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The purpose of this paper is to show that, if F is a local field different
from the field C of complex numbers, and if F contains the m-th roots of
unity, then the topological group SL(2, F) has an m-fold, non-trivial, topological
covering group which is of a fairly number-theoretical nature. In the sequel,
a local field will always mean a completion, by a finite or infinite place, of an
algebraic number field of finite degree, and SL(2, F) will mean the topological
group of all 2x2 matrices with determinant 1 over a local field F.

We shall obtain a topological covering of SL(2, F) by proving in a ele-
mentary way that an expression containing Hilbert’s symbols is actually a
factor set of SL(2, F).

Hilbert’s symbol® of degree m of a local field F containing the m-th roots
of unity will be denoted by (a, 8), where «, 8 are non-zero numbers of F. In
addition to fundamental properties of Hilbert’ symbol, the relation

ey (o, B)(—a™'B, a+p)=1
is useful in our arguments. This formula is valid whenever a0, 80, and
a+ B+ 0%.

Now, our result is the following

THEOREM. Let F+# C be a local field containing the m-th roots of unity,

let G=SL(2, F), and, for an element o= (? g) € G, put x(o)=7y or d accord-
ing to y+0 or =0. Furthermore, for o, <G, put

@ a(o, 7) = (x(0), x(eN(—x(0)'x(z), x(07)) .
Then, a(o, T) satisfies the factor set relation
3 a(o, t)a(oz, p) = a(o, Tp)a(z, p)

for any o, t, p € G, and determines an m-fold topological covering group of G.
The proof will be performed in § 2, and the non-triviality of the covering
in the theorem will be treated in § 3.
From the form of the factor set (2), it is understood that our theorem has

1) As for the definition of Hilbert’s symbol, see [I].
2) [1J, p. 55, formula (15).
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a global meaning as well as local one. Namely, let F temporarily denote an
algebraic number field containing the m-th roots of unity, let F, be the com-
pletion of F by a place p of F, and let a(s, z/p) be the factor set (2) for Fy.
Then, each SL(2, F,) is given a covering group by a(s, z/p), and moreover the
product formula

) 1;[ a(o, t/p)=1

holds, which means that the set of all a(o, z/p) determines a global covering
group of the adele group of SL(2, I).

A global covering group of this kind was constructed in for the case
of m=2. For the multiplicative group of a number field, a related investiga-
tion was done also in [2]. On the other hand, the results in the present
paper have some overlap with the work of Calvin Moore®. But, he and the
author were working independently.

§1. Lemmas.

As before, we denote by F a local field containing the m-th roots of unity,
and we write G=SL(2, F). Furthermore, we use the notation y(¢)=7 for

o= (01 p ) eG.
r 0

LEMMA 1. If o, © are two elements of G with y(o)#0, y(z)=0, then
®) a(o, v) =a(z, 0) = (x(9), x(z))
holds for a(o, ) in (2). If y(o)=7(x)=0, then
©) a(o, 7) = (x(0), x(T)7*.

Proor. If y(o)+#0, y(z)=0, then
@ x(ot) = x(o)x(2)1, x(zo) = x(7)x(0) .

So, by definition, we have
a(e, 7) = (x(0), x(2)(—x(0)"*x(z), x(6)"*x(z))™*
= (x(0), x(2)) ,
a(z, 0) = (x(2), x(oN(—x(x)"'x(0), x()N(—x(z)"*x(0), x(0))
= (x(0), x(2))

which proves (5). If y(o)=yr(r)=0, then x(67)=x(0)x(z). Therefore, (6) is
shown in the same way as the above equality for a(z, o).
LEMMA 2. Fix an element 6 =G. Then,

3) Unpublished at present.
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1, 7@ #0,
x(e), x(@)), 7(@)=0,

for e G which is sufficiently near to 1.
Proor. We have
a(e, 0) = (x(e), x(aN(—x(e)7'x(0), x(¢0))

by definition. If y(&)=0 or y(6)+#0, then x(co)—x(¢) as e—1, and a(e, 0)
—(—x(0), x(0)) =1 because of the continuity of Hilbert’s symbol. So, we may
assume 7(¢) # 0 and y(6)=0. This case reduces to Lemma 1l

LEMMA 3. Let 0,7 <G be given. Then, two special cases

a(e, o) =a(o, &) =

) a(e, o)a(eo, v) = ale, ov)a(o, 7)
and
O a(o, 7)a(ot, €) = a(o, te)a(z, €)

of (3) hold for ‘s:(}z 1>=<L (1)> € G, provided that p 1is sufficiently near
to 0.
Proor. To prove (8), it is enough to prove

10 a(e, o)a(ea, o-'t) = a(e, t)alo, 0717).
Consider
ay a(eo, 0~17)alo, o-17)!
= (x(e0), x(7)(x(0), X(67' 7)) (—x(€0)*x(077), x(e7))
*(—x(o) " x(o7 ), X(2)71,
and suppose y(¢) #0, r(z)# 0. Then, x(c0)—x(0), x(er)—x(z), and therefore

