
J. Math. Soc. Japan
Vol. 15, No. 3, 1963

A global representation of a fundamental set of solutions
and a Stokes phenomenon for a system of linear

ordinary differential equations

by Kenjiro OKUBO

(Received Dec. 24, 1962)

1. Introduction.

Let us consider a system of linear ordinary differential equations of the
first order

(1.1) $t\frac{d_{X}^{\rightarrow}}{dt}=(A+tB)\rightarrow x$

where $\vec{x}$ is an n-vector, $t$ is a complex variable, $A$ and $B$ are $n$ by $n$ matrices
with constant elements, such that $B$ is a diagonal matrix with mutually dif-
ferent diagonal elements, and that $A$ has no two eigenvalues which have
integral difference.

The system has only two singular points in the entire complex plane–
the one at the origin which is a regular singular point, and the other at the
infinity, which is an irregular singular point. For any given eigenvalue $\rho$ of
the matrix $A$ , there is associated a solution of the form

(1.2) $\vec{x}_{\rho}(t)=t^{\rho}\sum_{m=0}^{\infty}\vec{g}_{\rho,m}t^{m}$

where the power series converges in the whole open plane. Corresponding
to $n$ different eigenvalues of $A$ , there are $n$ such solutions which constitute
a fundamental set of solutions in the open plane. On the other hand, there
are $n$ formal solutions, corresponding to $n$ different eigenvalues $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{7\triangleright}$

of $B$ of the form

(1.3) $\xi_{p}(t)\rightarrow=e^{\lambda p^{t}}t^{a_{pp}}\sum_{-,s-0}^{\infty}h_{p}(s)t^{-s}\rightarrow$ ($p=1,2,$ $\cdots$ , n)

where $a_{pp}$ is the p-th diagonal element of the matrix $A$ . It is known that
these solutions represent actual solutions asymptotically in an arbitrarily
given sectorial neighborhood of the point at infinity, provided that the central
angle of the sector is sufficiently small. These $n$ actual solutions which are
asymptotically represented by these $n$ formal solutions, also, constitute a
fundamental set of solutions in this sectorial neighborhood.
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A natural question arises. What is the relation between those two sets
of fundamental solutions ? Naturally, there must be a linear transformation
$C$ which transforms the one set to the other set. However it was discovered
by Stokes in 1857 that this transformation $C$ changes, in general, abruptly
and discontinuously from sector to sector. Namely a formal solution expresses,
asymptotically, different solutions in different sectorial neighborhoods. This.
fact is known by the name of “ Stokes Phenomenon “, and has been an object
of extensive studies over a hundred years.

The object of this paper is to investigate this phenomenon from the
inverse direction, without making any use of the classical theory of irregular
singular points. We start from a solution of the form (1.2) and will obtain
its asymptotic expansion as a linear combination of formal solutions (1.3),

and an additional term which is estimated to be $O(t^{h})$ for some positive real
$h$ . Since the existence of such linear combinations are evident from the
classical theory, we laid our emphasis upon the method how to calculate the
coefficients of the linear combination. We will carry out the calculation
exactly for a sector $S$, which is maximally admissible in the sense that when-
ever we enlarge this sector the coefficients of the combination will, in $genera1_{\triangleright}$

necessarily change. Then we will show how to calculate these coefficients
for another sector $S^{\prime}$ from those for S.

An outline of our study can be described as follows. First we shall state
in Theorem 1 the asymptotic behavior of an entire function defined by a
Taylor series $\sum_{m=0}^{\infty}g_{m}t^{m}$ , the coefficients of which can be expanded, for large

values of $m$ , in inverse factorial series of $m$ . This theorem enables us to.
convert the differential system (1.1) into a system of linear difference equa-
tions satisfied by the coefficients $\vec{g}_{\rho,m}$ of the solution (1.2). For if we can
expand the solution of the difference system, subject to the initial condition
for $\vec{g}_{\rho,0}$ , in inverse factorial series of $m$ , then we will know the asymptotic
behavior of the solution (1.2). Section 3 is concerned with function theoretic
lemmas. Section 4 is devoted to the study of the difference system for $\vec{g}_{\rho,m}$ .
In the final section, our main results will be stated.

