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The purpose of this paper is to show that, if $F$ is a local field different
from the field $C$ of complex numbers, and if $F$ contains the m-th roots of
unity, then the topological group $SL(2, F)$ has an m-fold, non-trivial, topological
covering group which is of a fairly number-theoretical nature. In the sequel,
a local field will always mean a completion, by a finite or infinite place, of an
algebraic number field of finite degree, and $SL(2, F)$ will mean the topological
group of all $2\times 2$ matrices with determinant 1 over a local field $F$ .

We shall obtain a topological covering of $SL(2, F)$ by proving in a ele-
mentary way that an expression containing Hilbert’s symbols is actually a
factor set of $SL(2, F)$ .

Hilbert’s symbol1) of degree $m$ of a local field $F$ containing the m-th roots
of unity will be denoted by $(\alpha, \beta)$ , where $\alpha,$ $\beta$ are non-zero numbers of $F$ . In
addition to fundamental properties of Hilbert’ symbol, the relation

(1) $(\alpha, \beta)(-\alpha^{-1}\beta, \alpha+\beta)=1$

is useful in our arguments. This formula is valid whenever $\alpha\neq 0,$ $\beta\neq 0$ , and
$\alpha+\beta\neq 0^{2)}$ .

Now, our result is the following
THEOREM. Let $F\neq C$ be a local field containing the m-th roots of unity,

let $G=SL(2, F)$ , and, for an element $\sigma=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)\in G$ , put $ x(\sigma)=\gamma$ or $\delta$ accord-

ing to $\gamma\neq 0$ $or=0$ . Furthermore, for $\sigma,$
$\tau\in G$ , put

(2) $a(\sigma, \tau)=(x(\sigma), x(\tau))(-x(\sigma)^{-1}x(\tau), x(\sigma\tau))$ .
Then, $a(\sigma, \tau)$ satisfies the factor set relation

(3) $a(\sigma, \tau)a(\sigma\tau, \rho)=a(\sigma, \tau\rho)a(\tau, \rho)$

for any $\sigma,$ $\tau,$ $\rho\in G$ , and determines an m-fold topological covering group of $G$ .
The proof will be performed in \S 2, and the non-triviality of the covering

in the theorem will be treated in \S 3.
From the form of the factor set (2), it is understood that our theorem has

1) As for the definition of Hilbert’s symbol, see [1].
2) [1], p. 55, formula (15).
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a global meaning as well as local one. Namely, let $F$ temporarily denote an
algebraic number field containing the m-th roots of unity, let $F_{0}$ be the com-
pletion of $F$ by a place $\mathfrak{p}$ of $F$ , and let $a(\sigma, \tau/\mathfrak{p})$ be the factor set (2) for $F_{\mathfrak{p}}$ .
Then, each $SL(2, F_{P})$ is given a covering group by $a(\sigma, \tau/\mathfrak{p})$ , and moreover the
product formula

(4) $\prod_{\mathfrak{p}}a(\sigma, \tau/\mathfrak{p})=1$

holds, which means that the set of all $a(\sigma, \tau/\mathfrak{p})$ determines a global covering
group of the adele group of $SL(2, F)$ .

A global covering group of this kind was constructed in [4] for the case
of $m=2$ . For the multiplicative group of a number field, a related investiga-
tion was done also in [2]. On the other hand, the results in the present
paper have some overlap with the work of Calvin Moore8). But, he and the
author were working independently.

\S 1. Lemmas.

As before, we denote by $F$ a local field containing the m-th roots of unity,
and we write $G=SL(2, F)$ . Furthermore, we use the notation $\gamma(\sigma)=\gamma$ for
$\sigma=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)\in G$ .

LEMMA 1. If $\sigma,$ $\tau$ are two elements of $G$ with $\gamma(\sigma)\neq 0,$ $\gamma(\tau)=0$ , then

(5) $a(\sigma, \tau)=a(\tau, \sigma)=(x(\sigma), x(\tau))$

holds for $a(\sigma, \tau)$ in (2). If $\gamma(\sigma)=\gamma(\tau)=0$, then

(6) $a(\sigma, \tau)=(x(\sigma), x(\tau))^{-1}$ .

