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The purpose of the present paper is to prove the following
THEOREM. $LetS\subseteqq RbeintegraldomainswithfieldsofquotientsQ(S)\subseteqq Q(R)$ .

Assume that for each element $r$ of $R$ , there is a natural number $n$ (depending
on r) such that $r^{n}$ is in $Q(S)$ . Then either (1) $Q(R)$ is purely inseparable over
$Q(S)$ or (2) $R$ and $S$ are algebraic over a finite field.

The proof is given as follows. Assume that $Q(R)$ is not purely inseparable
over $Q(S)$ . Then there is an element $a$ of $R$ which is not in $Q(S)$ and which
is separable over $Q(S)$ . We fix this element $a$ . Let $a=a_{1},$ $a_{2}$ , $\cdot$ .. , $a_{c}$ be all of
the conjugates of $a$ over $Q(S)$ in an algebraically closed field $K$ containing $Q(R)$ .
If $S$ contains only a finite number of elements, then (2) holds good obviously.
Therefore we assume that $S$ contains infinitely many elements. For each ele-
ment $s$ of $S$ , there is a natural number $n(s)$ such that $(a+s)^{n(S)}\in Q(S)$ and such
that $(a+s)^{m}\not\in Q(S)$ for every natural number $m$ which is less than $n(s)$ .

Case 1. Assume that there is an infinite subset $s*$ of $S$ such that
$\{n(s)|s\in S^{*}\}$ is bounded. In this case, there is a natural number $N$ such that
$n(s)=N$ for an infinite subset $S^{**}$ of $s*$ . Take mutually distinct elements, $s_{0}$ ,

$s_{1},$ $\cdots,$ $s_{N}$ from $S^{**}$ and consider the relations

$a^{N}+\left(\begin{array}{l}N\\1\end{array}\right)s_{i}a^{N-1}+\cdots+\left(\begin{array}{l}N\\\alpha\end{array}\right)s_{i}^{\alpha}a^{N-\alpha}+\cdots+s_{i}^{N}=b_{i}\in Q(S)$

$(i=0,1, \cdots, N)$ .
Since the matrix

$A=($
$111$

$s_{1}s_{N}^{0}s\ldots s_{0}^{N}s_{N}^{N}s1N$

$)$

is non-singular, we see that the non-zero columns in
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$A^{\prime}=\left(\begin{array}{llllll}1 & (1N)s_{0} & \cdots & (_{\alpha}^{N})s_{c}^{a} & \cdots & s_{0}^{N}\\1 & (^{N_{1}})s_{1} & \cdots & (_{\alpha}^{N})s_{1}^{\alpha} & \cdots & s_{1}^{N}\\\cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\\cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\ 1 & (1N)s_{N} & \cdots & (_{\alpha}^{N})s_{N}^{\alpha} & \cdots & s_{N}^{N}\end{array}\right)$

are linearly independent. Set $I=\{i|0\leqq i\leqq N, \left(\begin{array}{l}N\\i\end{array}\right)\neq 0\}$ and let $M$ be the

number of elements of $I$. Then the above fact shows that for a choice of $M$

elements from these $s_{i}$ , say $s_{1},$ $\cdots,$ $s_{M}$, the determinant of the matrix of the
coefficients of the following linear equation on $\{a^{N-\alpha}|\alpha\in I\}$ is not zero:

$\Sigma_{\alpha\in t}\left(\begin{array}{l}N\\\alpha\end{array}\right)s_{i}^{\alpha}a^{N-\alpha}=b_{i}$ $(i\in I)$ .

Therefore we see that $a^{\dot{\tau}}\in Q(S)$ for every $i\in I$, and $a$ is purely inseparable
over $Q(S)$ . This contradicts to our choice of $a$ .

Case 2. Assume now that for every infinite subset $S^{*}$ of $S,$ $\{n(s)|s\in S^{*}\}$

is not bounded. Take an arbitrary infinite subset $S^{*}$ . For each $s\in S^{*},$ $a+s$

is a root of a polynomial $f_{s}(X)$ of the form $X^{n(S)}-s^{*}(s^{\star_{1}}\in Q(S))$ . Then $f_{s}(X)$,

$=\Pi_{i1}^{n_{=^{(S)}}}(X-\zeta_{si}(a+s))$ , where $\zeta_{si}$ ranges over all roots of $X^{n(S)}-1$ in the algebra-
ically closed field K. $a_{i}+s$ is a conjugate of $a+s$ over $Q(S)$ , and therefore it
is a root of $f_{s}(X)$ . This shows that $a_{i}+s=\zeta_{sj(i)}(a+s)$ with a suitable $j(i)$ (de-
pending not only on $i$ but also on $s$). Then $Q(S)$ contains $\Pi_{i}(a_{i}+s)$ which is
equal to $(a+s)^{c}\Pi_{i}\zeta_{sj(\dot{t})}$ . If all of $\zeta_{sj(i)}$ are roots of $X^{m(S)}-1$ , then we see that
$(a+s)^{m(S)C}$ is in $Q(S)$ . Therefore the set of $m(s)(s\in S^{*})$ cannot be bounded.
Since each $\zeta_{sj(i)}$ is equal to $(a_{i}+s)/(a+s)$ , we see that the subfield $T$ of $Q(R))$

generated by $a_{1},$ $\cdots,$ $a_{c}$ and $s*$ contains infinitely many roots of unity. ( $i\rangle$

Assume first that $S$ is of characteristic zero. Then we can choose $s*$ to be
the ring of rational integers. Then the above conclusion means that a finitely
generated extension of the field of rational numbers contains infinitely many
roots of unity. This is impossible. (ii) Assume now that $S$ is of characteristic
$p>0$ and that $S$ contains a transcendental element $t$ over the prime field $P$.
Then we can choose $S^{*}$ to be $\{t^{m}|m=1,2, \cdots\}$ . Then the conclusion given
above means that a finitely generated extension of $P$ contains infinitely many
roots of unity. This is impossible, too. Thus the proof of our theorem is
complete.
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