This conversion from a differential system to a difference system was.
originally proposed by W. B. Ford, and was used, although in somewhat
incomplete manner, to the study of a second order linear differential equation.
Turrittin in 1950 and Langer in 1955 treated the same problem for following.
equations respectively

$\frac{d^{n_{Z}}}{ds^{n}}=s^{p}z$ ( $p$ ; positive integer),

$\frac{d^{3}y}{ds^{3}}=s\frac{dy}{ds}+\lambda y$ ( $\lambda$ ; complex number).



270 K. OKUBO

These equations can easily be transformed into the systems

$ t\frac{dz\rightarrow}{dt}=\{\frac{p}{n+p}\left(\begin{array}{llll}0 & & & \\ & 1 & & 0\\ & & 2 & \\ & 0 & & n-1\end{array}\right)+t\left(\begin{array}{lllll}0 & 1 & 0 & \cdots & 0\\0 & 0 & 1 & \cdots & 0\\\cdots & \cdots & \cdots & \cdots & \cdots\\ 0 & & 0 & \cdots & 1\\1 & & 0 & \cdots & 0\end{array}\right)\}z\rightarrow$ ,

$t\frac{d\vec{y}}{dt}=\{\left(\begin{array}{lll}0 & 0 & 0\\0 & \frac{1}{3} & 0\\\frac{3}{2}\lambda & 0 & \frac{2}{3}\end{array}\right)+t\left(\begin{array}{lll}0 & 1 & 0\\0 & 0 & 1\\1 & 0 & 0\end{array}\right)\}\vec{y}$

respectively. But in these cases, they could dispense with the theory of dif-
ference equations to derive inverse factorial series expansion of the coefficients,
instead, simple iterations were sufficient for their purpose.

Although the system (1.1) treated here is of a very special form, it seems
to be quite promising that our theory might work as a clue for the study of
more general system. This possibility is suggested by the theorem of G. D.
Birkhoff, which says, ” every system of $n$ linear differential equations with
an irregular singular point of rank unity at infinity is equivalent at infinity
to a canonical system of the form (1.1) “. Though in a certain case, the
theorem is known to fail, it is very plausible that this theorem would hold
under some additional restrictions. If so, our theory could cover a fairly wide
$\iota class$ of systems with irregular singular point of rank unity.

Moreover, according to Birkhoff’s theory, a system of equations with an
irregular singular point of rank greater than unity at infinity is similarly
reduced to a system of the form

$t\frac{d\vec{x}}{dt}=(A_{0}+tA_{1}+ +t^{\sigma}A_{\sigma})_{X}^{\rightarrow}$ $(\sigma\geqq 1)$ .

A key to extend our theory to a system of this form lies in the reconstruc-
tion of the theory of the section 2, based on a single inhomogeneous equation

$t\frac{dx}{dt}=(\mu_{0}+t\mu_{1}+ +t^{\sigma}\mu_{\sigma})x-\frac{1}{\alpha}$

while the present theory for (1.1) needed only the study of the equation

$t\frac{dx}{dt}=(\mu+\lambda t)x-\frac{1}{\Gamma(-\mu)}$ .

We will use following notations in the sequel:
For a given non-zero complex number $\lambda$ , a sectorial neighborhood of the

point at infinity is defined to be
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(1.4) $S(\lambda)=\{t;|t|>K, |\arg\lambda t|\leqq-2-\pi-\epsilon\}3$ .
Throughout our discussions, the letter “ $K$ ’ stands for a positive constant
which can be arbitrarily large, and “

$\epsilon$ for a positive constant which can be
arbitrarily small.

A function $R_{h}(t, D)$ of a complex variable $t$, defined in $D$ and for a real
number $h$ is a function for which

(1.5) $R_{h}(t, D)=O(t^{h})$

holds as $t$ tends to the infinity in $D$ .
An arrow on a letter means that the function or a constant denoted by

that letter is an $n$ dimensional vector. A vector valued function is holomor-
phic in a domain, when each component of the vector is a holomorphic
function in the domain. A vector is a constant vector when each component
is a constant, and so on.