PROOF. If $\gamma(\sigma)\neq 0,$ $\gamma(\tau)=0$, then

(7) $x(\sigma\tau)=x(\sigma)x(\tau)^{-1}$ , $x(\tau\sigma)=x(\tau)x(\sigma)$ .

So, by definition, we have

$a(\sigma, \tau)=(x(\sigma), x(\tau))(-x(\sigma)^{-1}x(\tau), x(\sigma)^{-1}x(\tau))^{-1}$

$=(x(\sigma), x(\tau))$ ,

$a(\tau, \sigma)=(x(\tau), x(\sigma))(-x(\tau)^{-1}x(\sigma), x(\tau))(-x(\tau)^{-1}x(\sigma), x(\sigma))$

$=(x(\sigma), x(\tau))$ ,

which proves (5). If $\gamma(\sigma)=\gamma(\tau)=0$ , then $x(\sigma\tau)=x(\sigma)x(\tau)$ . Therefore, (6) is
shown in the same way as the above equality for $a(\tau, \sigma)$ .

LEMMA 2. Fix an element $\sigma\in G$ . Then,

3) Unpublished at present.



116 T. KUBOTA

$a(\epsilon, \sigma)=a(\sigma, \epsilon)=\left\{\begin{array}{l}1,\\(x(\epsilon),x(\sigma)), \gamma(\sigma)=0,\end{array}\right.$

$\gamma(\sigma)\neq 0$ ,

for $\epsilon\in G$ which is sufficiently near to 1.
PROOF. We have

$a(\epsilon, \sigma)=(x(\epsilon), x(\sigma))(-x(\epsilon)^{-1}x(\sigma), x(\epsilon\sigma))$

by definition. If $\gamma(\epsilon)=0$ or $\gamma(\sigma)\neq 0$, then $x(\epsilon\sigma)\rightarrow x(\sigma)$ as $\epsilon\rightarrow 1$ , and $a(\epsilon, \sigma)$

$\rightarrow(-x(\sigma), x(\sigma))=1$ because of the continuity of Hilbert’s symbol. So, we may
assume $\gamma(\epsilon)\neq 0$ and $\gamma(\sigma)=0$ . This case reduces to Lemma 1.

LEMMA 3. Let $\sigma,$ $\tau\in G$ be given. Then, two special cases
(8) $a(\epsilon, \sigma)a(\epsilon\sigma, \tau)=a(\epsilon, \sigma\tau)a(\sigma, \tau)$

and

(9) $a(\sigma, \tau)a(\sigma\tau, \epsilon)=a(\sigma, \tau\epsilon)a(\tau, \epsilon)$

of (3) hold for $\epsilon=\left(\begin{array}{ll}l & \\\mu & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0\\\mu & 1\end{array}\right)\in G$ , provided that $\mu$ is sufficiently near
to $0$ .

PROOF. To prove (8), it is enough to prove

\langle 10) $a(\epsilon, \sigma)a(\epsilon\sigma, \sigma^{-1}\tau)=a(\epsilon, \tau)a(\sigma, \sigma^{-1}\tau)$ .
Consider

(11) $a(\epsilon\sigma, \sigma^{-1}\tau)a(\sigma, \sigma^{-1}\tau)^{-1}$

$=(x(\epsilon\sigma), x(\sigma^{-1}\tau))(x(\sigma), x(\sigma^{-1}\tau))^{-1}(-x(\epsilon\sigma)^{-1}x(\sigma^{-1}\tau), x(\epsilon\tau))$

. $(-x(\sigma)^{-1}x(\sigma^{-1}\tau), x(\tau))^{-1}$ ,

and suppose $\gamma(\sigma)\neq 0,$ $\gamma(\tau)\neq 0$ . Then, $x(\epsilon\sigma)\rightarrow x(\sigma),$ $x(\epsilon\tau)\rightarrow x(\tau)$ , and therefore
(11) tends to 1, as $\mu\rightarrow 0$ . Suppose next $\gamma(\sigma)\neq 0,$ $\gamma(\tau)=0$ . Then, it follows
from (7) and $x(\sigma^{-1})=-x(\sigma)$ that (11) is equal to

$(-x(\sigma)^{-1}x(\sigma^{-1}\tau), x(\epsilon\tau)x(\tau)^{-1})=(x(\tau)^{-1}, \mu x(\tau)^{-2})=(\mu, x(\tau))$

for sufficiently small $\mu$ If $\gamma(\sigma)=0,$ $\gamma(\tau)\neq 0$, it is similarly seen that (11)
tends to

