})$ , it is not well-defined. Let $(\kappa 2)$ be the sub-
group of $(\kappa 1)$ consisting of elements of $(\kappa 1)$ which are pseudo-diffeotopic to the
identity.

LEMMA 4.7. The image of $(\kappa 2)$ by $l$ is contained in $S_{f}(0)$ .
PROOF. Let $g^{\prime}\in(\kappa 2)$ . Then the two embeddings of $S^{q}\times D^{p}$ , one by the

identity and the other by changing the trivialization of $S^{q}\times D^{p}$ by $1(g^{\prime})$ are
concordant. Hence $l(g^{\prime})$ is mapped to the same element of $FQ_{q}^{p}(f)$ and the
lemma follows.

By Proposition 2.4, for $p<q<2p-4,$ $S_{f}(0)$ is equal to the image of
$\alpha_{f}$ : $Q_{q+1}^{p}(sf)\rightarrow\pi_{q}(SO_{p})$ . Given an element $x\in KerK$ , we can take $h\in Diff\mathcal{G}_{f}$

in the class $x$ such that $h$ belongs to $(\kappa 1)$ . If we choose another element
$h^{\prime}\in(\kappa 1)$ , then $h^{-1}h^{\prime}$ lies in $(\kappa 2)$ and so $l(h)^{-1}l(h^{\prime})=l(h^{-1}h^{\prime})$ lies in $S_{f}(0)$ . Hence
for $p<q<2p-4$ , we can well-define a homomorphism

$L:KerK\rightarrow\pi_{q}(SO_{p})/{\rm Im}\alpha_{f}$ .
by $L(x)=l(g)$ .

To study the image of $L$, we should take notice of the following situation.
Let $T_{0}=D^{p}\times S^{q}$ be the tubular neighborhocd of the fibre as before. Given a
$C^{\infty}$-map $R:S^{q}\rightarrow SO_{p}$ , define the diffoemorphism $\tilde{r}:T_{0}\rightarrow T_{0}$ by $\tilde{r}(x, y)=(r(y)x, y)$ .
The question is whether this diffeomorphism is extendable to a diffeomorphism
of whole $\mathscr{Z}_{f}$ . Since $\mathscr{Z}_{f}$ can be regarded as the glueing of two copies of $D^{p}\times S^{q}$

by the attaching map $ f\in$ Diff $S^{p-1}\times S^{q}$ , where $f(x, y)=(x,f(x)y)$ , the question
reduces to the following; whether the diffeomorphism of $S^{p-1}\times S^{q}$ given by

$\tilde{f}\tilde{r}\tilde{f}^{-1}$ is the restriction of a diffeomorphism of $D^{p}\times S^{q}$ or not. We have defined
the map $C:\tilde{\pi}_{0}(DiffS^{p-1}\times S^{q})\rightarrow\Theta^{p+q}$ in \S 2, by mapping an element of Diff $S^{p-1}$

$\times S^{q}$ to the homotopy sphere obtained from $D^{p}\times S^{q}US^{p-1}\times D^{q+1}$ by attaching
their boundaries by the element.

LEMMA 4.8. The diffeomorphism $\tilde{f}\tilde{r}\tilde{f}^{-1}$ of $S^{p-1}\times S^{q}$ is extendable to $D^{p}\times S^{q}$

if and only if $c(\tilde{f}\tilde{r}\tilde{f}^{-1})=0$ .
PROOF. Suppose first that the diffeomorphism $\tilde{f}\tilde{r}\tilde{f}^{-1}$ of $S^{p-1}\times S^{q}$ is extend-

able to a diffeomorphism $g$ of $D^{p}\times S^{q}$ . Define a map

$h:c(\tilde{f}\tilde{r}\tilde{f}^{-1})=D^{p}\times S^{q}\bigcup_{\sim\sim\tilde{f},rf^{-1}}S^{p-1}\times D^{q+1}\rightarrow c(i)=D^{p}\times S^{q}\bigcup_{\iota}S^{p-1}\times D^{q+1}$

by

$h(x, y)=\left\{\begin{array}{l}g(x,y)\\(x,y)\end{array}\right.$

$(x, y)\in D^{p}\times S^{q}$

$(x, y)\in S^{p-1}\times D^{q+1}$

Obviously $h$ is a diffeomorphism, which shows that $c(\tilde{f}\tilde{r}\tilde{f}^{-1})=0$ . Conversely,
suppose $c(\tilde{f}\tilde{r}F^{-1})=0$ . Then by Lemmas 3.1 and 3.2, $KerC$ is written as
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$\pi_{q}(SO_{p})\cdot\pi_{p-1}(SO_{q+1})$ . Hence we have $\tilde{f}\tilde{r}\tilde{f}^{-1}=s\tilde{t}\sim$ , where $s\in\pi_{q}(SO_{p})$ and
$t\in\pi_{p-1}(SO_{q+1})$ . Then $\tilde{f}\tilde{r}=s\sim\tilde{t}\tilde{f}$. But since $t$ and $f$ are of suspension type, by
Lemma 3.4, we have $f=tf$. Consequently $t$ is trivial and we have $\tilde{f}\tilde{r}\tilde{f}^{-1}=s\sim$ .
Therefore $\tilde{f}\tilde{r}f-1$ is extendable to $D^{p}\times S^{q}$ , which completes the proof.

By this lemma, it follows that $r\in\pi_{q}(SO_{p})$ is in ${\rm Im} L$ if and only if
$c(\tilde{f}\tilde{r}\tilde{f}^{-1})=0$ . But we will rewrite this fact using the following definition.

We define the pairing

$\Gamma:\pi_{p-1}(SO_{q-\vdash 1})\times\pi_{q}(SO_{p})\rightarrow\Theta^{p+q}$

for $p<q$ , by $\Gamma(f, r)=c(\tilde{f}\tilde{r}\tilde{f}^{-1})$ . By Lemma 3.1, the left operation of $\pi_{q}(SO_{p})$

and the right operation of $\pi_{p-1}(SO_{q+1})$ does not change the image of C. Hence
we have

$\Gamma(f, r)=c(\tilde{f}\tilde{r})=c(f- 1\tilde{f}\tilde{r})$ .
LEMMA 4.9. The pairing $\Gamma:\pi_{p-1}(SO_{q+1})\times\pi_{q}(SO_{p})\rightarrow\Theta^{p+q}$ is linear in the

second variable. If the second is the suspension, $\Gamma$ is linear in the first variable.
PROOF. Since $p<q,$ $\pi_{p-1}(SO_{q+1})$ is of suspension type. Hence we can choose

$f$ in its diffeotopy class such that $f$ maps $S^{p-1}\times D_{+}^{q}$ onto itself. Further we
can take $\tilde{r}$ so that it keeps $S^{p-1}\times D_{+}^{q}$ invariant. Consequently $c(\tilde{f}\tilde{r}\tilde{f}^{-1})$ corre-
sponds to an element $r\in\approx DiffS^{p+q}$ which is defined by the identity on $D^{p}\times S^{q-1}$

and by $\tilde{f}\tilde{r}f-1|S^{p-1}\times D_{-}^{q}$ on $S^{p-1}\times D^{q}$ (cf. Proof of (ii) of Proposion 3.6). Since
the connected sum corresponds to the composition of Diff $S^{p+q}$ we have

$c(\tilde{f}\tilde{r}_{1}f-1)\#c(\tilde{f}\tilde{r}_{2}P^{-1})=c(\tilde{f}\tilde{r}_{1}f-1\tilde{f}\tilde{r}_{2}f- 1)=c(\tilde{f}\tilde{r}_{1}\tilde{r}_{2}f-1)$ ,

which shows the linearity in $\pi_{q}(SO_{p})$ . The second assertion of this lemma
follows similarly from the equation $\Gamma(f, r)=c(\tilde{r}^{-1}\tilde{f}\tilde{r})$ . If we denote by $\Gamma(f)$

the restriction of the pairing $\Gamma$ to $\{f\}\times\pi_{q}(SO_{p})$ , then $\Gamma(f)$ is a homomorphism:
$\pi_{q}(SO_{p})\rightarrow\Theta^{p+q}$ . From Lemma 4.8, we have the following.

PROPOSITION 4.10. The image of the homomorphis$mL$ is the factor group
of $Ker\Gamma(f)$ by ${\rm Im}\alpha_{f}$ .