The author is indebted to Prof. T. Saito, Prof. M. Iwano and Miss. A.
Boney for helpful advice during the preparation of this paper.

2. An extension of the theory of Wright.

In this section we shall first establish the relation (2.1) for the sector $S(1)$ .
The relation was originary proved by Ford for $|\arg t|<\pi/2$ , and independently

by Wright for $|\arg t|\leqq\pi$. The extension to $|\arg t|\leqq-2^{-\pi-\epsilon}3$ is essential,

because our sector $S(1)$ is the sector of the maximal admissibility for the
asymptotic expansion (2.1) (cf. Friedrichs [1]).

LEMMA 1. For an arbitrarily given complex number $\beta$ , we have

(2.1) $\sum_{m=0}^{\infty}\frac{t^{m}}{\Gamma(m+\beta)}=t^{1-\beta}e^{t}+R_{-1}(t, S(1))$ .

PROOF. If $\beta=1$ , from:the definition of the exponential function, we have,

$\sum_{m=0}^{\infty}-\frac{t^{m}}{(m+1)}\Gamma=e^{t}$

If $\beta-1=m_{0}$ is a positive integer, we have

$\sum_{?n=0}^{\infty}\frac{t^{m}}{\Gamma(m+\beta)}=(\sum_{m=0}^{\infty}\frac{t^{m+m_{0}}}{\Gamma(m_{0}+m+1)})t^{-m_{0}}=t^{-m_{0}}(\sum_{m=0}^{\infty}\frac{t^{m}}{\Gamma(m+1)}\sum_{m=0}^{m_{0}-1}\frac{t^{m}}{\Gamma(m+1)})$

$=t^{-m_{0}}e^{t}-\sum_{m=0}^{m0-1}\frac{t^{m-m_{0}}}{\Gamma(m+1)}=t^{1-\theta}e^{t}+R_{-1}(t, S(1))$ .

If $\beta-1=-m_{0}$ is a negative integer, we have
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$\frac{1}{\Gamma(m+\beta)}=\frac{1}{\Gamma(1+m-m_{0})}\equiv 0$ $(m=0,1, \cdots, m_{0}-1)$ .
Hence, we have

$\sum_{m=0}^{\infty}\frac{t^{m}}{\Gamma(m+\beta)}=t^{m_{0}}\sum_{m=0}^{\infty}\frac{t^{m}}{\Gamma(m+1)}=t^{1-\theta}e^{t}$ .

When $\beta-1$ is not an integer, we at once see the function $x(t)$ defined by
a Taylor series

$x(t)=\sum_{m=0}^{\infty}\frac{t^{m}}{\Gamma(m+\beta)}$

satisfies the following linear inhomogeneous differential equation:

(2.2) $\frac{dx}{dt}=(1+\frac{1-\beta}{t})x+\frac{1}{\Gamma(\beta-1)\cdot t}$ .
By quadrature, the general solution with an arbitrary constant $c$ is shown to
have the form

(2.3) $x(t)=e^{t}t^{1-\theta}(c-\int_{t}^{\infty}e^{-S}s^{\theta-2}\frac{1}{\Gamma(\beta-1)}ds)$ .

Since, the identity $\int_{0^{\infty}}e^{-s}\cdot s^{\theta-2}ds=\Gamma(\beta-1)$ holds for non-integral value of $\beta-1$ ,

and by the multiple valuedness of $t^{1-\beta}$ , the only one possible choice of $c$ , for
which $x(t)$ has the desired series expansion, is $c=1$ . This can be easily seen
from

$x(t)=t^{1-\theta}e^{t}[(c-1)+\int_{0}^{t}e^{-s}\cdot s^{\beta-2}\frac{1}{\Gamma(\beta-1)}ds]$

$=(c-1)t^{1-\beta}e^{t}+e^{t}t^{1-\beta}\int_{0^{t}}(1-s+ )\frac{s^{\theta-2}}{\Gamma(\beta-1)}ds$

$=(c-1)t^{1-\theta}e^{t}+\frac{e^{t}t^{1-\beta}}{\Gamma(\beta-1)}\int_{0}^{t}(s^{\theta-2}-s^{\theta-1}+ )ds$

$=(c-1)t^{1-\beta}e^{t}+e^{t}[\frac{1t}{\Gamma(\beta)\beta\cdot\Gamma(\beta-1)}+$ $]$ .