$(\mu x(\sigma)^{-2}, x(\sigma)^{-1}x(\tau))(\mu^{-1}x(\sigma)^{2}, x(\tau))=(\mu, x(\sigma))^{-1}$ .
If finally $\gamma(\sigma)=\gamma(\tau)=0$, then (11) becomes

$(\mu x(\sigma)^{-2}, x(\sigma)^{-1}x(\tau))(-\mu^{-1}x(\tau), \mu x(\tau)^{-1})(-x(\sigma)^{-2}x(\tau), x(\tau))^{-1}=(\mu, x(\sigma)^{-1}x(\tau))$

when $\mu$ is sufficiently small. Since $\mu=\gamma(\epsilon)$ , (8) follows from Lemma 2 in
every case.

To prove (9), it is enough to prove

(12) $a(\sigma\tau^{-1}, \tau)a(\sigma, \epsilon)=a(\sigma\tau^{-1}, \tau\epsilon)a(\tau, \epsilon)$ .
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The value of

(13) $a(\sigma\tau^{-1}, \tau\epsilon)a(\sigma\tau^{-1}, \tau)$

$=(x(\sigma\tau^{-1}), x(\tau\epsilon))(x(\sigma\tau^{-1}), x(\tau))^{-1}(-x(\sigma\tau^{-1})^{-1}x(\tau\epsilon), x(\sigma\epsilon))$

. $(-x(\sigma\tau^{-1})^{-1}x(\tau), x(\sigma))^{-1}$

as $\mu\rightarrow 0$ is 1 for $\gamma(\sigma)\neq 0,$ $\gamma(\tau)\neq 0$,

$(x(\sigma)x(\tau), \mu)(\mu, x(\sigma))=(\mu, x(\tau))^{-1}$

for $\gamma(\sigma)\neq 0,$ $\gamma(\tau)=0$,

$(-x(\sigma)^{-1}x(\tau^{-1})^{-1}x(\tau), \mu)=(\mu, x(\sigma))$

for $\gamma(\sigma)=0,$ $\gamma(\tau)\neq 0$, and

$(x(\sigma)x(\tau)^{-1}, \mu)(-\mu x(\sigma)^{-1}x(\tau)^{2}, \mu x(\sigma))(-x(\sigma)^{-1}x(\tau)^{2}, x(\sigma))^{-1}$

$=(x(\sigma)x(\tau)^{-1}, \mu)(x(\sigma)^{-1}x(\tau)^{2}, \mu)(\mu, x(\sigma))$

$=(\mu, x(\sigma))(\mu, x(\tau))^{-1}$

for $\gamma(\sigma)=0,$ $\gamma(\tau)=0$ . Hence, Lemma 2 implies (9).

Thus, the lemma is completely proved.
LEMMA 4. Set

$b(\sigma, \tau, \rho)=a(\sigma, \tau)a(\sigma\tau, \rho)a(\sigma, \tau\rho)^{-1}a(\tau, \rho)^{-1}$ ,

$(\sigma, \tau, \rho\in G)$ . Then, for any fixed $\sigma,$ $\tau,$ $\rho\in G$ , we have

$b(\epsilon\sigma, \tau, \rho)=b(\sigma, \tau, \rho\epsilon)=b(\sigma, \tau, \rho)$ ,

where $\epsilon=\left(\begin{array}{ll}1 & \\\mu & 1\end{array}\right)$ , and $\mu$ is suficiently near to $0$ .
PROOF. If $\epsilon$ is close to 1, then (8) of Lemma 3 yields

$b(\epsilon\sigma, \tau, \rho)=a(\epsilon\sigma, \tau)a(\epsilon\sigma\tau, \rho)a(\epsilon\sigma, \tau\rho)^{-1}a(\tau, \rho)^{-1}$

$=a(\epsilon, \sigma)^{-1}a(\epsilon, \sigma\tau)a(\sigma, \tau)a(\epsilon, \sigma\tau)^{-1}a(\epsilon, \sigma\tau\rho)a(\sigma\tau, \rho)$

. $a(\epsilon, \sigma)a(\epsilon, \sigma\tau\rho)^{-1}a(\sigma, \tau\rho)^{-1}a(\tau, \rho)^{-1}$