We have defined the map $\Psi$ from $Ker\beta_{f}$ , which is the subgroup of $\pi_{q}(SO_{p})$ ,

to the set of $(p+q)$-dimensional homotopy spheres.
LEMMA 4.11. The set of $(p+q)$-dimensional homotopy spheres which is the

image of $x\in Ker\beta_{f}$ by $\Psi$ is one coset space of $\Theta^{p+q}/{\rm Im}\Gamma(f)$ .
PROOF. The change of image $\Psi$ is due to the bundle map from $T_{0}$ to $T(x)$ .

Let $l_{1}$ and $l_{2}$ be maps from $\tau_{0}ue_{g}^{-}$ to $T(x)Ue_{g}^{-}$ which are the identity on $\mathcal{E}_{g}^{-}$

and a bundle map on $T_{0}$ , and let $\Sigma_{1}=\varphi(l_{1})$ and $\Sigma_{2}=\varphi(l_{2})$ . By definition we
have $\varphi(l_{2}^{-1}l_{1})=\Sigma_{1}-\Sigma_{2}$ . On the other hand $\varphi(l_{2}^{-1}l_{1})=c(f(l_{2}^{-1}l_{1}|\partial T_{0})f^{-1})\in{\rm Im}\Gamma(f)$ .
Hence it follows that $\Sigma_{1}$ and $\Sigma_{2}$ belong to a coset class. Conversely let
$\Sigma=\varphi(1)$ and let $\Sigma^{\prime}=\Gamma(f)(r)$ , where $\gamma\in\pi_{q}(SO_{p})$ . Let us define a diffeomophism
$l_{0}$ : $T_{0}U\mathcal{E}_{g}^{-}\rightarrow T_{0}U\mathcal{E}_{g}^{-}$ by the identity on $e_{g}^{-}$ and by the bundle map correspond-
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ing to $r$ . Then obviously $\varphi(ll_{0})=\Sigma+\Sigma^{\prime}$ . Consequently $\Sigma+\Sigma^{\prime}\in\Psi(x)$ , which
completes the proof.

By this lemma we can regard the map $\Psi$ as a map
$\Psi^{\gamma}$ : $Ker\beta\rightarrow\Theta^{p+q}/{\rm Im}\Gamma(f)$ ,

this map $\Psi^{\gamma}$ is clearly a homomorphism.
(4) The final step is the study of $KerL$ , for which we define a homomor-

phism $M$ and investigate the image and the kernel of M.
Let $T_{0}$ be the tubular neighborhood of the canonical fibre $S^{q}$ as before.

An element of $KerL$ is a pseudo-diffeotopy class of diffeomorphisms of $g_{f}$

whose restriction on $T_{0}$ is concordant to the identity as embeddings of $S^{q}\times D^{p}$

in $q_{f}$ . But by the pseudo-diffeotopy extension theorem (see \S 0), we can
choose a representative diffeomorphism of $KerL$ to be the one which keeps.
$T_{0}$ invariant. Consider $s^{\gamma_{f}}$ as $D_{+}^{q}\times S^{q}UD^{\underline{p}}\times S^{q}$ . Then we can regard
$T_{0}=D_{+}^{P}\times S^{q}$ . Given $x$ (resp. $y$) $\in KerL$ , we can take $d$ (resp. e) as a repre-
sentative of $x$ (resp. y) such that $d$ (resp. e) keeps $D_{+}^{p}\times S^{q}$ (resp. $D_{-}^{p}\times S^{q}$) $|$

invariant. Then obivously $de=ed$ . Hence we have the next lemma.
LEMMA 4.12. $KerL$ is an abelian group.
Now we define the homomorphism M. Let us denote by $(\lambda 1)$ the subgroup

of Diff $q_{f}$ consisting of those which keep $D_{+}^{p}\times S^{q}$ invariant and whose pseudo-
diffeotopy classes belong to $Ker$ L. Given $h\in(\lambda 1)$ , we define a diffeomorphism
$m(h)$ of $S^{p+q}=S^{P-1}\times D^{q+1}UD^{p}\times S^{q}$ by

$\left\{\begin{array}{l}m(h)(x,y)=(x,y) (x,y)\in S^{p-1}\times D^{q+1}\\m(h)(x,y)=h|D_{-}^{p}\times S^{q}(x,y) (x,y)\in D^{p}\times S^{q}.\end{array}\right.$

Since $\tilde{\pi}_{0}(DiffS^{p+q})\approx\Theta^{p+q+1}$ , we can consider $m(h)$ as to be an element of $\Theta^{p+q+1}\leftarrow$

Let $(\lambda 2)$ be the subgroup of $(\lambda 1)$ consisting of elements of $(\lambda 1)$ which are
pseudo-diffeotopic to the identity. Let us denote by $G_{f}$ the subgroup of $\Theta^{p+q+1}$ ,
which is the image of $(\lambda 2)$ by $m$ . Given $x\in KerL$ , we can take a representa-
tive $1\in(\lambda 1)$ . Difine a map

$M:KerL\rightarrow\Theta^{p\perp q+1}/G_{f}$

by $M(x)=\{m(l)\}\in\Theta^{P+q+1}/G_{f}$ . If we choose another representative $l^{\prime}\in(\lambda 1)$ of
$x$ , then $l^{-1}l^{\prime}\in(\lambda 2)$ . Consequently $\{m(l^{-1}l^{\prime})\}=0\in\Theta^{p+q+1}/G_{f}$ and the map $M$ is
well-defined. Obviously $M$ is a homomorphism. In order to study the image
of $M$ , we define the homomorphism

$N:\Theta^{p+q+1}\rightarrow Ker$ L.

We know that $\Theta^{p+q+1}\approx\tilde{\pi}_{0}$(Diff $D^{p-\vdash q}$ rel $\partial D$), the group of pseudo-diffeotopy class
of $D^{p+q}$ which point-wisely fix the boundary $\partial D$ , where the psuedo-diffeotopy
equivalence also needs fixing $(\partial D)\times I$ (see Wall [14]). Given $\Sigma\in\Theta^{p+q+1}$ , let
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$ r\in$ (Diff $D^{p+q}$ rel $\partial D$) be the corresponding element. Define a diffeomorphism
$N(\Sigma)$ of $q_{f}$ by

$\left\{\begin{array}{l}N(\Sigma)(x)=r(x) x\in D^{p+q}=D_{+}^{p}\times D_{+}^{q}\\N(\Sigma)(x)=x x\in q_{f}-D_{+}^{p}\times D_{+}^{q}.\end{array}\right.$

Then $N$ is a well-defined homomorphism from $\Theta^{p+q+1}$ to $Ker$ L. Let $p:O^{p+q+1}$

$\rightarrow\Theta^{p\perp q+1}/G_{f}$ be the natural projection. Obviously the following triangle com-
mutes

$\Theta^{p+q+1}$

$N\nearrow$ $\backslash p$

$KerL-\Theta^{p+q+1}/G_{f}$
$M$

Consequently the homomorphism $M$ is an epimorphism.
Further the next proposition holds.
PROPOSITION 4.3. The following sequence is exact,

$M$

$0\rightarrow\eta_{*}(\pi_{p}(SO_{q+1})/KerB)\rightarrow KerL\rightarrow\Theta^{p+q+1}/G_{f}\rightarrow 0$

where we identify $KerA\in\tilde{\pi}_{0}(Diff\mathcal{E}_{f})$ with $\pi_{p}(SO_{q+1})/Ker$ B.
PROOF. It is sufficient to show the exactness at $Ker$ L. Suppose $x\in KerL$

is mapped by $M$ to the zero element of $\Theta^{p+q+1}/G_{f}$ . Then we can take repre-
sentative $ l\in(\lambda 1)\subset$ Diff $g_{f}$ of $x$ such that $ m(l)\in$ Diff $S^{p+q}$ is extendable to a
diffeomorphism of $D^{p+q+1}$ . Then $l|D^{\underline{p}}\times S^{q}$ is extendable to a diffeomorphism
of $D_{-}^{p}\times D^{q+1}$ . Consequently we have $KerL\subset\eta_{*}(KerA)\subset\eta_{*}(\tilde{\pi}_{0}(Diff\mathcal{E}_{f}))$ . Con-
versely let $y$ belong to $\eta_{*}(KerA)$ . Since $KerA\approx\pi_{p}(SO_{q+1})/KerB$ , we can take
$h\in Diffg_{f}$ such that $m$ keeps $D_{+}^{p}\times S^{q}$ invariant and $h|D^{\underline{p}}\times S^{q}$ is extendable
to a diffeomorphism of $D^{\underline{P}}\times D^{q+1}$ . Then $m(h)$ is pseudo-diffeotopic to the
identity. The proof finishes.