Repeated applications of the integrations by parts to the second term on
the right hand side of (2.3) will yield

$x(t)=t^{1-\beta}e^{t}-\sum_{m=1}^{N}\frac{t^{-m}}{\Gamma(\beta-m)}+\frac{e^{t}t^{1-\beta+N}}{\Gamma(\beta-N-1)}\int_{t^{\infty}}e^{-S}s^{\beta-N-2}ds$ .

The last term on the right hand side is known to be $R_{{\rm Re}\beta-N}(t, S(1))$ , for $ N>{\rm Re}\beta$ .
This completes the proof.

The following lemma is the Lemma 5 of Wright’s paper, so the proof is
omitted.

LEMMA 2 (E. M. Wright). If $\varphi(w)$ is holomorphic and bounded in the right

half plane,
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(2.4) ${\rm Re} w\geqq h>0$ $(h>\frac{3}{2}{\rm Re}\beta)$ ,

then we have

(2.5) $\sum_{m=\sigma_{0}}^{\infty}\frac{\varphi(m)}{\Gamma(m+\beta)}t^{m}=F(t)+R_{h}(t, S(1))$ $(\sigma_{0}=[h]+1)$ ,

(2.6) $F(t)=e^{t}R_{3/2-{\rm Re}\beta-\kappa}(t, S(1))$

where rc is equal to $-\frac{1}{2}$ or $0$ according as $|{\rm Re} t|\geqq 1$ or not.

THEOREM 1. If $g(w)$ is a holomorphic function of $w$ which is bounded in
the right half plane (2.4), and has an asymptotic expansion of the form

(2.7) $g(w)\cong\sum_{s=0}^{\infty}\frac{A_{s}\lambda^{w}}{\Gamma(s+w+\beta)}$

where $A_{s}$ are constants $indep_{\vee}\rho ndent$ of $w$ . Then a function of a complex variable
$t$ defined by a Taylor series

(2.8) $f(t)=\sum_{m=\sigma_{0}}^{\infty}g(m)t^{m}$

has the form
(2.9) $f(t)=(\lambda t)^{1-\beta}e^{\lambda t}A(t)+R_{h}(t, S(\lambda))$

where $A(t)$ has the asymptotic expansion in $S(\lambda)$ of the form

(2.10) $A(t)\cong\sum_{s-0}^{\infty}A_{s}(\lambda t)^{-s}$ .

PROOF. Since the series (2.8) converges absolutely for every finite value
of $t$, we can change the order of summation, to have

$\sum_{m=\sigma_{0}}^{\infty}g(m)t^{m}=\sum_{s=0}^{N}[\sum_{m=\sigma_{0}}^{\infty}\frac{A_{s}(\lambda t)^{m}}{\Gamma(s+m+\beta)}]+\sum_{m=\sigma_{0}}^{\infty}\frac{\varphi_{N}(m)}{\Gamma(\beta+N+m+1)}(\lambda t)^{m}$

where $\varphi_{N}(w)$ is a bounded function of $w$ in the right half plane (2.4). Apply-
ing Lemma 1 to the first $N$ terms, and Lemma 2 to the last term, we have

$f(t)=\sum_{s=0}^{N}e^{it}(\lambda t)^{1-\theta-S}A_{s}+R_{\sigma_{0}-1}(t, S(\lambda))+F(\lambda t)+R_{h}(t, S(\lambda))$

where
$F(\lambda t)=e^{\lambda^{t}}R_{-N-{\rm Re}\beta}(t, S(\lambda))$ .

Thus we have

$f(t)=\sum_{m=\sigma_{0}}^{\infty}g(m)t^{m}=e^{\lambda t}(\lambda t)^{1-\beta}[\sum_{s=0}^{N}A_{s}(\lambda t)^{-s}+R_{-N-1}(t, S(\lambda))]+R_{h}(t, S(\lambda))$ .

This proves the theorem.
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3. An asymptotic formula.