$=a(\sigma, \tau)a(\sigma\tau, \rho)a(\sigma, \tau\rho)^{-1}a(\tau, \rho)^{-1}=b(\sigma, \tau, \rho)$ .
On the other hand, (9) of Lemma 3 yields

$b(\sigma, \tau, \rho\epsilon)=a(\sigma, \tau)a(\sigma\tau, \rho\epsilon)a(\sigma, \tau\rho\epsilon)^{-1}a(\tau, \rho\epsilon)^{-1}$

$=a(\sigma, \tau)a(\sigma\tau, \rho)a(\sigma\tau\rho, \epsilon)a(\rho, \epsilon)^{-1}$

. $a(\sigma, \tau\rho)^{-1}a(\sigma\tau\rho, \epsilon)^{-1}a(\tau\rho, \epsilon)a(\tau, \rho)^{-1}a(\tau\rho, \epsilon)^{-1}a(\rho, \epsilon)$

$=a(\sigma, \tau)a(\sigma\tau, \rho)a(\sigma, \tau\rho)^{-1}a(\tau, \rho)^{-1}=b(\sigma, \tau, \rho)$ ,

which completes the proof.
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\S 2. Proof of the theorem.

Using the notation of Lemma 4, the assertion of our theorem is that
$b(\sigma, \tau, \rho)=1$ for every $\sigma,$ $\tau,$ $\rho\in G$ . While $b(\sigma, \tau, \rho)=1$ means that $G$ has an
abstract, m-fold covering group, Lemma 2 entails $a(\sigma, \tau)=1$ whenever $\sigma,$ $\tau$

are near to 1; therefore the covering group posesses a topology locally iso-
morphic to $G$ , and is a topological covering group.

Let now $\sigma=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)\in G$ and $\epsilon=\left(\begin{array}{ll}1 & \\\mu & 1\end{array}\right)\in G$ . Then, there is at most

one $\mu$ with $\gamma(\epsilon\sigma)=0$ , because such $\mu$ is a solution of $\alpha\mu+\gamma=0$ . Similarly,
there is at most one $\mu$ with $\gamma(\sigma\epsilon)=0$ , such $\mu$ being a solution of $\delta\mu+\gamma=0$ .
From this and from Lemma 4, it follows that there exists $\epsilon\in G$ with $b(\epsilon\sigma, \tau, \rho)$

$=b(\sigma, \tau, \rho),$ $\gamma(\epsilon\sigma)\neq 0,$ $\gamma(\epsilon\sigma\tau)\neq 0$ . Analogously, one can find $\epsilon^{\prime}\in G$ such that
$l)(\epsilon\sigma, \tau, \rho\epsilon^{\prime})=b(\epsilon\sigma, \tau, \rho),$ $\gamma(\rho\epsilon^{\prime})\neq 0,$ $\gamma(\tau\rho\epsilon^{\prime})\neq 0,$ $\gamma(\epsilon\sigma\tau\rho\epsilon^{\prime})\neq 0$ . Hence, our theorem
may be proved under the assumptions $\gamma(\sigma)\neq 0,$ $\gamma(\rho)\neq 0,$ $\gamma(\sigma\tau)\neq 0,$ $\gamma(\tau\rho)\neq 0$ ,
$\gamma(\sigma\tau\rho)\neq 0$ .

Denote by $N$ the subgroup of $G$ consisting of all elements of the form

( $\beta_{1}$ ). Then, since $\gamma(1)\sigma\nu^{\prime})=\gamma(\sigma),$ (1) $\nu^{\prime}\in N,$ $\sigma\in G$), the definition of $a(\sigma, \tau)$

implies

(14) $a(1)\sigma,$ $\tau$) $=a(\sigma, \tau\nu)=a(\sigma, \tau)$ , $a(\sigma\nu, \tau)=a(\sigma, \nu\tau)$

for every $\sigma,$ $\tau\in G$ , and $\nu\in N$. Consequently, we have

\langle 15) $b(\sigma, \tau, \rho)=b()1^{j_{3^{-1}}}\rho\nu_{4})$

for $\sigma,$ $\tau,$ $\rho\in G,$ $\nu_{1},$ $l)_{2}$ )$)_{3}11_{4}\in N$. On the other hand, $\sigma\in G$ being an arbitrary

