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In a series of papers [3] [4] [5] [6] S. Sasaki and his collaborators
studied what they called an almost contact structure on an odd-dimensional

manifold, which could be regarded as a structure corresponding to an almost
complex one on an even-dimensional manifold, and was called so because of
its close connection with a contact structure defined by a 1-form of maximal
rank.

In the first part of this paper we treat Sasaki’s theory by the method of
adapted frames and in the second we investigate fundamental properties of
a normal contact metric structure defined also by Sasaki and closely related
to a Kaehlerian structure.

DEFINITIONS. Throughout the paper we assume manifolds and tensors to
be real analytic, because we discuss a complete integrability of differential
equations in complex domain. An almost contact structure, or (¢, &, n)-struc-
ture, on a 2n--1-dimensional differentiable manifold M with local coordinates
at, .-, 221 ig defined by a tensor field ¢=(¢J) and two vector fields
E=(E% -+, &), n=(n1, ***, M2nsr) SUCh that

rank ¢ =2n,  ¢56/=0, ¢in;=0, Ep,=1,

When we consider ¢ as a matrix with an element ¢ on the i-th row and the
j-th column, we have

@™

P*+¢=0. )

We take a one dimensional space R with a coordinate ¢ (—oco <# < +00)
and construct an almost complex tensor F'=(f%) on M X R as follows

fi=0!, flan=§, f"=—n, fH=0. 3
The manifold M is called normal when the Nijenhuis tensor N of the tensor
F vanishes.
An almost contact metric structure, or (¢, &, n, &)-structure, is defined as an
almost contact structure with a Riemannian metric g=(g;;) such that
gijfj:m, gijﬁb%qj}z:ghk'—nhnk- @

A contact metric stvucture is defined as follows. On an almost contact
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metric manifold we construct a tensor (¢;;) such that

eSS ¢;’cgkj . ®)
This is an alternate tensor and a 2-form a=¢;;dx* Adx¥’ can be defined. If
it is a derivative of 1-form B =7;dx’ such that 8 A (dB)" # 0, namely

d(:dx") = ¢gydx* N\ d 6)

we call the structure contact metric. (6) is different from the definition of
Sasaki p. 250) by a factor 2, but the difference is not essential.

1. Almost contact structure

1. In general we can define a Nijenhuis tensor N for any tensor field A
of type [1.I)) on an /-dimensional real differentiable manifold as follows. We
take two arbitrary tangent vector fields X and Y and construct a vector Z
such as

Z=—-AX, Y]-[AX AY+A[AX Y]+A[LX, AY].

Then a mapping (X, Y)— Z defines a Nijenhuis tensor of A. We take a coor-
dinate neighborhood U and a complex differentiable base Xj, -+, X; on the
tangent space of each point of U, and denote by !, ---,®" its dual base in
the dual tangent space. We put

[Xp X 1=X X, — X, Xy = —c8.X,, do’= V%—cg,oﬂ No" (B =—cb).

Here we assume that the indices run from 1 to /. We take components (a%)
of A with respect to the base, and for X=u”X, we have AX=(e?u)X,.
Putting X,e2 =%, namely daf = abw", we get for N=(NZ,)
N2, = —aj aby+a} aly+a¥(aty—al )+ af aich — alal c§,+aPal. ciy+aPaict, .
If the components a% of A are all constant for our frame (which is possible
when the eigenvalues are all constant), we have
N2, = ajd.ch —abal ci,+aba. ciy+alaick, . Ly
If the matrix (@%) is diagonal with complex diagonal elements a§=21, we
get (cf. p. 142)
Nz, = p—2)Ap—2)cE  (not summed for p,q, 7). 1.2)
2. We assume that a 2xz-}+1-dimensional manifold M has an almost con-
tact structure. By the relation (2) eigenvalues of ¢ are i, —i (each #u-ple),
and 0 (simple). In tangent spaces at each point of any coordinate neighbor-
hood U in M we can take real basic vectors X, ---, X,, on the space spanned

by eigenvectors of eigenvalues ¢ and —i and an eigenvector X,,., of eigen-
value 0 in such a way that ¢ are all constant (this is possible for a suitably
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chosen complex base and so is true for a real base) and moreover X,, ---, X;n,
Xonsy are analytic on U. Then we get by virtue of (1)