The object of this section is to prove an asymptotic formula for an
integral of Fourier-Mellin type. This formula is stated as a corollary to
Lemma 4. Though we do not make any use of “ an order of a function on its
circle of convergence ‘’ originally proposed by J. Hadamard, Lemma 3 implies
some essential property of the order.

LEMMA 3. Let $P(\xi)$ be a function of a complex variabte $\xi$ given by a con-
vergent power series expansion

(3.1) $P(\xi)=\sum_{m=0}^{\infty}a_{m}(\xi-1)^{m}$

in its circle of convergence $|\xi-1|<1$ . Suppose that the origin is the only pos-
sible singularity of $P(\xi)$ on $|\xi-1|=1$ , and $P(\xi)$ satisfies the inequality

(3.2) $|\xi\cdot P(\xi)|\leqq C$ $(|\xi-1|\leqq 1)$

where $C$ is a certain positive constant. Then the series

(3.3) $\sum_{n\iota=0}^{\infty}a_{m}\xi^{w}(\xi-1)^{m}$

converges uniformly on the closed unit interval $0\leqq\xi\leqq 1$ , for ${\rm Re} w>1$ .
PROOF. For an arbitrarily small positive number $\epsilon$ , we define a function

$Q(\xi)$ by the formula

(3.4) $ Q(\xi)=\underline{(}\xi\Gamma\frac{-1)^{-\sim-1}\wedge}{(\epsilon+1)}\int_{1}^{\xi}(\xi-\zeta)^{-}\prime P(\zeta)d\zeta$ .

Clearly $Q(\xi)$ is a holomorphic function of $\xi$ in $|\xi-1|\leqq 1$ , except possibly for
the origin, and has a power series expansion

(3.5) $Q(\xi)=\sum_{m=0}^{\infty}a_{m}\frac{\Gamma(m+1)}{\Gamma(m+\epsilon+2)}(\xi-1)^{m}$ ,

for we have, from the definition of the Beta function,

$\int_{\iota^{\xi}}(\xi-\zeta)^{e}(\zeta-1)^{m}d\zeta=(\xi-1)^{e+m+1}\int_{1}^{\xi}(\frac{\zeta-1}{\xi-1})^{m}(1-\frac{\zeta-1}{\xi-1})^{e}d(\frac{\zeta-1}{\xi-1})$

$=(\xi-1)^{+m+1}\underline{\epsilon}\int_{0^{1}}s^{m}(1-s)^{\wedge}\cdot ds=\frac{\Gamma(\epsilon+1)\Gamma(m+1)}{\Gamma(\epsilon+m+2)}(\xi-1)^{+m+1}\vee$ .

We will show first that the following inequalities hold for real $\theta$ :

(3.6) $|Q(1+e^{i\theta})|\leqq K$ ,

(3.7) $|Q^{\prime}(1+e^{i\theta})|\leqq K|\sin\theta|^{---1}2+Ke$

Taking the path of integration on a straight line $\zeta=1+\sigma e^{i\theta}(0\leqq\sigma\leqq 1)$ ,

and noting the inequality
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(3.8) $|1+\sigma e^{i\theta}|\geqq 1-\sigma$ ,

we see immediately the following sequence of inequalities:

$|Q(1+e^{i\theta})|\leqq\frac{1}{\Gamma(\epsilon+1)}\int_{0^{1}}(1-\sigma)^{e}|P(1+\sigma e^{i\theta})|d\sigma$

$\leqq\frac{1}{\Gamma(\epsilon+1)}\int_{0^{1}}(1-\sigma)^{\prime,}--1|(1+\sigma e^{i\theta})P(1+\sigma e^{i\theta})|d\sigma\leqq\frac{C}{\Gamma(1+\epsilon)}\int_{0^{1}}(1-\sigma)^{e-1}d\sigma$ .
The final term is less than a positive constant for positive $\epsilon$.