(11) tends to 1, as p¢—0. Suppose next y(o)+#0, y(z)=0. Then, it follows
from (7) and x(o-Y)= —x(c) that (11) is equal to

(—x(0)x(0717), x(e7)x(z)") = (x(z)7?, px(z)"H) = (4, x(z))

for sufficiently small g. If y7(6)=0, y(r)#0, it is similarly seen that (11)
tends to

(pux(o)2, x(0)x (D)) 1x(0)?, x(7)) = (¢, x(6))7*.
If finally y(¢) =7y(z)=0, then (11) becomes
(ex(0)%, x(0) x(z))(— ¢ x(2), px(z)H)(—x(0)2x(z), x())™ = (g, x(0)~*x(7))

when g is sufficiently small. Since p=7y(), (8) follows from Lemma 2 in
every case.
To prove (9), it is enough to prove

12 a(or™, v)a(o, &)= alot™, re)a(z, €).
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The value of
13 a(ot™, te)a(or™Y, ©)
= (x(o771), () (x(o™), x(e)"(— (o) x(re), x(0¢€))
< (—x(oT7)7 (7)), x(0))7?
as #—01is 1 for y(0)#0, y(x) #0,
(x(0)x(2), ), 2(0)) = (g x(2)™
for y(0)#0, y(z)=0,
(—2(@) x(e)x(), ) = (p, 2(0)
for y(6)=0, y()#0, and
(H()x(D), p)(—px(0) " x(2), px(o))(—x(6) x(z)?, x(o))™
= (x(o)x()™, )(x(0) ™ x(2)% p)(gts %(0))
= (g, x(@N(et, X))~

for y(6) =0, y(zr)=0. Hence, implies (9).
Thus, the lemma is completely proved.
LEmMMA 4. Set

b(e, 7, p) = a(o, t)aloz, p)alo, Tp) a(z, p)™!,
(0,7, 0 G). Then, for any fixed o, 7, p<= G, we have
blea, T, p) =b(o, 7, pe)=b(o, 7, p),
where e:(z 1), and p is sufficiently near to 0.
Proor. If ¢ is close to 1, then (8) of Lemma 3 yields
b(eo, T, p) = aleo, t)aleor, p)aleo, Tp)a(z, p)*
=a(e, o) la(e, o7)a(o, t)ale, o)~ tale, orp)alor, p)
- a(e, o)a(e, ot p)talo, vp)talc, p)*
=a(o, t)aloz, p)a(o, tp)ta(r, o) *=b(s, T, p).
On the other hand, (9) of Lemma 3 yields
b(o, 7, pe) = a(e, v)a(ozt, pe)alo, Tpe)~ta(r, pe)™
= a(o, 1)a(o7, p)aloTp, €)alp, &)™
-a(o, Tp)alotp, &) ta(rp, )a(t, p)ta(rp, €)~*a(p, €)
=a(o, 1alot, p)alo, Tp)alr, p)~t=0b(o, 7, o),

which completes the proof.
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§2. Proof of the theorem.

Using the notation of the assertion of our theorem is that
ble,t, p)=1 for every o,7, p=G. While b(o, 7, p)=1 means that G has an
abstract, m-fold covering group, entails a(s, 7)=1 whenever o, ¢
are near to 1; therefore the covering group posesses a topology locally iso-
morphic to G, and is a topological covering group.

Let now 0:(? g)gG and 6:<L 1>EG. Then, there is at most

one p with y(eo)=0, because such g is a solution of ap+y=0. Similarly,
there is at most one g with y(se) =0, such g being a solution of du+7y=0.
From this and from it follows that there exists e € G with b(eo, 7, p)
=0b(o, 7, p), 7(c0)#0, y(eor)+= 0. Analogously, one can find ¢’ =G such that
b(ea, t, pe’)=b(ea, 7, p), r(pe") #0, y(zrpe’) # 0, y(eorpe’) # 0. Hence, our theorem
may be proved under the assumptions y(o) 0, y(0) %0, y(o7) 0, y(zp) #0,

y(orp) =+ 0.
Denote by N the subgroup of G consisting of all elements of the form

(! £). Then, since 700v)=7(0), @,V €N, 0 €G), the definition of a(a, 7)
implies

14 alye, t)=a(o, tv)=a(o, 1), a(oy, ) = a(o, vr)

for every ¢, 7 =G, and v = N. Consequently, we have

({15) b(o, T, p) = b(v,0v,, vi'ty,, vitoy,)

for g, 7, p= G, vy, vy, v, v, € N. On the other hand, ¢ € G being an arbitrary

element, there are yp,y’ & N such that voy’ is in a canonical form <a a‘1>
a1
or <7’ 7 ) Furthermore, since y(o) # 0, and y(p) # 0, v,0v, resp. vy'py, can