0\
¢ = (80 8 (const.), ¢f=—F,,(unit), £ =(0, ---,0, k), n= 0 (1.3)
with &/ =1, [

with respect to the base X, -+, Xpnae If we take £X,,., instead of X,,., and
denote it by X,,., anew, we have

k=1 [I=1. 1.4

We call the base, which we have taken in this way, an adapted frame. An
almost contact structure is the structure with a tensor field ¢ under the prop-
erty (2), accompanied by a fixed eigenvector of eigenvalue 0.

We take a coordinate neighborhood U of M and construct a space U X R
and consider a tensor F' defined by (3).

We take an adapted frame on the tangent space of U and a basic vector
0/0t on R and consider these together as a frame on the tangent space of
UX R. We denote by @', -, ®*"*"!, @*"*2=d¢ a dual base and put

1
doot = —5-cho® N (cho=—cty).

Here we use indices in such a way that
A, B,CD,E=1,-,20n+2; i,5,k=1,--,2n+1; m=2n+1; co=2n+2.
As dw==0 and dw® does not contain d¢, we have

cee=0, c$.=0. 15)
The tensor F defined on M X R by (3) has constant components
fl=¢!, fm=1, fo=-—1, all other fE=0 (1.6)
with respect to our frame. Nijenhuis tensor N of F has components
Nic=5Bf& ctn—S bSECRc+TBIE cRpt+THS Bcke 1.7

by and when we denote by @ a Nijenhuis tensor of ¢ on M and by 0%
its components with respect to the frame !, -, ®?", ®™ we get
=0y ci—kery  Nijw= @jClm+dichs, Nipx=ch.
It can easily be verified that (N%), (W), (N5.) are tensors and (N2 is a
vector on M, which depend on its almost contact structure.
We take complex frames in such a way that ¢ =(¢?) reduces to a form
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ik, 0 0
¢=(0 —iE, 0). (1.9)
0 0 0

We call these frames complex adapted ones. The dual base are
W, -, 0" 0" =@t o, 0" =" o™ =0,
where 0 is a real 1-form. Now we use indices as
a, B, r=1,-,2n m=2n+1
a,bc=1,-,n a,b',c’=n+l1,---,2n

O = (0%) is the Nijenhuis tensor of ¢ and for our frame we have 1,=i,
Aer=—1,2, =0 in Hence we get
0%, = —4ct., O =—A4c§,, all other @f =0,

%m - 0’ @%’m = —26%’7".’ q)g”m = O) (Dgrln, - —26%7’”7 (110)
@a"b - —Canbf @Zznb’ - Cz,nb’) ®£,n'b’ - _Cz,n’b’; d)ma - 0, Qﬁw = O .

Hence the vanishing of the tensor (N%) on M, namely N% =0, is equivalent
to

Cg’c’ - Oy Cgc, - 01 C%’m — 01 Cg};l' - 0;
(1.11)

=0, cgp=0, cRa=0, cRa=0
by virtue of (1.8) and [(1.10). In this case we get by (1.8)
%=0, N, =0, NZ=0.
By definition an almost contact structure is normal when its Nijenhuis tensor

(N4, on M X R vanishes, and now it can be replaced by the vanishing of
(Vi) (1.11) is also equivalent to

do®=0 (mod @, - ,®"), df=cly 0*A@". (1.12)
Thus we get

THEOREM 1. The condition of normality of an almost contact structure is
equivalent to (1.12) with respect to complex adapted frames.