To prove the second inequality (3.7), we remark

(3.9) $|\sin\theta|\leqq|1+\sigma e^{i\theta}|$

which can be seen easily if we consider the distance between the origin andi
the path of integration, $\zeta=1+\sigma e^{i\theta}(0\leqq\sigma\leqq 1)$ . Since $Q(\xi)$ is analytic on and
inside the circle $|\xi-1|=1$ , except for the origin, we have

$ Q^{\prime}(\xi)=-(\epsilon+1)\frac{(\xi-1)^{-e-2}}{\Gamma(\epsilon+1)}\int_{1}^{\xi}(\xi-\zeta)^{e}P(\zeta)d\zeta+\frac{\epsilon(\xi-1)^{-\epsilon-1}}{\Gamma(\epsilon+1)}\int_{\iota^{\xi}}(\xi-\zeta)^{e-1}P(\zeta)d\zeta$ .

The first term on the right is finite on $|\xi-1|=1$ , by (3.6). Accordingly we
have only to prove the inequality

$|\int_{1}^{\xi}(\xi-\zeta)^{\Leftrightarrow\cdot-1}P(\zeta)d\zeta|\leqq K|\sin\theta|^{\frac{\epsilon}{2}-1}$

Putting $\xi=1+e^{i\theta},$ $\zeta=1+\sigma e^{i\theta}(0\leqq\sigma\leqq 1)$ , as in the case of (3.6), we have

$|\int_{1}^{\xi}(\xi-\zeta)^{s-1}P(\zeta)d\zeta|\leqq\int_{0^{1}}(1-\sigma)^{\overline{:}-1}\cdot|P(1+\sigma e^{i\theta})|d\sigma$

$\leqq\int_{0^{1}}(1-\sigma)^{\frac{\epsilon}{2}-1}\cdot(1-\sigma)^{\frac{\text{\’{e}}}{2}}\frac{|(1+\sigma e^{i\theta}}{|1}\frac{P(}{\sigma}+e)1_{i\theta}+_{1}\sigma e_{-}^{i\theta})1_{d\sigma}$

$\leqq c\int_{0^{1}}(1-\sigma)^{\frac{e}{2}-1}|1+\sigma e^{t\theta}|^{\frac{e}{2}-1}d\sigma\leqq c|\sin\theta|^{\frac{e}{2}-1}\int_{0^{1}}(1-\sigma)^{\frac{e}{2}-1}d\sigma$

by (3.8) and (3.9). Since we can choose $\epsilon$ so small that $-2--1\epsilon$ is negative, we
have (3.7).

Using Cauchy’s formula for (3.5), and integrating by parts, we have an
identity

(3.10) $ ma_{m}\frac{\Gamma(\epsilon+1)}{\Gamma(m+\epsilon+2)}=\frac{1}{2\pi i}[-(\zeta-1)^{-m}Q(\zeta)]_{||=1}\zeta-1+\frac{1}{2\pi i}\int_{|\xi-1|=1}(\zeta-1)^{-m}Q^{\prime}(\zeta)d\zeta$ .
From this we can derive an estimate for the coefficients $a_{m}$ of $P(\xi)$ . Since,
by (3.6) and (3.7), the right hand side of this identity is bounded, we have

$\lim_{m\rightarrow\infty}ma_{m}\frac{\Gamma(m+1)}{\Gamma(m+\delta+2)}=0$ , or $\lim_{m-\infty}\frac{\Gamma(m+1)\cdot\Gamma(\delta+1)}{\Gamma(m+\delta+1)}a_{m}=0$

provided $\delta>\epsilon$. This is equivalent to say that, for any positive $\epsilon_{0}$ , we can
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find a positive integer $m_{0}$ , such that

(3.11) $|a_{m}|\leqq\frac{\Gamma(m+\delta+1)}{\Gamma(m+1)\Gamma(\delta+1)}\epsilon_{0}$ $(m\geqq m_{0})$

holds.
Now back to the series (3.3) for $\xi$ in the interval [0.1], we have

$|\sum_{\tau n=m_{0}}^{\infty}a_{m}\xi^{w}(\xi-1)^{m10}\leqq\xi^{{\rm Re} w}\sum_{m=m_{0}}^{\infty}|a_{m}|\cdot(1-\xi)^{m}\leqq\xi^{{\rm Re} w}\cdot\epsilon_{m}\sum_{=m_{0}}^{\infty}\frac{\Gamma(m+\delta+1)}{\Gamma(m+1)\Gamma(\delta+1)}(1-\xi)^{m}$

$\leqq\xi^{{\rm Re} w}\epsilon_{0}\cdot\sum_{m=0}^{\infty}\frac{\Gamma(m+\delta+1)}{\Gamma(m+1)\Gamma(\delta+1)}(1-\xi)^{m}=\xi^{{\rm Re} w}\epsilon_{0}(1-(1-\xi))^{-\delta-1}=\xi^{{\rm Re} w-\delta-1}\epsilon_{0}$ .