element, there are $\nu,$ )$)^{\prime}\in N$ such that $\iota$) $\sigma\iota)^{\prime}$ is in a canonical form $\left(\alpha & \alpha^{-1}\right)$

or $\left(\gamma & -\gamma^{-1}\right)$ . Furthermore, since $\gamma(\sigma)\neq 0$ , and $\gamma(\rho)\neq 0,$ $\nu_{1}\sigma\nu_{2}$ resp. $\nu_{3}^{-1}\rho\nu_{4}$ can

be brought into a triangular form $\left(\begin{array}{ll} & \beta\\\gamma & \partial\end{array}\right)$ resp. ( $\beta$ ). Owing to these

facts, it is enough to prove the theorem for

$\sigma=\left(\begin{array}{ll} & -a^{-1}\\a & d\end{array}\right)$ , $\tau=\left(b & -b^{-1}\right)$ , $\rho=\left(\begin{array}{ll}e & -c^{-1}\\c & \end{array}\right)$

when $\gamma(\tau)\neq 0$ , and for

$\sigma=\left(\begin{array}{ll} & -a^{-1}\\a & d\end{array}\right)$ , $\tau=\left(b^{-1} & b\right)$ , $\rho=\left(\begin{array}{ll}e & -c^{-1}\\c & \end{array}\right)$

when $\gamma(\tau)=0$ . In both cases, $x(\sigma)=a,$ $x(\tau)=b,$ $x(\rho)=c$ .
In the case of $\gamma(\tau)\neq 0$ , we have $x(\sigma\tau)=bd,$ $x(\tau\rho)=be,$ $x(\sigma\tau\rho)=bde-ab^{-1}c$

by the assumption $\gamma(\sigma\tau)\neq 0,$ $\gamma(\tau\rho)\neq 0,$ $\gamma(\sigma\tau\rho)\neq 0$ . So,
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$b(\sigma, \tau, \rho)=(a, b)(-a^{-1}b, bd)(bd, c)(-b^{-1}d^{-1}c, bde-ab^{-1}c)$

. $(a, be)^{-1}(-a^{-1}be, bde-ab^{-1}c)^{-1}(b, c)^{-1}(-b^{-1}c, be)^{-1}$

$=(a, e)^{-1}(d, c)(a, b)^{-1}(-a^{-1}b, d)(c, b)^{-1}(-b^{-1}c, e)^{-1}$

. $((bde)^{-1}ab^{-1}c, bde-ab^{-1}c)$ .
Since here

($(bde)^{-1}ab^{-1}c,$ $bde$–ab ‘
$c$) $=(-ab^{-1}c, bde)$

$=(ac, b)(-ab^{-1}, d)(c, d)(a, e)(-b^{-1}c, e)$

follows from (1), we obtain

$b(\sigma, \tau, \rho)=(a, b)^{-1}(c, b)^{-1}(ac, b)=1$ .

In the case of $\gamma(\tau)=0$ , we have $x(\sigma\tau)=ab^{-1},$ $x(\tau\rho)=bc,$ $x(\sigma\tau\rho)=ab^{-1}e+bcd$ .
So, from Lemma 1 follows

$b(\sigma, \tau, \rho)=(a, b)(ab^{-1}, c)(-a^{-1}bc, ab^{-1}e+bcd)$

. $(a, bc)^{-1}(-a^{-1}bc, ab^{-1}e+bcd)^{-1}(c, b)^{-1}=1$ .
This completes the proof.

\S 3. Non-triviality of the covering.

The aim of this \S is to show that the covering given in the theorem is
always non-trivial; we propose to show that there is no mapping $s$ of $G$ into
the set of the m-th roots of unity such that

(16) $a(\sigma, \tau)=s(\sigma)s(\tau)s(\sigma\tau)^{-1}$ .
In the case of $m>2$ , the impossibility of (16) is immediately to see, if we put

$\sigma=\left(\alpha & \alpha^{-1}\right),$ $\tau=\left(\beta & \beta^{-1}\right)$ , and use (6) of Lemma 1 together with the anti-

symmetry of Hilbert’s symbol. Since, however, this method is not effective
for $m=2$ , we state here from a different point of view a proof which is

valid for arbitrary $m^{4)}$ . Assume (16), and set $\nu=(^{1}$ $\beta 1)$ . Then, (14) yields