A. Morimoto noticed that the product A??*! X M2 of two normal almost
contact manifolds can be endowed with a complex structure. This can easily
be proved by the use of As S. Sasaki and Y. Hatakeyama noticed, a
sphere S#*! of odd dimension has a normal contact structure (which we also
prove in this paper later). Hence a result of Eckmann-Calabi that S?7*!x S2a#
has a complex structure is an example of a theorem by Morimoto.

By two systems of differential equations

0*=0 (a=1,-,n) (1.13)
and
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w*=0, =0 (a=1,--,n) (1.149)

are completely integrable.

Conversely, if these two systems are completely integrable, we have
do®*=0 (mod »?, ---,®") and

dl = %% N\ @°+c0 N\ @%+C70 N @*

because 6 is real. If we assume moreover NZ;=0, we have ¢%,=0 by (1.8)
and hence df =c%w* A@". Thus the condition of normality is equivalent to
complete integrability of (1.13) and (1.14) accompanied by the vanishing of
the vector (INZ). This theorem is due to S. Sasaki and C. J. Hsu where
a proof is rather different from ours.

Next we discuss (1.12) more precisely. We have by the first equation of
(1.12

0% = p§ (2, 2, u)dz®,

where z%,---, 2", # are suitably chosen complex coordinates (# real). Then the
second equation of reduces to

dO =T 4z, 2, w)dz* A\ dz° . (1.15)

As this form is closed we have 9I',,/0u =0 and so I'y,=I".(2,2). Hence if
we take a form A which can be obtained from 6 by restricting # to a con-
stant, we get df=dl. As 2 is real we can put A=L,dz*+L,dz* with
L,=L.z,2. Wegetby d’'(Ladz*) =0 and we have a function M= Mz, 2)
such that d’M=L,dz*. Hence df=dl=d(d M-+d"M)=d'd"(—M-+M). Put-

ting K= i(M— M) (real) we get df =d'd"(iK)= —é—d(d’K——d”K).

Hence

6= dw— b (&' —d")K

with a real variable w. When we take a suitable base z%={¢®® instead of
w? we get

wt=dat, 0= dw—i(d'—d")K. (1.16)

Thus we get the following theorem:

THEOREM 2. The condition of normality of an almost contact structurve is
equivalent to the local existence of such a dual complex adapted frame =w*,---, 7",
7, ., 7 0 that (1.16) holds good, wheve z*,---,2" are complex coordinates, w is
a real one and K—= K(z, 2) is a real function.
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2. Normal contact metric structure
1. An almost contact metric structure is defined by the existence of a
tensor field g=(g;;) satisfying (4). For adapted frames this reduces to

0
g=@)= (3 1) where g/, =2

For complex adapted frames we have and so

0
go:<zgl g6 , & =) .

Hence the Riemannian metric is
ds? = 2g,,0%° 02 ,

where g,;,= Gy, because ds? is real. We assume throughout this paper that
the metric tensor (g;;) is positive definite. Then for a suitably chosen com-
plex adapted frame we have
ds? = w%*--§%, (2.1)
where we mean by %% a summation with respect to ¢=1, ---, 5.
Next a contact form n=7,dx* is in our case 6 and as to ¢;;= ¢¥g;

)
R 0 5E.
(pi)=¢g=|_ L g o (| because g,=
2 Le o
~5-En
0 0 0

Here a 2-form ¢;;dx* A dx’ is iw®* A@®* A condition for a contact structure is
(6) and in this case it is df =iw* A®w* As the condition of normality is
equivalent to we get the following theorem:

THEOREM 3. The melric structure given by (2.1) is normal contact when
and only when

do*=0 (modw!, -, ") (2.2)
df =iw* \ @°. 2.3
On a normal contact metric manifold we have by virtue of
%= p2(z, 2, u)dz"
if we take suitable complex coordinates 2z, ---, 2" # (# being real). Putting
@D = g2, Z, w)dz*adz"
we get
@% N\ @° = gu(2, Z, w)dz® N\ dz° . 2.4)

By virtue of we have
d(@® A 8% =0 (2.5)
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and by we get 084,/0u =0 and S0 g =gas(z,2). Thus we have
do® = 0@ = gz, 2)dz%dz" .