Let $sf$ be the composition of $f$ with the inclusion $s:SO_{q+1}\rightarrow SO_{q+2}$ . We
have defined in (2) the subgroup $Ker\beta_{sf}\subset\pi_{q+1}(SO_{p})$ , and the map $\Psi:Ker\beta_{sf}$

$\rightarrow$ { $Subsets$ of $\Theta^{p+q+1}$ }. Concerning the group $G_{f}$ , we have the next lemma.
LEMMA 4.14. The group $G_{f}$ is equal as sets to $\bigcup_{x\in Ker\beta sf}\Psi(x)$ , where the union

is extended over $Ker\beta_{sf}$ . Especially if the bundle is trivial, then $G_{f}$ is trivial.
PROOF. Let $\Sigma\in G_{f}$ , then there exists $h\in(\lambda 2)\subset Diffg_{f}$ which keeps

$D_{+}^{p}\times S^{q}$ invariant such that $ m(h)=\Sigma$ and $h$ is pseudo-diffeotopic to the identity.
By Proposition 4.13 there exists a diffeomorphism $\tilde{h}$ of $e_{f}$ which is an exten-
sion of $h$ . Consider $\mathscr{Z}_{s.r}$ as $\mathcal{E}_{f}^{+}\cup e_{f}^{-}=e_{f}UD_{+}^{P}\times D^{q+1}UD^{\underline{P}}\times D^{q+1}$ . Define a map
$k$ of $g_{f}-D^{\underline{p}}\times D^{q+1}=\mathcal{E}_{f}UD_{+}^{p}\times D^{q+1}$ by



24 H. SATO

$\left\{\begin{array}{l}k|e_{f}=h\\k|D_{+}^{p}\times D^{q+1}=identity.\end{array}\right.$

Then $k$ can naturally be regarded as a mod one point diffeomorphism of $\mathscr{Z}_{sf}$ ,
the obstruction to the extension of $k$ to be a diffeomorphism of $q_{sf}$ being
equal to $\Sigma\in\Theta^{p+q+1}\approx\tilde{\pi}_{0}(DiffS^{p+q})$ . Let $S^{q+1}$ be the canonical fibre of $q_{sf}$ and
$T_{0}$ be the canonical tubular neighborhood of $S^{q+1}$ . Let $1+x\in\pi_{q+1}(S^{q+1}\oplus\pi_{q+1}(S^{p})$

$\approx\pi_{q+1}(\mathscr{Z}_{f})$ be the homotopy class of $k(S^{q+1})$ and let $T(x)$ be the tubular neigh-
borhood of $k(S^{q+1})$ such that $T(x)\cap \mathcal{E}_{f}^{-}=D_{+}^{p}\times D^{q+1}$ . By the Haefliger’s theorem
and the tubular neighborhood theorem we can choose a mod one point diffeo-
morphism $k^{\prime}$ of $\mathscr{Z}_{f}$ whose extension obstruction is equal to $\Sigma$ such that $k^{\prime}$

maps $e_{f}^{-}$ onto itself and $T_{0}$ to $T(x)$ both by bundle maps. Further, we can
choose a mod one point diffeomorphism $k^{\prime\prime}$ of $q_{f}$ which has the same obstruc-
tion such that $k^{\prime\prime}$ keeps $e_{f}^{-}$ invariant and maps $T_{0}$ to $T(x)$ by a bundle map.
Then by definition $\Sigma=\varphi(k^{\prime/})\in\Psi(x)$ . Conversely, let $\Pi$ be an element of $\Theta^{p+q+1}$

such that $\Pi\in\Psi(y)$ for $y\in Ker\beta_{sf}$ . Then there exists a mod one point diffeo-
morphismn of $\mathscr{Z}_{sf}mapp^{i_{I1}}gthehomotopyclass1+0\in\pi_{q+1}(g_{sf})to1+y\in\pi_{q+1}(\mathscr{Z}_{sf})$

whose obstruction to the extension is equal to $\Pi$ . By pseudo-diffeotopy we
can regard $n$ such that the restriction of $n$ on $e_{f}UD_{+}^{p}\times D^{q+1}=g_{sf}-D^{\underline{p}}\times D^{q+1}$

is a diffeomorphism onto itself and $n|D_{+}^{p}\times D^{q+1}$ is the identity. Then $n|\partial e_{f}$

belongs to $(\lambda 1)\in Diffq_{f}$ and it is easy to see that $ m(n|\partial e_{f})=\Pi$ . The diffeo-
morphism $n|\partial e_{f}$ can be extendable to Diff $e_{f}$ , but it may not be pseude-diffeo-
topic to the identity. Since $KerA\approx\pi_{p}(SO_{q+1})/Ker\beta_{f}$ by \S 1, there exists a
bundle map $r$ of $e_{f}$ keeping $D_{+}^{p}\times D^{q+1}\subset e_{f}$ invariant such that $nr|\partial e_{f}$ is
pseudo-diffeotopic to the identity. Then $nr|\partial e_{f}$ belongs to $(\lambda 2)\subset$ Diff $\mathscr{Z}_{f}$ .
Further

$ m(nr|\partial e_{f})=m(n|\partial e_{f})+m(r|\partial e_{f})=m(n|\partial e_{f})=\Pi$ .

Consequently $\Pi$ is contained in $G_{f}$ . If the bundle is trivial then ${\rm Im}\Psi=0$ and
$G_{f}=0$ . The proof is complete.

In case the bundle $q_{f}$ is trivial, then $Ker$ A is isomorphic to $\pi_{p}(SO_{q+1})$ by
Proposition 1.4 and $\eta_{*}$ is injective by Lemma 3.2. Further by the above Lemma
4.14, the group $G_{f}$ is trivial. Consequently the homomorphism $N:\Theta^{p+q+1}\rightarrow KerL$

is a right inverse of $M:KerL\rightarrow\Theta^{p+q+1}$ and the following sequence splits.

$0\rightarrow\pi_{p}(SO_{q+1})\rightarrow KerL\rightarrow^{M}\Theta^{p\dashv- q+1}\rightarrow 0$ .
Hence we have the next proposition.

PROPOSITION 4.15. If the bundle $\mathscr{Z}_{f}$ is trivial, then $KerL\subset\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$

is isomorphic to $\Theta^{p+q+1}\oplus\pi_{p}(SO_{q+1})$ .
At this stage we prove Proposition 4.1 which states that ${\rm Im} A={\rm Im} A^{\prime}$ .
PROOF OF PROPOSITION 4.1. It is clear that ${\rm Im} A\subset{\rm Im} A^{\prime}$ . We will prove
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${\rm Im} A\subset{\rm Im} A^{\prime}$ . Suppose that there exists an orientation preserving diffeomor-
phism $h$ of $g_{f}$ which maps a generator of $H_{p}(\mathcal{G}_{f})\approx Z$ to the other generator.
The obstruction to the extension of $h$ to a diffeomorphism of $e_{f}$ lies in ${\rm Im} K$ ,
${\rm Im} L$ and ${\rm Im}$ M. Consequently there exists $g\in KerA^{\prime}$ such that the composition
$hg$ is extendable to Diff $e_{f}$ . Since $hg$ is orientation preserving and is mapped
by A nontrivially it follows ${\rm Im} A\supset{\rm Im} A^{\prime}$ , which completes the proof.

We know by Proposition 1.2 that ${\rm Im} A\approx X$. Since $p<q$ , we have

$X\approx|0Z_{2}$

if $p\not\equiv 3(mod 4)$

if $p\equiv 3(mod 4)$ .
Combining these results we have the next formula.

THEOREM 4.16. For $p<q<2p-q$ , the order of $\tilde{\pi}_{0}(Diffq_{f})$ is equal to the
order of the direct sum group

$ X\oplus\eta_{*}(\pi_{p}(SO_{q+1})/KerB)\oplus Ker\Psi^{\prime}\oplus Ker\Gamma(f)/{\rm Im}(F_{f}+\partial)\oplus\Theta^{p+q+1}/{\rm Im}\Psi$ .
Especially

THEOREM 4.17. For $p<q<2p-4$ , the order of $\tilde{\pi}_{0}(DiffS^{p}\times S^{q})$ is equal to
the order of the direct sum group

$Z_{2}\oplus\pi_{p}(SO_{q+1})\oplus\pi_{q}(SO_{p+1})\oplus\Theta^{p+q+1}$ .
PROOF. The theorem follows from the fact that the order of $\pi_{q}(SO_{p})/{\rm Im}\partial$

$\oplus Ker\partial$ is equal to the order of $\pi_{q}(SO_{p+1})$ .

\S 5. Classification of manifolds (1).

