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\S 1. Introduction.

The purpose of this paper is to prove the following theorem.
THEOREM. Let $M$ be an n-dimensional complex manifold and $E$ a holomor-

phic complex vector bundle over M. Let $G$ be a group of (holomorphic) auto-
morphisms of $E$ such that

(1) $G$ is fibre-transitive, $i$ . $e.$ , the induced action of $G$ on $M$ is transitive;
(2) If $H$ is the isotropy subgroup of $G$ (acting on $M$) at a point of $M$,

then the natural representation of $H$ on the fibre of $E$ is irreducible;
(3) $E$ admits a hermitian inner product invariant by $G$ .
Let $F$ be the complex Hilbert space of square integrable holomorphic n-forms

on $M$ with values in E. Then the natural unitary representation of $G$ on $F$ is
irreducible (provided that $F$ is not trivial).

In my earlier note, I proved the theorem above in the special case where
$E$ is a trivial line bundle. The basic idea of the proof is already in that note
[1]. We are not making any structural assumption on $G$ such as semi-
simplicity. In fact, we need not assume that $G$ is a Lie group.

Assumption (3) is superfluous if $H$ is compact. Assumption (2) is unneces-
sary if $E$ is a complex line bundle.

The theorem above implies that if $E$ is a homogeneous complex line bundle
over a symmetric bounded domain $M=G/H$, then the natural unitary repre-
sentation of not only $G$ but also of its Iwasawa subgroup on $F$ is irreducible.

Let $Mb^{\circ}$. a compact homogeneous complex manifold and $G$ the group of
holomorphic transformations. Assume that a compact subgroup $K$ of $G$ is
already transitive on M. (This is the case if $\pi_{1}(M)$ is finite by a well known
result of Montgomery.) Since $M$ is compact, $F$ is the space of all holomorphic
n-forms with values in $E$ . The theorem implies that if the isotropy subgroup
of $K$ is irreducible on the fibre of $E$ , then the natural representation of $K$ on
$F$ is irreducible.

$*)$ Partially supported by NsF Grant GP-5798.
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\S 2. Construction of reproducing kernel.

Let $M,$ $E$ and $G$ be as in Theorem. Let $g$ be a hermitian inner product in
$E$ invariant by $G$ .

Let $U$ be a coordinate neighborhood with local coordinate system $z^{1},$ $z^{n}$

in $M$. Taking $U$ sufficiently small, we may assume that the vector bundle $E$

over $U$ is isomorphic to $U\times C^{r}$ . Let $f$ and $f^{\prime}$ be holomorphic n-forms on $M$

with values in $E$ . Then $f$ and $f^{\prime}$ may be written locally in the following
form:

$ f=f_{U}dz^{1}\Lambda\cdots$ A $dz^{n}$ and $f^{\prime}=f_{U}^{\prime}dz^{1}\Lambda\cdots\wedge dz^{n}$ ,

where $f_{U}$ and $f_{U}^{\prime}$ are holomorphic cross sections of $E$ over $U$ . The local inner
product $\langle f,\overline{f}^{\prime}\rangle$ is the $2n$-form on $M$ defined by

$\langle f,\overline{f}^{\prime}\rangle=i^{n^{2}}g(f_{U},\overline{f}_{U}^{\prime})dz^{1}\Lambda\ldots\wedge dz^{n}\wedge d\overline{z}^{1}\Lambda\ldots\wedge d_{\overline{Z}^{n}}$ .
Then $\langle f,\overline{f}^{\prime}\rangle$ is defined independent of the choice of $z^{1},$ $\cdots$ , $z^{n}$ . The global
inner product $(f,\overline{f}^{\prime})$ is defined by

$(f,\overline{f}^{\prime})=\int_{M}\langle f,\overline{f}^{\prime}\rangle$ .

Then $F$ is, by definition, the Hilbert space of all holomorphic n-forms $f$ on $M$

with values in $E$ such that $(f,\overline{f})<\infty$ . We shall assume that $F$ is non-trivial.
Let $\overline{M}$ denote the complex manifold whose complex structure is conjugate

to that of $M$. If $J$ defines the complex structure of $M$, then $-J$ defines the
complex structure of $\overline{M}$. If $z^{1},$ $\cdots$ , $z^{n}$ is a local coordinate system for $M$, then
$-1$
$z$ , ... , $\overline{z}^{n}$ is a local coordinate system for $\overline{M}$. Let $\overline{E}$ be the holomorphic com-
plex vector bundle over $\overline{M}$ which is complex conjugate to $E$ ; the transition
functions for $\overline{E}$ are complex conjugate to those of $E$ . Let $p;M\times\overline{M}\rightarrow M$ and
$\overline{p}:M\times\overline{M}\rightarrow\overline{M}$ be the natural projections; both $p$ and $\overline{p}$ are holomorphic map-
pings. If we set

$E\overline{E}=(p^{-1}E)\otimes(\overline{p}^{-1}\overline{E})$ ,

then $E\overline{E}$ is a holomorphic complex vector bundle over $M\times\overline{M}$ with fibre $C^{r}\otimes C^{r}$ .
Let $d:M\rightarrow M\times\overline{M}$ be the diagonal map; $d$ is not holomorphic. The induced
vector bundle $d^{-1}(E\overline{E})$ over $M$ is not holomorphic. We define a certain real
subbundle of $d^{-1}(E\overline{E})$ . Let $E\circ\overline{E}$ be the real vector bundle over $M$ whose
fibres are spanned by elements $v\otimes\overline{v}$ , where $v\in E$ .