This is in itself a Kaehlerian metric on account of (2.5} Hence there exists

a real function K such that

dor= 0K

a'z’d’a’gb’dzadfb . (2'6)

When we put
@ = —%(d’—d”)K @7

2
which is real, we get d¢:i%§§~dz“Ad§b:iw“A6“ and by df =dg.

Hence there exists locally a real function w such that 6 =dw-+¢. Thus we
get
THEOREM 4. The Riemannian metric of a normal contact metrvic structure

is locally given by
ds? = do?+4-(dw+@)?, (2.8)

where do? is a Kaehlerian metric and ¢ is a 1-form (2.7) derived from the metric
do®.

Hereafter we investigate a normal contact metric structure on the base
of [Theorem 4 or

2. Sasaki and Hatakeyama [6] showed that a sphere of odd dimension
gives an example of a normal contact metric manifold. Here we consider it
in detail and prepare for our later discussion.

Here indices run as «,0,c=1,--,n; p=0,1,---,n. We take a complex
vector space C,;; with a flat metric
d2? = dz?dz? 2.9
in complex coordinates 2 2!, ---,2" When we put

1
r=(2Pz")2, zZP—=yu?

we have
uP@g? =1,

and

d3? = dr*+-r*duPdi? . (2.10)
We denote by ds? an induced Riemannian metric on a unit hypersphere r=1
and we get

ds® = dudii® . (2.11)

We take a unitary base ey, e, -+, e, with ¢, on a unit vector #=(®, ', ---, u™)

and put
= (dey, e,), 0= —i(de,, e, 2.12)
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where brackets mean hermitian inner product. Then is represented as
ds®=do*>+6%, with do?=w*®,
and
df =iw® N\ @*.

do? is a Kaehlerian metric of constant holomorphic curvature 1 which is
the usual elliptic metric on a complex projective space. These we will
explain next in a more general situation. Although the results are well
known, the author thinks it proper to describe briefly, because they are rarely
treated by the method of moving frames except in and some others.

3. In a complex vector space C,,; of dimension #-+1 with coordinates
2%z, ---, 2" we define an inner product as

(z,w>:%z°ﬂ7°+zawa (K real const.).
Then all the linear transformations preserving the inner product form a
group, which we call G. We take a quadric @Q: <z,z>:~-]1< in C,y;. Then

G operates transitively on it, from which we can take a set of vectors
A=e, e, ,e, such that

<A’A>:7KT’ (A,ea>:O, <ea!eb>:6ab'

A set of these vectors forms a frame on @ with a point A on @ and ¢, -, ¢,
on the tangent hyperplane at A. For a differentiable set of such frames we

put

dA =’ A+w%,, de,=wlA+wle,.
Then we have »

' =—a° o)=—Ko' o)=—of.
Now we identify points A, A’ on @ such that A’=¢""A (a real) and we get
a manifold F of real dimension 2z. We can prove that a metric

do? = w’w* o (213)
is a metric on F. By virtue of structure equations in C,;; we get
do®=w’ A ¢, where ¢ = —7) = wf —8% ®°

and our metric do? is Kaehlerian. The curvature forms of the metric are

IT¢ = drg —7m§ A\ 72 = K(w® A @°+ 6% 0 N\ @°) (2.14)
and also

do® = —Ko®* \ &* . (2.15)

These we obtain from structure equations in C,,,.
The manifold F with the metric is of constant holomorphic curva-
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ture K and the metric is called Fubini metric. We denote this metric by
Fn(K) hereafter. It is proved that curvature forms characterize our
Kaehlerian metric, in other words, under this condition the space is locally
isometric with F.