This proves our lemma, for $\epsilon$ , and accordingly $\delta$ can be chosen arbitrarily
small.

In the following lemma we shall mean by a contour $C$ a contour which
ls composed of the three following parts; (i) the real axis from $0$ to $ 1-\epsilon$ , (ii)

a circle of radius $\epsilon$ described in the negative direction about 1, (iii) the real
axis from $ 1-\epsilon$ to $0$ .

LEMMA 4. Let $\psi(\zeta)$ be defined by a convergent power series at $\zeta=1$ , and
is holomorphic in a domain $D_{\zeta}$ defined by

(3.12) $D_{\zeta}=\{\zeta;0\leqq|\zeta|<\infty,$ $|\arg\zeta|<\frac{\pi}{\omega}\}$

where $\omega$ is a positive integer. If $\psi(1)\neq 0$ and $\gamma$ is not an integer, the integral

(3.13) $ I(w)=\frac{1}{2\pi i}\int_{c}\zeta^{w-1}(\zeta-1)^{\gamma-1}\psi(\zeta)d\zeta$

can be expanded in a uniformly convergent factorial series of $\frac{w}{\omega}$ in the right

half plane

(3.14) ${\rm Re} w\geqq\omega+\epsilon$ .
PROOF. Make a change of variable

(3.15) $\zeta=\xi^{\frac{l}{\omega}}$

and let $D_{\xi}$ be a domain corresponding to $D_{\zeta}$ , then the circle $|\xi-1|=1$ is
contained in $D_{\xi}$ , and the only one possible singularity on this circle is the
origin $\xi=0$ . The integral (3.13) is transformed into the form

(3.16) $ I(w)=\frac{1}{2\pi i\cdot\omega}\int_{c_{\xi}}\xi^{\frac{w}{\omega}}(\xi-1)^{\mathcal{T}-1}P(\xi)d\xi$

where $C_{\xi}$ is the image of $C$ by (3.15). $P(\xi)$ has a power series expansion in
$(\xi-1)$

(3.17) $P(\xi)=\xi^{-1}(\frac{\xi^{\frac{1}{\omega}}-1}{\xi-1})^{\gamma-1}\psi(\xi^{\frac{1}{\omega}})=\sum_{s=0}^{\infty}b_{s}(\xi-1)^{s}$
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where

(3.18) $b_{0}=P(1)=\omega^{1-\gamma}\cdot\psi(1)$ .
The series has a radius of convergence 1, for there is no singularity of this
function in the circle $|\xi-1|<1$ . Moreover, as $\xi$ approaches $0$ in this circle,
we have the inequality

(3.19) $|\xi\cdot P(\xi)|\leqq K$ .

Thus from the preceding lemma, the series $\xi^{\frac{w}{\omega}}P(\xi)=\sum_{s=0}^{\infty}b_{s}\xi^{\frac{w}{\omega}}(\xi-1)^{s}$ con-
verges uniformly for $0\leqq\xi\leqq 1$ . On the other hand, the series converges uni-
formly in and on the circle $|\xi-1|\leqq r(r<1)$ , which is contained in the image
of the circle $|\zeta-1|=1$ if $r$ is sufficiently small. Hence the convergence of
$\xi^{\frac{w}{\omega}}P(\xi)$ is uniform on the contour $C_{\xi}$, and we can integrate (3.16) term by
term

$ I(w)=\frac{1}{2\pi i\cdot\omega}\int_{c_{\xi}}\xi^{\frac{w}{\omega}}(\xi-1)^{\gamma-1}\sum_{s=0}^{\infty}b_{s}(\xi-1)^{s}d\xi=\frac{1}{\omega}\sum_{s=0}^{\infty}b_{s}\cdot\frac{1}{2\pi i}\int_{c_{\xi}}\xi^{\frac{w}{\omega}}(\xi-1)^{\tau+s-1}d\xi$ .