We shall now define the kernel form $K(z,\overline{w})$ in the same manner as we
define the kernel function of Bergman. Let $f_{0},$ $f_{1},$ $f_{2},$ $\cdots$ be a complete ortho-
normal basis for $F$. We set

$K(z,\overline{w})=i^{n^{2}}\sum_{j=0}^{\infty}f_{j}(z)\wedge\overline{f}_{j}(w)$ , $(z,\overline{w})\in M\times\overline{M}$ .
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Then $K(z,\overline{w})$ is a holomorphic $2n$ -form on $M\times\overline{M}$ with values in the holomor-
phic complex vector bundle $E\overline{E}$ . It is easy to see that $K(z,\overline{w})$ does not depend
on the choice of basis $f_{0},$ $f_{1},$ $f_{2},$ $\cdots$ By identifying $M$ with the diagonal $d(M)$

of $M\times\overline{M}$ we can consider $K(z,\overline{z})$ as a real $2n$-form on $M$ with values in the
real vector bundle $E\circ\overline{E}$ .

Every element of $G$ induces a unitary transformation of $F$ in a natural
manner. Since $K(z,\overline{w})$ is defined independent of the orthonormal basis $f_{0},$ $f_{1}$ ,

$f_{2},$ $\cdots$ chosen, $K(z,\overline{w})$ is invariant by $G$ .
The most important fact we need is the reproducing property of $K(z,\overline{w})$ :

$(K(z,\overline{w}),$ $f(w))_{w}=\int_{w\subset_{1}\rceil f}\langle K(z,\overline{w}), f(w)\rangle=f(z)$ for $f\in F$ .

We shall now explain the notations involved in the formula above. Let $E_{z}$

and $\overline{E}_{\overline{w}}$ be the fibres of $E$ and $\overline{E}$ at $z\in M$ and $\overline{w}\in\overline{M}$, respectively. The fibre
of $E\overline{E}$ at $(z,\overline{w})\in M\times\overline{M}$ is then given by $E.\otimes\overline{E}_{\overline{w}}$ . The inner product $g:E_{w}$

$\times\overline{E}_{\overline{w}}\rightarrow C$ induces a bilinear map

$(E_{z}\otimes\overline{E}_{\overline{w}})\times E_{w}\rightarrow E_{z}$

in a natural manner. This bilinear map will be denoted by $g_{w}$ . Let $z^{1},$ $\cdots$ , $z^{n}$

and $w^{1},$ $\cdots$ , $w^{n}$ be local coordinate systems in open sets $U$ and $V$ , respectively,
of $M$. Let $\overline{w}^{1},$ $\cdots$ , $\overline{w}^{n}$ be the conjugate local coordinate system in $\overline{V}\subset\overline{M}$. On
$V,$ $f\in F$ may be written as follows:

$ f(w)=f_{V}(w)dw^{1}\Lambda\ldots$ A $dw^{n}$ ,

where $f_{V}$ is a holomorphic cross section of $E$ over $V$ . On $U\times\overline{V}\subset M\times\overline{M}$,
$K(z,\overline{w})$ may be written as follows:

$ K(z,\overline{w})=K_{U\times V}-(z,\overline{w})dz^{1}\wedge\cdots$ A $ dz^{n}\wedge d\overline{w}^{1}\Lambda$ $d\overline{w}^{n}$ ,

where $K_{U\times\overline{V}}$ is a holomorphic cross section of $E\overline{E}$ over $U\times\overline{V}$. Then, for a
fixed $z\in M,$ $\langle K(z,\overline{w}), f(w)\rangle$ is defined by

$\langle K(z,\overline{w}), f(w)\rangle$

$=g_{w}(f_{V}(w), K_{U\times\overline{V}}(z,\overline{w}))dw^{1}\wedge\cdots$ A $ dw^{n}\wedge d\overline{w}^{1}\wedge\cdots$ A $d\overline{w}^{n}\wedge dz^{1}\wedge\cdots\wedge dz^{n}$ .
Integrating this with respect to $w$ , we obtain the global inner product
$(K(z,\overline{w}),$ $f(w))_{w}$ . The formula $(K(z,\overline{w}),$ $f(w))_{w}=f(z)$ follows immediately from

$K(z,\overline{w})=i^{n^{2}}\sum_{j}f_{j}(z)\wedge\overline{f}_{j}(w)$ , $(f_{j\prime}\overline{f}_{k})=\delta_{jk}$ ,

$f=\sum a_{j}f_{j}$ where $a_{j}=(f,\overline{f}_{j})$ .
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\S 3. Proof of Theorem.