Let $M^{p+q+1}$ be a $(p+q+1)$-dimensional oriented differentiable manifold such
that

$\left\{\begin{array}{lllll}M\cdot. & c1osed & and & simp1y- connected & \\H_{i}(M)=\{Z0 & 0, & p, & for q+1, & p+q+1\\\pi_{p}(SO_{q+1})=0 & & & otherwise & \\<p<q2p-4 & & & & \end{array}\right\}$ $(*)$

We consider couples $(M, \gamma)$ , where $M$ is such a manifold and $\gamma$ is a generator
of $H_{p}(M)$ ; we identify $(M, \gamma)$ and $(M^{\prime}, \gamma^{\prime})$ if there exists a diffeomorphism of
$M$ on $M^{\prime}$ , preserving orientation, and carrying $\gamma$ on $\gamma^{\prime}$ . By this identification
we get the set $\ovalbox{\tt\small REJECT}_{p+q+1}$ of diffeomorphism classes of manifolds satisfying $(*)$

with a preferred basis.
Since $p<q$ , we can embed $S^{p}$ in $M$ such that it is the generator $\gamma$ of

$H_{p}(M^{p+q+1})\approx Z$. Let $t\in\pi_{p- 1}(SO_{q+1})$ be the characteristic class of the embedded
sphere $S^{p}$ . In our case, any two homotopic embeddings are isotopic. Con-
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sequently we have a map $P$ from $\ovalbox{\tt\small REJECT}_{p,q+1}$ to $\pi_{p-1}(SO_{q+1})$ defined by $P\{(M, \gamma)\}=t$.
Obviously the map $P$ is surjective. Denote by $t^{\ovalbox{\tt\small REJECT}}p,q+1$ the set of manifolds
which are mapped by $P$ to $t$.

We now give a group structure on $\iota^{\ovalbox{\tt\small REJECT}}p,q+1$ Given $(M_{1}, \gamma_{1}),$ $()\in\ovalbox{\tt\small REJECT}_{p,q+1}$ ,
let us fix $e_{f}$ . a $D^{q+1}$ bundle over $S^{p}$ whose characteristic class is $t\in\pi_{p-1}(SO_{p+1})$ .
Let $c:S^{p}\rightarrow e_{f}$ be the zero cross section. Since $\partial e_{f}=q_{f}$ admits a cross section,
the reflection $R$ of $O_{q+1}$ on a fibre is extendable to the reflection of whole $e_{f}$,
which shows that $e_{f}$ is orientation reversing diffeomorphic to itself. Con-
sequently we can choose embeddings

$i_{1}$ : $\mathcal{E}_{f}\rightarrow M_{1}$ orientation preserving

$i_{2}$ : $e_{f}\rightarrow M_{2}$ orientation reversing

such that $(ic)_{*}[S^{p}]=\gamma_{\nu}(\nu=1,2)$ . We define $(M_{1}\# M_{2}(p)\gamma_{1}\#\gamma_{2})$ , the connected
sum of $(M_{1}, \gamma_{1})$ and $(M_{2}, \gamma_{2})$ along the p-cycle. The manifold $M_{1}\# M_{2}(p)$ is made

from disjoint sum ( $M_{1}$ –Int $i_{1}(\mathcal{E}_{f})$) $U$ ($M_{2}-$ Int $i_{2}(e_{f})$) by identifying $i_{1}(x)$ and $i_{2}(x)$

for $x\in gr_{f}=\partial e_{f}$ and given a differentiable structure by the canonical way.
The orientation is taken so as to be compatible with that of $M_{1}$ and $M_{2}$ . Let
c’ : $S^{p}\rightarrow\partial e_{f}\subset e_{f}$ be a cross section which is homotopic to $c$ as maps $S^{p}\rightarrow \mathcal{E}_{f}$.
Let us define $r_{1}\#\gamma_{2}\in H_{2}(M_{1}\# M_{2})(p)\approx Z$ by the class $(i_{1}c^{\prime})_{*}[S^{p}]$ . Then the couple

$(M_{1}\# M_{2}(p)\gamma_{1}\#\gamma_{2})$ also belongs to $\iota^{\mathscr{R}_{p,q+1}}$ .
LEMMA 5.1. The connected sum along the cycle operation is well-defined

and associative up to orientation and basis preserving diffeomorphism.
PROOF. We will show that this operation does not depend on the choice

of embedding $i_{1}$ . Let $i_{1}^{\prime}$ be another embedding. Then by Haefliger [4], since
$(i_{1}c)_{*}[S^{p}]=(i_{2}c)_{*}[S^{p}]$ and $p<q$ , we can consider $i_{1}^{\prime}$ after an isotopy such that
$i_{1}^{\prime}=i_{2}c$ . Further, by the tubular neighborhood theorem, we can suppose that
$i_{1}$ : $e_{f}\rightarrow M$ and $i_{1}^{\prime}$ : $e_{f}\rightarrow M$ differ only by a bundle map of $e_{f}$ . Since $\pi_{p}(SO_{q+1})$

$=0$ , the similar argument as in \S 1 shows that they are isotopic as embeddings
of $\mathcal{E}_{f}$. Consequently the definition does not depend on the choice of $i_{1}$ , similarly
of $i_{2}$ . The associativity is obvious.

We have denoted by $\mathscr{Z}_{sf}$ the manifold which is an $S^{q+1}$ bundle over $S^{p}$

with the characteristic map being the image of $f$ by the inclusion $s:SO_{q+1}$

$\rightarrow SO_{q+2}$ . Let $\gamma_{0}\in H_{p}(S_{sf}^{i})$ be the generator represented by the image of a
cross section. Denote by $-M$, the orientation reversed manifold of $M$. The
identity map $i:M\rightarrow-M$ is the orientation reversing diffeomorphism. Let us
define $-\gamma\in H_{p}(-M)\approx Z$ by $-\gamma=i_{*}(\gamma)$ . Then we have naturally

LEMMA 5.2. The pair $(\mathscr{Z}_{sf}, \gamma_{0})$ serves as the identity element and the pair
$(-M, -\gamma)$ is the inverse element of $(M, \gamma)$ .

Consequently the set $\iota^{\ovalbox{\tt\small REJECT}}p,q+1$ forms a group by the connected sum along
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the cycle operation. Let us suppose that $p$ and $q$ satisfy the conditions $p<q$

$<2p-4$ and $\pi_{p}(SO_{q+1})=0$ . Given an element $k\in KerA^{\prime}\subset\tilde{\pi}_{0}(Diffq_{f})$ , take two
copies $\mathcal{E}_{f}^{1}$ and $\mathcal{E}_{f}^{2}$ of the disk bundle $\mathcal{E}_{f}$ and attach them by a representative
of $k$ . An orientation is chosen to be compatible with $\mathcal{E}_{f}^{1}$ . Obviously the con-
strcuted manifold satisfies the condition $(*)$ . A generator of $p$ -dimensional
homology group is fixed to be the one represented by the zero cross section
of $e_{f}^{1}$ . This manifold does not depend on the choice of representative. Hence
we have a well-defined map

$Q;KerA^{\prime}\rightarrow\iota^{\ovalbox{\tt\small REJECT}}p,q+1$

It is easy to see that this is a homomorphism.
PROPOSITION 5.3. The homomorphism $Q$ is an isomorphism.
PROOF. First we will prove the surjectivity. Suppose that $(M, \gamma)$ belongs

to $c^{\mathscr{R}_{p,q+1}}$ . Then there exists an orientation preserving embedding $j:e_{f}\rightarrow M$

such that $(jc)_{*}[S^{p}]=\gamma$ . We have

$H_{i}$($M$–Int $j(e_{f})$) $=\{0Z$
for $i=0,$ $p$

otherwise.