be brought into a triangular form <T 6) resp. <2’ > Owing to these

facts, it is enough to prove the theorem for

7=( _dﬂl)’ == (, *bﬂ)’ o=(; —C_1>

when y(z) # 0, and for

P B I G RS Gl

when y(z)=0. In both cases, x(¢)=a, x(r)=0b, x(p)=c.
In the case of y(z) #0, we have x(o7) =bd, x(zp)=be, x(ctp)=>bde—ab~c
by the assumption y(o7) #0, y(zp)#0, y(erp)+ 0. So,
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b(o, T, p)=1(a, b)(—a™*b, bd)(bd, c)(—b'd *c, bde—ab~c)
- (a, be)"(—a~'be, bde—ab'c)~'(b, ¢)"'(—b~'c, be)™*
=(a, e)~(d, c)(a, b)y=*(—a~b, d)(c, )= (—b1c, e)?

- ((bde)~tab~c, bde—ab~'c).
Since here
((bde)~tab~'c, bde—ab='c)=(—ab ¢, bde)

={(ac, b)(—ab™1, d)(c, d)(a, e)(—b ¢, ¢)
follows from (1), we obtain
b(o, 7, p)="(a, b)~(c, b)~'(ac, b)=1.

In the case of y(z) =0, we have x(o7)=ab™, x(rp)=bc, x(o7p)=ab 'e+bcd.
So, from follows

b(o, 7, p) = (a, b)(ab™*, c)(—a~bc, ab'e--bcd)
-(a, be) Y (—abc, ab~te+bed) e, b)1=1.

This completes the proof.

§3. Non-triviality of the covering.

The aim of this § is to show that the covering given in the theorem is
always non-trivial ; we propose to show that there is no mapping s of G into
the set of the m-th roots of unity such that

(16) a(o, 7) =s(o)s(z)s(or)~t.
In the case of m > 2, the impossibility of is immediately to see, if we put
o= (0: a_1>, T = <ﬁ ﬁ"1>’ and use (6) of together with the anti-

symmetry of Hilbert’s symbol. Since, however, this method is not effective
for m=2, we state here from a different point of view a proof which is

valid for arbitrary m®. Assume [16), and set y= 1B . Then, yields
1

s(wa)s(t)s(vor)t = s(o)s(z)s(oz) !

for every o,z € G. Putting further =01, we have s(vo) =s(g)! = s()s(1)1,
while the mapping s becomes a homomorphism on the group N of the elements

of the form (l g), and consequently is trivial. Therefore, s(vo) = s(¢) must
hold. By a similar reason, s(ov) =s(c) is also the case. Set az(l _1>,

—y —0
T:(? g), (r+0, a+0), m-:( Z; ,8)’ and denote by s,(y) the value of

4) The non-triviality of the covering for the case of m=2 is contained in [4], too.
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s at <7’ _7’_1>. Then, from the definition, from [(I6), and from the N-

invariance of s proved above, the equality

a(o, ) =(—7, &) = s,(Ds,(p)s,(a)™*

is derived. This relation with a« =1 implies s,(yf) =1 for any non-zero y =F.
Accordingly, we have (—7, @) =1 identically, which is clearly a contradiction.

Let G be the covering group of G determined by the theorem. Then, G
contains the group 3(m) of the m-th roots of unity, and the covering map
G—G gives an isomorphism of G and @/g(m). Let now d +#m be a natural
number deviding m. Then, 5/3(d) is also a covering group of G, and the
corresponding factor set is given by the natural image of a(s, ) into 3(m)/3(d).
Since 3(m)/3(d)=3(m/d), we may regard a(s, v)? as the factor set. The d-th
power of Hilbert’s symbol of degree m is Hilbert’s symbol of degree m/d,
which is not trivial in the present case. So, a(s, 7)¢ is also not trivial. Thus
we have proved that all coverings &/3(d)~+G are non-trivial as well as G —G.
In this sense, G—G is a proper covering.

§4. Further remarks.

Hilbert’s symbol is a bi-multiplicative function, and is by itself a factor
set of the multiplicative group of a field. Therefore, our factor set (2) can
be regarded as a generalization of Hilbert’s symbol to a matric algebra. In
fact, the product formula (4) holds for global cases, and a(s, ) coincides with
Hilbert’s symbol when o, r are diagonal matrices. Moreover, it is possible
for any other property of Hilbert’s symbol to find the corresponding property
of a(s, 7). On the other hand, using an order of a matric algebra, one can
consider through a(o, ) power residue symbols of a matric algebra. The
multiplicativity of symbols for commutative cases should, however, always be
replaced by the factor set relation.

Hilbert’s symbol as a factor set of the multiplicative group of a field was
partly investigated in for the quadratic case. The formula (17) of
means that the Gauss sum gives rise to a multiplicative function on the
2-fold covering group, given by Hilbert’s symbol, of the idele class group.

Something about a factor set is also mentioned at the very end of [3]
What the factor set determines is an ordinary, 2-fold topological covering
group of G=SL(2, R), which appears in the theorem of this paper for the
special case of F=R, m=2.

Mathematical Institute
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