The Riemannian metric constructed on @ by

ds*=w%»*+6% where 6= —JKW

is normal contact as we see by [(2.15). The case K=1 is the one at the end
of the preceding paragraph. On the other hand the metric

(dA, dAY = 30" 05" = 05" Kb?

is invariant on @ for the transformation group G.

3. Imbedding theorem

1. As we have said, a sphere in an even-dimensional real euclidean space
is an example of a normal contact metric manifold. We will show that in
general a normal contact metric manifold of dimension 2%z4-1 can locally be
imbedded into a Kaehlerian manifold of complex dimension 7--1.

We take a normal contact metric manifold M with a metric

ds*=do*+-62, @B.D
where
do®=w"®@* (Kaehlerian), df =iw* A\ &*. 3.2)
As do? is Kaehlerian we have connection forms (w§) such that
do®* =’ N\ 0}, wf=—al. 3.3

We construct a Riemannian metric of dimension 2»-+2

d3? = dr*+sido?--£%07 B4
where s and ¢ are real functions of a real variable ». We put
7%= sw® """ =drt+ilo 3.5)
and we get
dX?=nizl. (3.6)
By [3.2) [3.3) [B5)] we get dnf=0 (modaxt,-..,a"") (j=1,---,n+1). Hence
there exist complex coordinates (v, -+, v"*) such that z7/ =0 (mod dv?, -+, dv"™*?)

and the metric is hermitian.
Next we have

7é A Fo4-a™ A\ 7V = —i(s2d0+-2tdr N 6)
by virtue of and This is closed when and only when
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t=ss (5= Z;) , 3.7

This we assume and our metric is Kaehlerian.

We can take functions s=s{), {=1#7) in such a way that s(r,)=1, s'(r,)=1
for r=7,(#+0). Then a hypersurface defined by »=7, in a Kaehlerian mani-
fold with a metric has a normal contact metric as an induced one.
Thus we get

THEOREM b. A mnormal contact metrvic manifold can locally be imbedded
into a Kaehlerian manifold as a hypersuvface in the way stated above.

The induced metric on any hypersurface » =7, in((3.4) is homothetic to a
normal contact metric (co®)(c@®)+(c*0)?, where ¢ =s(r) *(r;). Y. Tashiro [87
treated the case s=¢=7 of

Next we seek for connection forms of our Kaehlerian metric We

have by

dr® =7" \ w§ +s7s’dr \ ©*
dr™t =it df-it’ dr N\ 0 = —s™1s'z® \ 7%-+it’ dr A 0 (3.7

dr= —%——(n"“-{-ﬁ"“), it = —%(n"“—ﬁ”“), itdr\NO= ——12—7:”“ AE™EL(3.8)

Hence when we put

¢ = w§ +i(s )00y, nihy=—aitt=s"1s'n? mpii=1it'0, B9
we get
dﬂ'a’ — rcb/\rc‘g _}_nn—l-l/\”gzﬂ’ dﬁn+1 — na/\ng+1+nn+l/\n-gﬁ ,
namely
drt=niAny with nt=—7{, (i,j=1,--,n+1)

and so 7j are connection forms of the Kaehlerian metric
Next we put
2% = dof —wf Aot (a,b,c=1,-,n)

which are curvature forms of the Kaehlerian metric do®. Then by cur-
vature forms of dX? with respect to the complex frame =#?,.--,z"*! are

I} =drg —n§ A\ 7§ —m5 ™ N\ Ty
= 0% 403 d((s')20)—(s~1s")2n® A\ 7°
% = drfy —nh o AN T — il A Ty
=d(s7is'nY)—s7is'n" N (0§ +i(s")?003)—is~is't’0 A\ n®
It = drnil—n2 o A et = d(it 0) -+ (s n% N\ 7%
Taking [3.7) (3.8) into consideration we get

ITg =05 —((s718 )" \ & 4-s71s"a™ A F)5E — (578 ) A 7
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I3, = —s™s"n* A\ 7"t (3.10)
Hzi} —_ ——-S—lS//Ea/\ ﬁ“——]é—t_lt”n"“ A gL

Here we consider special cases, where d3? reduces to Fubini metric §,.,(X).