Let $i_{*}:$ $H_{p}$($M-$ Int $j(e_{f})$) $\rightarrow H_{p}(M)$ be the isomorphism induced by the inclusion.
Since $e_{f}$ is orientation reversing diffeomorphic to itself, there exists an orienta-
tion reversing embedding

$k:e_{f}\rightarrow M-$ Int $j(e_{f})$

such that $ i_{*}(kc)_{*}[S^{p}]=\gamma$ Since the boundaries $\partial(M-j(e_{f}))$ and $\partial(k(e_{f}))$ are h-
cobordant, by Smale’s theorem [11], $M-j(e_{f})$ and $k(e_{f})$ are diffeomorphic.
Consequently $M$ can be regarded to be made from $e_{f}\cup e_{f}$ attached by an
orientation preserving diffeomorphism $g:q_{f}\rightarrow q_{f}$ . It is easy to see that $g$

belongs to $KerA^{\prime}$ and the surjectivity follows. Next we prove the injectivity.
Suppose that $x\in KerA^{\prime}$ is mapped by $Q$ trivially. Let $k\in Diff\mathfrak{H}_{f}$ be a repre-
sentative of $x$ and let $(M, \gamma)$ be the pair representing $Q(x)$ . Then there exists
an orientation preserving diffeomorphism from $M$ to $S^{r_{sf}}$ mapping $\gamma$ to $\gamma_{0}$

We can regard $M=e_{f}^{1}\bigcup_{k}e_{f}^{2}$ and $q_{sf}=\mathcal{E}_{f}^{\prime I}\bigcup_{i}e_{f}^{2}$ . Then there exists a diffeo-

morphism from $M$( to $s^{r_{sf}}$ whose restriction on $6_{f}^{2}$ is the identity, since $\pi_{p}(SO_{q+1}\rangle$

$=0$ . Consequently $k\in Diffg_{f}$ is extendable to Diff $e_{f}$ . But since $0=KerA^{\prime}$

$\subset\tilde{\pi}_{0}(Diff9_{f})$ in our case, $k$ is pseudo-diffeotopic to the identity, which com-
pletes the proof.

Combining Theorem 4.16 and Proposition 5.3 we have the next theorem.
THEOREM 5.4. The number of differentiable structures of manifolds satisfy-

ing $(*)$ , modulo diffeomorphisms preserving orientation and the preferred basis
of p-dimensional homology group, is equal to
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$\sum_{tf\}\in\pi_{p-}\iota^{(SO_{q+1})}}ff\{Ker\Psi^{\prime}\oplus Ker\Gamma(f)/{\rm Im}(F_{f}+\partial)\oplus\Theta^{p+q+1}/{\rm Im}\Psi\}$ ,

where $\#$ denotes the order and the summation is extended over representatives
of all homotopy classes.

Especially;
PROPOSITION 5.5. If $p\equiv 5,6(mod 8)$ , the number of differentiable manifolds

satisfying $(*)$ , modulo diffeomorphisms preserving orientation and the preferred
basis of p-dimensional homology group, is equal to

$\#(\pi_{q}(SO_{p+1})\oplus\Theta^{p+q+1})$ .

\S 6. Classification of manifolds (2).

In this $s^{a}.ction$ we treat $(p+q+1)$ -dimensional oriented differentiable mani-
fold $M^{p^{\llcorner}q\vdash 1}$ which satisfies the next conditions

$\left\{\begin{array}{lllll}M\cdot. & c1osed & and & simp1y & connected\\H_{i}(M)=\{0Z & p, & & for0, & pq+1,+q+1\\\pi_{q}(M)=\pi_{q}(S^{p}) & & & otherwise & \\p<q<2p-4 & & & & \end{array}\right\}$ $(**)$

Remark that we abandon the condition $\pi_{p}(SO_{q+1})=0$ , but in its place we put

the condition on the q-dimensional homotopy group of manifold. We consider
couples $(M, \gamma)$ , where $M$ is such a manifold and $\gamma$ is a generator of $H_{p}(M)$ ;
we identify $(M, \gamma)$ and $(M^{\prime}, \gamma^{\prime})$ if there exists a diffeomorphism of $M$ on $M^{\prime}$ ,

preserving orientation, and carrying $\gamma$ on $\gamma^{\prime}$ as before. We denote by $\overline{\mathscr{R}}_{p,q+1}$ ,

the set of diffeomorphism class of manifolds satisfying $(**)$ , with a preferred
basis. Let $\Sigma^{p+q+1}\in\Theta^{p+q+1}$ . Then the identity map of $M-D^{p+q+1}$ is extendable
to a homomorphism $h$ from $M$ to $M\#\Sigma^{p+q+1}$ . We denote again by $\gamma$ the image
of $\gamma$ by $h_{*}:$ $H_{p}(M)\rightarrow H_{p}(M\#\Sigma^{p+q+1})$ . Then we call that $(M, \gamma)$ and $(M^{\gamma}, \gamma^{\prime})$ are
orientation and basis preserving diffeomorphic modulo one point if there exists
some $\Sigma^{p+q+1}\in\Theta^{p+q+1}$ such that $(M\#\Sigma^{p+q+1}, \gamma)=(M^{\prime}, \gamma^{\prime})\in\tilde{\mathscr{R}}_{p,q+1}$ . We denote by
$\mathfrak{R}_{p,q+1}$ the factor set of $\overline{\mathscr{R}}_{p,q+1}$ obtained by identifying the couples which are
orientation and basis preserving diffeomorphic modulo one point.

Let $h$ be an element of Diff $g_{f}$ . We say that $h$ represents manifold $(M, \gamma)$

if $M$ is constructed from $e_{f}^{1\cup}e_{f}^{2}$ with the attaching map $h$ and $\gamma$ is represented
by the cross section of $e_{f}^{1}$ .

Let $h_{1}$ and $h_{2}$ belong to Diff $g_{f}$ and let $(M_{1}, \gamma_{1})$ and $(M_{2}, \gamma_{2})$ be manifolds
represented by $h_{1}$ and $h_{2}$ respectively. The next lemma is easy to see.

LEMMA 6.1. Suppose that the pseudo-diffeotopy class of $h_{1}^{-1}h_{2}$ belongs to
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$KerL$ , then the manifolds $(M_{1}, \gamma_{1})$ and $(M_{2}, \gamma_{2})$ are orientation and basis preserv-
ing diffeomophic modulo one point.

As in \S 5, we have a well-defined map

$\tilde{P}:\overline{\mathscr{R}}_{p,q+1}\rightarrow\pi_{p-1}(SO_{q+1})$

by taking the characteristic class of sphere generating $\gamma$ Let $t^{(\overline{\mathscr{R}}}p,q+1$ be the
subset of $\overline{\mathscr{R}}_{p,q+1}$ which are mapped by $\tilde{P}$ to $t\in\pi_{p-1}(SO_{q+1})$ , and let $r^{\Re_{p,q+1}}$ be
the subset of $\varpi_{p.q+1}$ which is the factor set of $t\overline{\mathscr{R}}p,q+1$ Then the same argu-
ment as the proof on surjectivity of Proposition 5.3 shows that any element
of $\iota^{\mathscr{J}_{p,q+1}}$ is represented by an element of $KerA\in\tilde{\pi}_{0}(Diffe_{f})$ .

Further we have the next lemma.
LEMMA 6.2. Suppose that $k$ represent $(M, \gamma)\in\iota\overline{\mathscr{R}}_{p,q+1}$ , where $\{k\}\in Ker$ A

$\subset\tilde{\pi}_{0}(Diff\mathcal{E}_{f})$ . Then $\{k\}$ belongs to $Ker$ K.
PROOF. We regard $M$ to be made from $\mathcal{E}_{f}^{1}Ue_{f}^{2}$ by the attaching map $k$ .

Decompose $e_{f}^{2}$ as $D_{+}^{p}\times D^{q+1}UD_{-}^{p}\times D^{q+1}$ . Let $N=M-$ Int $(D^{\underline{p}}\times D^{q+1})$ , which is
equal to the manifold made from $e_{f}^{1}UD_{+}^{p}\times D^{Q^{\llcorner}1}$ by the attaching map
$k|D_{+}^{p}\times\partial D^{q+1}$ . This manifold $N$ is homotopy equivalent to the complex made
from $S^{p}$ by attaching $D^{q+1}$ by a map $g:\partial D^{q+1}=S^{q}\rightarrow S^{p}$ , whose homotopy class
is equal to K$(k)\in\pi_{q}(S^{p})$ . But by the inclusion homomorphism i $;\pi_{q}(e_{f}^{1})\rightarrow\pi_{q}(N)$ ,

the element $K(k)$ is mapped to zero. Since $\pi_{q}(N)\approx\pi_{q}(M),$ $\pi_{q}(M)\approx\pi_{q}(S^{p})$ by
our condition and $\pi_{q}(\mathcal{E}_{f}^{1})\approx\pi_{q}(S^{p})$ , it follows that $K(k)=0$ .

On the otherhand the following lemma holds.
LEMMA 6.3. The group $KerL$ is a normal subgroup of $Ker$ K.
PROOF. Let $l\in KerL$ and $k\in Ker$ K. Denote by $T$ the tubular neighbor-

hood of the fibre $S^{q}$ . Then we can choose a representative $g$ of $l$ so that it
keeps $T$ fixed and $h$ of $k$ so that it maps $T$ onto itself. Then $h^{-1}gh$ represents
$k^{-1}lk$ and keeps $T$ fixed. Consequently $k^{-1}lk$ belongs to $KerL$ , and the result
follows.