$s(\nu\sigma)s(\tau)s(\nu\sigma\tau)^{-1}=s(\sigma)s(\tau)s(\sigma\tau)^{-1}$

for every $\sigma,$ $\tau\in G$ . Putting further $\tau=\sigma^{-1}$ , we have $s(\nu\sigma)=s(\sigma)^{-1}=s(\nu)s(1)^{-}$ ,

while the mapping $s$ becomes a homomorphism on the group $N$ of the elements

of the form ( $\beta_{1}$ ), and consequently is trivial. Therefore, $s(\nu\sigma)=s(\sigma)$ must

hold. By a similar reason, $s(\sigma\nu)=s(\sigma)$ is also the case. Set $\sigma=\left(l & -1\right)$ ,

$\tau=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right),$ $(\gamma\neq 0, \alpha\neq 0),$ $\sigma\tau=\left(\begin{array}{ll}-\gamma & -\delta\\\alpha & \beta\end{array}\right)$ , and denote by $s_{1}(\gamma)$ the value of

4) The non-triviality of the covering for the case of $m=2$ is contained in [4], too.
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$s$ at $\left(\gamma & -\gamma^{-1}\right)$ . Then, from the definition, from (16), and from the N-

invariance of $s$ proved above, the equality

$a(\sigma, \tau)=(-\gamma, \alpha)=s_{1}(1)s_{1}(\gamma)s_{1}(\alpha)^{-1}$

is derived. This relation with $\alpha=1$ implies $s_{1}(\gamma)=1$ for any non-zero $\gamma\in F$ .
Accordingly, we have $(-\gamma, \alpha)=1$ identically, which is clearly a contradiction.

Let $\tilde{G}$ be the covering group of $G$ determined by the theorem. Then, $\tilde{G}$

contains the group $8(m)$ of the m-th roots of unity, and the covering map
$\tilde{G}\rightarrow G$ gives an isomorphism of $G$ and $\tilde{G}/\partial(m)$ . Let now $d\neq m$ be a natural
number deviding $m$ . Then, $\tilde{G}/\partial(d)$ is also a covering group of $G$ , and the
corresponding factor set is given by the natural image of $a(\sigma, \tau)$ into $8(m)/\partial(d)$ .
Since $\partial(m)/\partial(d)\cong \mathfrak{z}(m/d)$ , we may regard $a(\sigma, \tau)^{a}$ as the factor set. The d-th
power of Hilbert’s symbol of degree $m$ is Hilbert’s symbol of degree $m/d$,

which is not trivial in the present case. So, $a(\sigma, \tau)^{d}$ is also not trivial. Thus
we have proved that all coverings $\tilde{G}/\partial(d)\rightarrow G$ are non-trivial as well as $\tilde{G}\rightarrow G$ .
In this sense, $\tilde{G}\rightarrow G$ is a proper covering.

\S 4. Further remarks.

Hilbert’s symbol is a bi-multiplicative function, and is by itself a factor
set of the multiplicative group of a field. Therefore, our factor set (2) can
be regarded as a generalization of Hilbert’s symbol to a matric algebra. In
fact, the product formula (4) holds for global cases, and $a(\sigma, \tau)$ coincides with
Hilbert’s symbol when $\sigma,$ $\tau$ are diagonal matrices. Moreover, it is possible
for any other property of Hilbert’s symbol to find the corresponding property
of $a(\sigma, \tau)$ . On the other hand, using an order of a matric algebra, one can
consider through $a(\sigma, \tau)$ power residue symbols of a matric algebra. The
multiplicativity of symbols for commutative cases should, however, always be
replaced by the factor set relation.

Hilbert’s symbol as a factor set of the multiplicative group of a field was
partly investigated in [2] for the quadratic case. The formula (17) of [2]

means that the Gauss sum gives rise to a multiplicative function on the
2-fold covering group, given by Hilbert’s symbol, of the idele class group.

Something about a factor set is also mentioned at the very end of [3].

What the factor set determines is an ordinary, 2-fold topological covering
group of $G=SL(2, R)$ , which appears in the theorem of this paper for the
special case of $F=R,$ $m=2$ .

Mathematical Institute
Nagoya University
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