(I) s=sin7, consequently #= % sin 27
In this case we have by
11§ = 0¢ +(—cot?r - ° A Z°+7"1 A 7 1)5¢ —cot? v - 1% A 7°
fa=nt AT IR =0 A RO 2a A 7L,
If the metric do® is ¥,(1) we have by [2.14) and [3.5)

2% =0 AN @°+0§ 0° N\ @° = cosec? r(z® A\ 7°+0¢ n° A\ 7°)

and so
Iy =" N\ #7705 N\ 75
Hence the metric d2? is §,.,;(1). Thus we get
d2*=dr*+sin® r(do®+cos? 7 - 62). (3.11)

(II) s=sinh 7, consequently t:r—éfsinh 27
In this case we get
IIi = —(n" N\ #7404 m* A 7F)
when do? is §.(1). Hence d2? is Fn..(—1), and we have
d2*® = dr*+sinh® v (do®*+cosh? v - §?). 3.12)

(Il) s=v, consequently t=7
In this case we have

=0
if the metric do? is $,(1), and we have for a flat metric d3?
dX* = dr*+r¥(doe®*+6%). (3.13)

Hypersurfaces »=r, (const.) in Kaehlerian manifolds [3.I1) [3.12) [(3.13)
have metrics which are homothetic to normal contact metrics, by the remark
after namely

THEOREM 6. Fubini space with the metrvic Fpe (1) has a family of hyper-
surfaces whose induced metrics ave homothetic to novmal contact metrics.

This has been also proved by S. Tachibana.

4. Hypersurfaces in Kaehlerian manifolds

1. A hypersurface in Kaehlerian manifold has an induced almost contact
metric structure and the necessary and sufficient condition for the metric to
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be normal contact was given by Y. Tashiro [5]. Here we treat this by our
method and in addition prove that a hypersurface with a normal contact
metric structure in flat C,., is necessarily a hypersphere.

As a preparation we consider a hypersurface S in a k-1-dimensional
Riemannian manifold in which the metric is given by

ds* :gpq”pnq+(7rk+1)2 (p, q= 1: R k)

with base =, ---, z¥*! (not necessarily real) on the dual tangent space, and we
assume 71 =0 along S. We denote by (7£) forms of Riemannian connection
and by w?, p, restrictions of zn?, 7% to S respectively. Then

I=w’p, @1

gives the second fundamental form of S.
2. In this paragraph we use indices as

i,5,k=1-,n+1 a,b,c=1,-,n.
We take a manifold K of complex dimension #--1 with a Kaehlerian metric
dZ?=n7l. 4.2)
Forms 7% of the Kaehlerian connection are such that
drt=ni N7, ni+7i=0. 4.3)

We consider a real hypersurface S in K and denote its equation by H(z,2)=0
with a real function H(z, 2) in local coordinates z',---,2"". We assume that
base =#t, ---, 7% a™*! are taken in such a way that z"*"'=ild’'H (/ real), and put

l — %(nn+1+ﬁn+1)’ 0= %;(71,‘”"‘1 -—-7—L'n+1) .