Suppose that $(M_{1}, \gamma_{1})$ and $(M_{2}, \gamma_{2})$ belong to $\iota\overline{\mathscr{R}}_{p,q+1}$ . Similarly as in \S 5,
we define $(M_{1}\# M_{2}(p)\gamma_{1}\#\gamma_{2})$

, the connected sum along the cycle of $(M_{1}, \gamma_{1})$ and

$(M_{2}, \gamma_{2})$ . The question is, when the condition $\pi_{p}(SO_{q+1})=0$ is removed, the
well-definedness of this operation.

LEMMA 6.4. The connected sum along the cycle operation is well-defined
and the associative up to orientation and basis preserving diffeomorphism modulo
one point.

$p_{R}ooP$ . Suppose that $(M_{1}, \gamma_{1})$ and $(M_{2}, \gamma_{2})$ are represented by $h_{1}$ and $h_{2}$

respectively, where $h_{1},$ $h_{2}\in Diffq_{f}$ . Then if we take the canonical embedding
of that representation $i_{1}$ : $e_{f}\rightarrow M_{1}$ and $i_{2}$ : $e_{f}\rightarrow M_{2}$ then $(M_{1}\# M_{2}, \gamma_{1}\#\gamma_{2})(p)$ is

represented by $h_{1}h_{2}$ . But if we take other embeddings $i_{1}^{\prime}$ : $\mathcal{E}_{f}\rightarrow M_{1}$ and $i_{2}^{\prime}$ : $e_{f}$

$\rightarrow M_{2}$ , then $i_{1}$ and $i_{1}^{f}$ (resp. $i_{2}$ and $i_{2}^{\prime}$) differ by an element $d$ , where $\{d\}\in Ker$ A
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$\subset Diffe_{f}$ (resp. $e$ , where $\{e\}\in KerA\subset Diffe_{f}$). Then $(M_{1}\# M_{2}(p)\gamma_{1}\#\gamma_{2})$ is repre-

sented by $h_{1}\eta(d)\eta(e)h_{2}$ , where $\eta$ : Diff $e_{f}\rightarrow Diff\mathcal{G}_{f}$ is the restriction. Since $\{h_{1}\}$

and $\{h_{2}\}$ belong to $KerK$ by Lemma 6.2 and since $KerL$ is a normal subgroup
of $KerK$ by Lemma 6.3, we have $h_{1}\eta(d)\eta(e)h_{2}=h_{1}h_{2}c$ , where $\{c\}\in Ker$ L. Con-
sequently the manifold $M_{1}\# M_{2}(p)$ made from $i_{1}$ and $i_{2}$ and the one made from

$i_{1}^{\prime}$ and $i_{2}^{\prime}$ are orientation and basis preserving diffeomorphic modulo one point,
by virtue of Lemma 6.1. This shows that the modulo one point diffeomor-
phism class of the operation does not depend on the choice of embeddings $i_{1}$

and $i_{2}$ . If $M_{1}$ and $M_{1}^{\prime}$ are diffeomorphic modulo one point, then clearly

$M_{1}\# M_{2}(p)$ and $M_{1}^{\prime}\# M_{2}(p)$ are diffeomorphic modulo one point and so on. The

associativity is clear. The proof is complete.
As in the previous section we have;
LEMMA 6.5. The pair $(\mathscr{Z}_{sf}, \gamma_{0})$ serves as the identity element and the pair

$((-M, -\gamma)$ is the inverse element of $(M, \gamma)$ .
Consequently the set $cyl_{p,q\prec\cdot 1}$ has the group structure. Let $p<q<2p-4$

and $k$ belongs to $Ker$ K. Then the couple represented by $k$ belongs to $t\overline{\mathscr{R}}p,q+1$

We define the map
$R:KerK\rightarrow t^{\Re}p,q+1$

by taking the modulo one point diffeomorphism class of represented couple.
Obviously $R$ is well-defined and is a homomorphism. This map is an epimor-
phism by Lemma 6.2.

PROPOSITION 6.6. The kernel of the homomorphism $R:KerK\rightarrow ty/p,q+1$ is
$Ker$ L.

PROOF. By Lemma 6.1, $KerL$ is contained in $Ker$ R. Conversely let
$r\in KerK$ be mapped to the unit element of $tylp,q+1$ Then there exists modulo
one point diffeomorphism $d$ between $S_{sf}^{7}$ and $M=e_{f}^{1}\bigcup_{r}e_{f}^{2}$ . We regard $q_{sf}=$

$\mathcal{E}_{f}^{1}\bigcup_{i}e_{f}^{2}$ . We can assume as before that $d$ maps $e_{f}^{2}\subset M$ onto $e_{f}^{2}\subset q_{sf}$ . Then

the composition of $\gamma$ with $(d|e_{f}^{2})$ is modulo one point extendable to Diff $\mathcal{E}_{f}$ .
That is $r\eta(d|\mathcal{E}_{f}^{2})\in Ker$ L. Since $\eta(d|\mathcal{E}_{f}^{2})$ belongs to $KerL,$ $r$ belongs to $Ker$ L.
The proof finishes.

COROLLARY 6.8. The group $\iota^{yt_{p,q+1}}$ is isomorphic to ${\rm Im}$ L. Consequently
it is isomorphic to the factor group of $Ker\Gamma(f)$ by ${\rm Im}\alpha_{f}={\rm Im}(F_{f}+\partial)$ .

PROOF. The former half is obvious. The latter half follows from Propsi-
tion 4.7.

Consequently we have the following theorem.
THEOREM 6.9. The number of differentiable manifolds satisfying $(**)$ , up

to modulo one point diffeomorphisms preserving orientation and basis, is equal to

$\sum_{\{f\}\in\pi_{p-1(SO_{q+1})}}\#\{Ker\Gamma(f)/{\rm Im}(F_{f}+\partial)\}$
.
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In particular
PROPOSITION 6.10. If $p\equiv 3,5,6,7(mod 8)$ , the number of differentiable

manifolds satisfying $(**)$ , up to modulo one point diffeomorphisms preserving
orientation and basis, is equal to

$\#\{{\rm Im} s_{*} : \pi_{q}(SO_{p})\rightarrow\pi_{q}(SO_{p+1})\}$ ,

where $s_{*}$ is induced by the inclusion $s:SO_{p}\rightarrow SO_{p+1}$ .
We call as the inertia group of $(M, \gamma)$ the subset of $\Theta^{p+q+1}$ consisting of

exotic spheres whose operation does not change the orientation and basis pre-
serving diffeomorphism class of $(M, \gamma)$ . To know the order of $\ovalbox{\tt\small REJECT}_{p,q+1}$ it remains
the investigation of inertia groups for such couples. Given a pair $(M, \gamma)\in\overline{\mathscr{R}}_{p,q+1}$ ,

let $h\in Diffq_{f}$ represent it. Then $L(h)\in\pi_{q}(SO_{p})$ . We have defined the pairing
$\Gamma:\pi_{p}(SO_{q+1})\times\pi_{q}(SO_{p+1})\rightarrow\Theta^{p+q+1}$ and denoted by $\Gamma(s_{*}L(h))$ the homomorphism:
$\pi_{p}(SO_{q+1})\rightarrow\Theta^{P+q+1}$ defined by restricting the pairing $\Gamma$ to $\pi_{p}(SO_{q+1})\times s_{*}(L(h))$ ,

where $s:SO_{p}\subset SO_{p+1}$ . Further $G_{f}$ was defined in \S 4 as a subgroup of $\Theta^{p+q+1}$ .
We have proved in Lemma 4.14 that $G_{f}=\bigcup_{x\in Ker\beta_{sf}}\Psi(x)$ . The next proposition

follows.
PROPOSITION 6.11. Let $h\in Diffg_{f}$ represent (X, $\gamma$) $\in t\tilde{\mathscr{R}}p,q+1$ Then the

inertia group of (X, $\gamma$) is equal to the group generated by $G_{f}U{\rm Im}\Gamma(s_{*}L(h))$ .
PROOF. Suppose that (X, $\gamma$) and (X $\#\Sigma,$