Let $F^{\prime}$ be a closed subspace of $F$ invariant by $G$ and let $F^{\prime\prime}$ be its ortho-
gonal complement in $F$. Assuming that both $F^{\prime}$ and $F^{\prime\prime}$ are non-trivial, we
shall obtain a contradiction. Let $f_{0}^{\prime},$ $f_{I}^{\prime},$ $f_{2}^{\prime},$ $\cdots$ (resp. $f_{0^{\prime\prime}},$ $f_{1^{J/}},$ $f_{2^{!\gamma}},$ ) be a com-
plete orthonormal basis for $F^{\prime}$ (resp. $F^{\prime\prime}$). Since $K(z,\overline{w})$ does not depend on
the choice of orthonormal basis for $F$, we have

$K(z,\overline{w})=K^{\gamma}(z,\overline{w})+K^{\prime\prime}(z,\overline{w})$ ,

where

$K^{\prime}(z,\overline{w})=i^{n^{2}}\sum_{j}f_{j}^{\prime}(z)\wedge\overline{f}_{j}^{\prime}(w)$ , $K^{\prime/}(z,\overline{w})=i^{n^{2}}\sum_{k}f_{t^{\gamma_{t^{\prime}}}}(z)\wedge\overline{f}_{\lambda^{\prime\prime}}(w)$ .

Both $K^{\prime}$ and $K^{\prime\prime}$ are holomorphic $2n$-forms on $M\times\overline{M}$ with values in the vector
bundle $E\overline{E}$ . Since $F^{\prime}$ and $F^{\prime\prime}$ are invariant by $G,$ $K^{\prime}$ and $K^{\prime\prime}$ are invariant by
$G$ . In the preceding section, we defined the real vector bundle $E\circ\overline{E}$ over $M$.
The fibre of $E0\overline{E}$ at $z\in M$ is equal to the subspace of $E.\otimes\overline{E}_{z}$ spanned by
elements $L’@L^{-}\backslash ,$ $\iota’\in E_{z}$ . In other words, the fibre of $E\circ\overline{E}$ at $z$ consists of
“ hermitian elements” of $E_{z}\otimes\overline{E}_{z}$ . It is clear that $K(z,\overline{z}),$ $K^{\prime}(z,\overline{z})$ and $K^{\prime\prime}(z,\overline{z})$

are all $2n$-forms on $M$ with values in $E\circ\overline{E}$ .
Let $H$ be the isotropy subgroup of $G$ at $z\in M$. We have a natural repre-

sentation of $H$ on $E_{z}$ , which is assumed to be irreducible. This representation
gives rise to a representation of $H$ on the fibre of $E\circ\overline{E}$ at $z$ . Since $H$ is
irreducible on $E_{z}$ , any two elements of the fibre of $E\circ\overline{E}$ at $z$ which are
invariant by $H$ must coincide up to a constant factor. (We have used the fact
that if $H$ is an irreducible linear group acting on a vector space $V$ , an H-
invariant hermitian inner product on $V$ is unique up to a constant factor.)

Since both $K^{f}(z,\overline{z})$ and $K(z,\overline{z})$ are “ hermitian elements ‘’ of $E.\otimes\overline{E}_{z}$ and are
invariant by $H$, we obtain

$K^{\prime}(z,\overline{z})=c\cdot K(z,\overline{z})$ ,

where $c$ is a constant. Since $K^{\prime}$ and $K$ are invariant by $G$ , this constant $c$

does not depend on $z\times M$. Since both $K^{\prime}(z,\overline{w})$ and $K(z,\overline{w})$ are holomorphic on
$M\times\overline{M}$, we have

$K^{\prime}(z,\overline{w})=c\cdot K(z,\overline{w})$ for $(z,\overline{w})\in M\times\overline{M}$ .
Since both $F^{\prime}$ and $F^{\prime\prime}$ are assumed to be non-trivial, the constant $c$ lies between
$0$ and 1, $i$ . $e.,$ $0<c<1$ .

If we use the formulas

$K^{\prime}(z,\overline{w})=i^{n^{2}}\sum_{j}f_{j}^{\prime}(z)\wedge\overline{f}_{j}^{\prime}(w)$

and
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$(f_{j}^{\prime}, f_{k}^{\prime\prime})=0$ ,

then
$(K^{\prime}(z,\overline{w}),f_{k}^{\prime\prime}(w))_{w}=0$ .

On the other hand, if we use the relation $K^{\prime}(z,\overline{w})=c\cdot K(z,\overline{w})$ and the repro.
ducing property of $K(z,\overline{w})$ , then we obtain

$(K^{\prime}(z,\overline{w}),f_{k}^{\prime\prime}(w))_{w}=c(K(z,\overline{w}),$ $f_{k^{\prime}}^{\gamma}(w))=c\cdot f_{k}^{\prime\prime}(z)$ .
Hence, $c=0$ . This is a contradiction.

University of California, Berkeley
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