Then we have
dX? =z A2+ p%. 4.9
We denote by P a matrix of a base transformation from X=(=!,:---, 7",
7l oo, 70, o 7)) to Y= (at, -, 7" 7, -, 7%, 4, 0), namely XP=Y. Then a
matrix IT = (u4) of forms of the Riemannian connection with respect to a base
X is transformed to I'=(74) with respect to a base Y in such a way that
I'=pPP,

because P is a constant matrix. Here the relation can be expressed as

i, 0 =« 0 1, 0 dr %7
d=wp=| " T O T =] O R E ATy
—tF 0 ia O —i7 —ir 0 «

0 -2 0 —ix —iz i+ —a 0

where « is a real 1-form.
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Now we restrict to S and denote the restrictions of z% 2 by % @
respectively. The restriction of d¥? to S is
ds? = @*+02 . (4.6)
Then on account of the relation p =0, (4.3) and the reality of 6 we get

da" :% 2P A o+ Boa? A G+ CEPAO+LDIG AO (A, = —Ag,
A7
40 = I8 % A cT;”+—%~(Maco“+ May A0 (Lg=—1It).

As dX? is Kaehlerian, we have d(z/ A #7)=0 and hence d(o® A ®*)=0. So we
get from (4.7)
Afe=— BBy, Ci=-—Ci, Di=D}.

When we put
0} = B@°— Bl,w'+(C¢ —12)8 (hence = —a})
Op =3 L3@ 5 Dy +5-MO (m=2n+1) 4.8)

0% = —20m = —[¢ 0" —D¢@*—M,0, O6m=0
we get by (4.7)
do®=aw’ N g +0 N0% do =’ AOP-+3° N6R. 4.9)

Forms of Riemannian connection of [(4.6) are obtained by eliminating 2z+42-th
row and 2x+2-th column from I' in (4.5) and restricting to S, and they are
nothing but

£ 0 0N Gith 2,=@p) o
2= 0 2, % o= : (4.10)

This can be verified by [(4.9) and by the property that the fundamental metric
tensor of is parallel for the connection £. The restriction of I" to S is
by (4.5)

Wt

S Qi

—tg =g

2, 0 30 —%o
0 2, 37 45
. o (4.11)
—t —lo 0 B
—i'd i'¢ —f 0
We put (@) =(@!, ---, ®") in matric form. Then we get by a restriction of

structure equation
dp = (@) A <—féﬁo>+(@) A <%6)+0 AB.
We have p=0 on S and hence by (4.10)
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0=dp = A (—ibP)+&* A GOD+0 A B
= 5 (— M0+ M,&") N O+6 A B

and so
B = —(—Mu"+M,3" k8 (k real). 4.12)
Now the fundamental second form of S is by (4.1)
_ i (-1
1= (@)(——-0)+@( 0)+0ﬁ,
where the products are those of matrices. Hence we have by (4.10)
Il = —i(0"7—&"0m)+03
1

= —i(L¢ waabﬁtéaﬁg W’ — é—pg @%@+ —2~Mww“0 - %j V1,0%0)-- k6% .

The condition for an almost contact metric to be normal contact is by

do*=0 (mod !, ,w"), di=1iw*A\d".

In our case these conditions are by (4.7)
L¢=1i8¢, D=0, M,=0 4.14)
which is equivalent to
Il = w*@%+ k6. (4.15)
Thus we get the following theorem due to Tashiro [8]:

THEOREM 7. In order that an induced almost contact metric on a hyper-
surface in Kaehlevian manifold is normal contact it is necessavy and sufficient
that the second fundamental form is of the form (4.15).

Next we restrict the curvature forms of d2? to S and denote by 69, the
one corresponding to 6%. Then by [(411)and —i‘¢ = (0}, --- ,i0%) we have on S’

64, = dos,—05 N\ wf —B N ib%, .
When we treat the case in which S is normal contact, we have by (4.12)
0%, =iw% p=Fk0
and so
02 = i(dw®—a® N\ @)+ kO N\ ©*=i0 A 0%+kO N o*.
Hence
08 = (k—1)6 A 0" .

If d2*? is flat, we have 0% =0 and hence k=1. Then by S is umbilical..
Since an umbilical hypersurface in the euclidean space is locally a hyper-
sphere, we get the following:
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THEOREM 8. A hypersurface in the even-dimensional euclidean space whose
induced metric is normal contact is necessarily a hypershere.

Nagoya University
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