$\gamma$) are orientation and basis pre-
serving diffeomorphic, where $\Sigma\in\Theta^{p+q+1}$ . The element $N(\Sigma)\in Diffs^{r_{f}}$ was
defined in \S 4 by the diffeomorphism different from the identity only on $D_{+}^{p}\times D_{+}^{q}$ .
The manifold $ X\#\Sigma$ is represented by $hN(\Sigma)$ . Then the argument like that
of Proposition 5.3 or 6.6 shows that, since $X$ and $ X\#\Sigma$ are diffeomorphic,
there exists $g_{1},$ $g_{2}\in Diffe_{f}$ whose pseudo-diffeotopy classes $\{g_{1}\},$ $\{g_{2}\}$ belong
to $Ker$ A such that

$\{\eta(g_{1})h\eta(g_{2})\}=\{hN(\Sigma)\}\in\pi_{0}(Diffq_{f})$ .
Then $\{h^{-1}\eta(g_{1})h\eta(g_{2})\}=\{N(\Sigma)\}$ . By the commutativity of the next diagram

$Nl^{\Theta^{p+q}}M^{\succ 1}\backslash p$ (1)

$0\rightarrow\eta_{*}(KerA)\rightarrow KerL\rightarrow\Theta^{p_{\iota}- q\cdot\vdash 1}/G_{f}\rightarrow 0$

we have $M(h^{-1}\eta(g_{1})h)=\{p(\Sigma)\}\in\Theta^{P+q+1}/G_{f}$ . We have defined in \S 1 the homo-
morphism $B:\pi_{p}(SO_{q+1})\rightarrow Ker$ A $\subset\tilde{\pi}_{0}(Diffe_{f})$ . Let $r:S^{P}\rightarrow SO_{q+1}$ be a $C^{\infty}$-map
such that $B(r)=g_{1}$ . Define $\tilde{r}\in DiffS^{p}\times S^{q}$ by

$\tilde{r}(x, y)=(x, r(x)y)$ .
We can assume that $\tilde{r}$ keeps $D_{+}^{p}\times S^{q}$ fixed. We write Diff (X rel $Y$ ) for the
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group of the diffeomorphisms of $X$ which keeps the submanifold $Y$ of $X$

invariant. Let $r^{\prime}\in Diff$ ($D^{p}\times S^{q}$ rel $\partial D^{p}\times S^{q}$) be the restriction of $\tilde{r}$ on $D^{\underline{p}}\times S^{q}$ .
We have defined in \S 4 the homomorphism $L:KerK\rightarrow\pi_{q}(SO_{p})/{\rm Im}\alpha_{f}$ . Let
$t:S^{q}\rightarrow SO_{p}$ be a $C^{\infty}$ -map which represent $L(h)$ . Define $ t^{\prime}\in$ Diff $D^{p}\times S^{q}$ by

$t^{\prime}(x, y)=(i(y)x, y)$ .
Then $t^{\prime}-1r^{\prime}t^{\prime}$ belongs to Diff ($D^{p}\times S^{q}$ rel $\partial D^{p}\times S^{q}$). Let us define $k\in Diffg_{f}$ by
the identity on $D_{+}^{p}\times S^{q}$ and by $t^{\prime 1}- r^{\prime}t^{\prime}$ on $D^{\underline{p}}\times S^{q}$ . Then $k$ belongs to $(\lambda 1)$

and $k$ is pseudo-diffeotopic to $h^{-1}\eta(g_{1})h$ . We have defined $m:(\lambda 1)\rightarrow\Theta^{p+q+1}$ ,

where $m(k)$ represents $M(h^{-1}\eta(g_{1})h)$ . Hence there exists $\Sigma/\in G_{f}$ such that

$m(k)=\Sigma+\Sigma^{\prime}$ .
Now we show that $m(k)$ is contained in ${\rm Im}\Gamma(s_{*}L(h))$ . Let us define a map
$T$ : (Diff $D^{p}\times S^{q}$ rel $\partial D^{p}\times S^{q}$) $\rightarrow DiffS^{p}\times S^{q}$ by the canonical extension. That is,
if $f\in Diff$ ($D^{p}\times S^{q}$ rel $\partial D^{p}\times S^{q}$), we define $T(f)\in DiffS^{p}\times S^{q}$ by the identity on
$D_{+}^{p}\times S^{q}$ and by $f$ on $D_{-}^{p}\times S^{q}$ . Then the next diagram commutes

$(\lambda 1)\rightarrow^{m_{1}}$ (Diff $D^{\underline{p}}\times S^{q}$ rel $\partial D^{\underline{p}}\times S^{q}$)
$\rightarrow^{T}$

Diff $S^{p}\times S^{q}$

$\downarrow m_{2}$

$m_{3}$

$\downarrow c$ (2)

Diff $S^{p+q}-\rightarrow\Theta^{p+q+1}$

where $m_{1}$ is defined by the restriction, $m_{2}$ by the canonical extension and $m_{3}$

by the natural projection. The map $m:(\lambda 1)\rightarrow\Theta^{p+q+1}$ is equal to the composi-
tion $m_{3}m_{2}m_{1}$ . Thus we have

$m(k)=cT(t^{J^{-1}}r^{\prime}t^{\prime})$ .
But we have $T(t^{\prime}-1r^{\prime}t^{\prime})=s^{\sim_{t^{-1}\tilde{r}s}\sim_{t}}$, where $st\sim\in DiffS^{p}\times S^{q}$ is defined by $st(x, y)\sim$

$=(st(y)x, y)$ and $s$ is the inclusion $SO_{q}\rightarrow SO_{q+1}$ . Consequently

$ m(k)=c(st^{-1}\tilde{r}st)\sim\sim$ .
Since we have defined $\Gamma(\{r\}, s_{*}L(h))$ by $c(\overline{s}t^{-1}\tilde{r}s^{\sim_{t)}}$ , we have $m(k)\in{\rm Im}\Gamma(s_{*}L(h))$ .
Hence $\Sigma$ lies in $G_{f}U{\rm Im}\Gamma(s_{*}L(h))$ .

Conversely let $\Sigma_{1}\in G_{f}$ . Then $N(\Sigma_{1})$ is mapped by $M$ trivially. By the
exact sequence of the diagram (1), we have $\{N(\Sigma_{1})\}=\eta_{*}(g_{1})$ for some $\{g_{1}\}$

$\in KerA\subset\tilde{\pi}_{0}(Diffe_{f})$ . Then $\{hN(\Sigma_{1})\}=\{h\}\eta_{*}(g_{1})$ . Recall that $(X, \gamma)$ and
$(X\#\Sigma, \gamma)$ are orientation and basis preserving diffeomorphic if and only if
there exists $g,$ $g^{\prime}\in Diff\mathcal{E}_{f}$ whose pseudo-diffeotopy class $\{g\},$ $\{g^{\prime}\}$ belong to
$KerA$ , such that $\{\eta(g)h\eta(g^{\prime})\}=\{hN(\Sigma)\}$ . Hence it follows that $\Sigma_{1}$ belongs to
the inertia group of (X, $\gamma$). Next suppose $\Sigma_{2}$ belongs to ${\rm Im}\Gamma(s_{*}L(h))$ . Then
there exists or $C^{\infty}$-map $r_{2}$ : $S^{p}\rightarrow SO_{q+1}$ such that

$\Sigma_{2}=c(st^{-1}\tilde{r}_{2}s^{\wedge}t)\sim$ ,
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where $t:S^{q}\rightarrow SO_{p}$ represents $L(h)$ . Let $g_{2}\in Diff\mathcal{E}_{f}$ represent $B(r_{2})\in Ker$ A.
By the commutative diagram (2), we have

$M(h^{-1}\eta(g_{2})h)=p(\Sigma_{2})\in\Theta^{p+q+1}/G_{f}$ .
By the diagram (1), it follows that there exists $g_{3}\in Diffe_{f}$ such that $g_{3}\in Ker$ A
and

$\{N(\Sigma_{2})^{-1}h^{-1}\eta(g_{2})h\}=\{\eta(g_{3})\}$ .
Consequently $\eta(g_{2})h\eta(g_{s^{-1}})=hN(\Sigma_{2})$ and the couples (X, $\gamma$) and $(X\#\Sigma_{2}, \gamma)$ are
orientation and basis preserving diffeomorphic. Hence the group generated by
$G_{f}$ and $\Gamma(s_{*}L(h))$ belongs to the inertia group of $X$. The proof is complete.

By this proposition we can compute the order of $\iota^{\mathscr{J}_{p,q+1}}$ and hence $\overline{\mathscr{R}}_{p,q+1}$ .
THEOREM 6.12. The number of differentiable manifolds satisfying $(**)$ ,

modulo diffeomorphisms preserving orientation and the preferred basis of p-
dimensional homology group, is equal to

$\sum_{\{f\}\in\pi_{p}-1(SO_{q+1})}\sum_{l\in Ker\Gamma(f)/{\rm Im}(F_{f}+\delta)}\#[\Theta^{p+q+1}/\{G_{f}U\Gamma(sl)\}]$ .

Especially,
PROPOSITION 6.13. If $p\equiv 3,5,6,7(mod 8)$ , the number of differentiable

manifolds satisfying $(**)$ , modulo diffeomorphisms preserving orientation and the
preferred basis, is equal to

$\sum_{l\in{\rm Im} s_{*}:\pi_{q}(SO_{p})\rightarrow\pi_{q}(SO_{p+1})}\#[\Theta^{p+q+1}/\Gamma(l)]$ .

PROPOSITION 6.14. If $p\equiv 5,6(mod 8)$ , the number of differentiable mani-
folds, modulo diffeomorphism preserving orientation and preferred basis is equal
to

$\#[\{{\rm Im} s_{*} : \pi_{q}(SO_{p})\rightarrow\pi_{q}(SO_{p+1})\}\oplus\Theta^{p+q+1}]$ .

\S 7. Computation for diffeotopy groups.

Concerning the relation between diffeotopy and pseudo-diffeotopy, the fol-
lowing theorem due to Cerf [3] is known.

THEOREM 7.1 (Cerf). Let $V$ be a compact $C^{\infty}$-manifold of dimension $\geqq 9$ ,

such that $\pi_{1}(V)=\pi_{2}(V)=0$ . Let $g$ be the group of diffeomorphisms of $V\times[0,1]$

which induce identity on $V\times\{0\}$ , then $\pi_{0}(g)=0$ .
As a corollary, we have,
COROLLARY 7.2. If $V$ is a compact $C^{\infty}$-manifold without boundary of dimen-

$sion\geqq 9$ such that $\pi_{1}(V)=\pi_{2}(V)=0$ . Then $\tilde{\pi}_{0}(DiffV)\approx\pi_{0}(DiffV)$ .
If we apply this to our case,
THEOREM 7.3. If $p,$ $q\geqq 3,$ $p+q\geqq 9$ , then
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$\tilde{\pi}_{0}(Diffg_{f})\approx\pi_{0}(Diffq_{f})$ .
Therefore by Theorem 4.16, we can compute the order of $\pi_{0}(Diff9_{f})$ for

$p<q<2p-4$.
In analogy with the case $\tilde{\pi}_{0}(Diff\mathcal{E}_{f})$ , we can compute $\pi_{0}(Diffe_{f})$ . We first

define
$\overline{A}$ : $\pi_{0}(Diffe_{f})\rightarrow z_{2}$ ,

and next we can define

$\overline{B}:\pi_{p}(SO_{q+1})\rightarrow Ker$ A

by the same method as in $\S_{l}^{Y}1$ . Analogous to Proposition 1.1, we have
PROPOSITION 7.4. In case $p<2q-1,$ $p+q\geqq 9,$ $p,$ $q\geqq 3$ the homomorphism $B$

is epimorphic.
PROOF. The first part of the proof is the same as that of Proposition 1.1.

We will give a diffeotopy $\overline{Q}$ connecting $k$ with the diffeomorphism $k^{\prime}$ , which is
equal to $k|T$ when restricted on $T$ , and is equal to $(k|\partial T)\times identity$ of $ e_{f}-\tau$

$=gr_{f}\times I$. By Theorem 7.1, there exists a diffeotopy of $ q_{f}\chi$ $I$ connecting $(k|\partial T)$

identity and $k|\mathscr{Z}_{f}\times I$. We can take this diffeotopy so that it is transversal
near $gr_{f}\times 0$ (see Cerf [2, $N^{o}8$ , Proposition]). Hence this diffeotopy is extend-
able to whole $\mathcal{E}_{f}$ by the indentity map on $T$. Hence the proof is comlete.

We also have analogous one to Proposition 1.2. Likewise in correspond-
ence with Theorem 1.3, we have:

THEOREM 7.5. Let $3\leqq p<2q-1,$ $p+q\geqq 9$ , then the order of $\pi_{0}(Diffe_{f})$ is
equal to the order of the group

$\pi_{p}(SO_{q+1})/Ker\overline{B}\oplus X$ .
The groups $KerB$ and $Ker\overline{B}$ can be different. But $\eta_{*}(\pi_{p}(SO_{q+1})/KerB)$

$\approx\eta_{*}(\pi_{p}(SO_{q+1})/Ker\overline{B})$ by Corollary 7.2.
The analogous one to Proposition 1.4 holds. Consequently
THEOREM 7.6. If $3\leqq p<2q-1,$ $p+q\geqq 9$ , then $\tilde{\pi}_{0}(DiffS^{p}\times D^{q+1})\approx\pi_{0}(DiffS^{p}$

$\times D^{q+1})\approx\pi_{p}(SO_{q+1})$ .

Appendix

In this appendix, we will give an example that the pairing

$\Gamma:\pi_{p-1}(SO_{q+1})\times\pi_{q}(SO_{p})\rightarrow\Theta^{P+q}$

is not always the trivial map. This example was pointed out by Professor I.
Tamura. The higher dimensional analogue can be found in [9]. The pairing
$\Gamma(f, r)$ is defined by the equation $(f, r)=c(f^{-1}\tilde{r}\tilde{f})$ (see \S 4). Since $c(f^{-1})=c(f)$

$=c(\tilde{r})=0$ by Lemma 3.1, it follows that the map $C$ in some case is not the
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homomorphism. The group $G_{f}\subset\Theta^{p+q}$ was proved in \S 6 to act as the inertia
group of manifolds satisfying the condition $(**)$ . But we have the equation
$G_{f}=\bigcup_{x\in Ker\beta_{sf}}\Psi(x)$ , by Lemma 4.14. Further by Lemma 4.11, the image of

$x\in Ker\beta_{sf}$ by the map $\Psi$ is a coset space of $\Theta^{p+q}/{\rm Im}\Gamma(sf)$ . Hence our ex-
ample also shows the non-triviality of the inertia group.

We have
$\pi_{7}(SO_{12})\approx Z$ $\pi_{11}(SO_{8})\approx Z+Z_{2}$ .

Let $a$ be a generator of $\pi_{7}(SO_{12})$ and let $b$ and $c$ be generators of the free
part and the torsion part of $\pi_{11}(SO_{8})$ respectively. Then we can write the
homotopy class of the map $f:S^{7}\rightarrow SO_{12}$ and $r:S’’\rightarrow SO_{8}$ by

$\{f\}=ma$ , $\{r\}=nb+pc$ .
THEOREM. Suppose $m\cdot n\not\equiv O(mod 73)$ , then $\Gamma(f, r)$ is not the trivial element

in $\Theta^{p+q}$ .
PROOF. In \S 4, we see that the diffeomorphism $\tilde{r}$ of $T_{0}$ , with $T_{0}$ being the

tubular neighborhood of the fibre $S^{11}$ of $g_{f}$ , is extendable to a diffeomorphism
$d$ of $\mathscr{Z}_{f}$ if and only if the diffeomorphism $\tilde{f}\tilde{r}\tilde{f}^{-1}$ of $S^{7}\times S^{11}$ is extendable to a
diffeomorphism of $D^{8}\times S^{11}$ . And by Lemma 4.8, it is equivalent to the equation
$c(\tilde{f}\tilde{r}\tilde{f}^{-1})=0$ . Suppose such diffeomorphism $d$ of $g_{f}$ exists. Then attaching

two copies of $e_{f}$ by $d$ , we obtain a closed smooth manifold

$M=e_{f}\bigcup_{a}e_{f}$ .

The homology group of $M$ are as follows;

$H_{i}(M)=\left\{\begin{array}{l}Z fori=0,8,12,20\\0 otherwise.\end{array}\right.$

We can embed $S^{8}$ as the zero cross section of $e_{f}$ and $S^{12}$ by $D^{12}UD^{12}$ , where
$D^{12}$ denotes the fibre of $e_{f}$ . Then such embedded spheres generate $H_{8}(M)$ and
$H_{12}(M)$ respectively and the characteristic class of their tubular neighborhood
are $\{f\}$ and $\{r\}$ . According to Bott-Milnor [1], the Pontrjagin classes of the
manifold $M$ are given by

$p_{2}(M)=3!m$ , $p_{8}(M)=2\cdot 5!n$ .

Let $[M]$ be the fundamental homology class of $M$. Then the index theorem
[7] implies that

$(5110 p_{5}(M)-336p_{3}(M)p_{2}(M))[M^{5}]=0$ .
Thus we have $m\cdot n=0(mod 73)$ . The proof finishes.
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