From the defining integral for Beta functions, we derive a formula

$\frac{1}{2\pi i}\int_{c_{\xi}}\xi^{\frac{w}{\omega}}(\xi-1)^{\gamma+s-1}d\xi=\frac{e^{(\gamma+S-1)}\pi i}{2\pi i}(1-e^{-2^{\pi}(\gamma+S-1)i})\cdot\int_{0^{1}}\xi^{\frac{w}{\omega}}(1-\xi)^{\mathcal{T}+S-1}d\xi$

$=\frac{\Gamma(.\frac{w}{\omega}+1)}{\Gamma(1-\gamma-s)\Gamma(\frac{w}{\omega}+\gamma+s+1)}$ .

Using the above formula, we have the inverse factorial series expansion in
the form

(3.20)
$I(w)=\Gamma(\frac{w}{\omega}+1)\cdot\sum_{s=0}^{\infty}\frac{b_{s}}{\omega}\frac{1}{\Gamma(1-\gamma-s)}\cdot\frac{1}{\Gamma(\frac{w}{\omega}+\gamma+s+1)}$ .

Once this series converges in an open half plane ${\rm Re} w>\omega$ , then it is uniformly
convergent in the closed right half plane (3.14). This completes the proof.

COROLLARY. Let $v(\zeta)$ has a power series expansion

(3.21) $v(\zeta)=\sum_{s=0}^{\infty}d_{s}(\zeta-1)^{s}$

at $\zeta=1$ , and is holomorphic in $D_{\zeta}$ . Then the function $g(w)$ of a complex varia-
ble $w$ defined by

(3.22) $ g(w)=\frac{1}{2\pi i\cdot\Gamma(w)}\int_{c}\zeta^{w-1}\cdot(\zeta-1)^{\beta-1}v(\zeta)d\zeta$

has an asymptotic expansion
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(3.23) $g(w)\cong\sum_{s=\cup}^{\infty}\frac{d_{s}}{\Gamma(1-\beta-s)\cdot\Gamma(w+\beta+s)}$

in the right half plane (3.14), for non-integral $\beta$ .
PROOF. This is an easy consequence of the Lemma 4. For if we integrate

first $N$ terms of the integrand term by term, then the integral $g(w)$ takes
the form

(3.24) $ g(w)=\sum_{s=0}^{N-1}\frac{d_{s}}{\Gamma(1-\beta-s)\cdot\Gamma(w+\beta+s)}+\frac{1}{2\pi i\Gamma(w)}\int_{c}\zeta^{w-1}(\zeta-1)^{\beta+N-1}\psi(\zeta)d\zeta$ .

Applying the preceding lemma to the last term, we have a uniformly con-
vergent series

$\frac{1}{\omega}\frac{\Gamma(\frac{w}{\omega}+1)}{\Gamma(w)}\sum_{s=1)}^{\infty}\frac{b_{s}}{\Gamma(1-\beta-N-s)\cdot\Gamma(\frac{w}{\omega}+\beta+N+s+1)}$ .

From the uniformity of the convergence, we can interchange the summatiorh
and limiting operation, and we have, by the Stirling formula

$\lim_{w\rightarrow\infty}\Gamma(w+\beta+N)\cdot\frac{\Gamma(\frac{w}{\omega}+1)}{\Gamma(w)}\sum_{s=0}^{\infty}\frac{b_{s}}{\Gamma(1-\beta-N-s)\cdot\Gamma(\frac{w}{\omega}+\beta+N+s+1)}$

$=\omega^{\beta+N}b_{0}\frac{1}{\Gamma(1-\beta-s)}$ .

This proves the asymptoticity in (3.14).

4. A fundamental set of solutions for a difference system.

Consider a system of linear difference equations

(4.1) $\{(\rho+w)E-A\}\vec{g}(w)=B\vec{g}(w-1)$

with some preassigned initial condition

(4.2) $\vec{g}(0)=\vec{g}_{\beta,0}$ , $(\rho E-A)\vec{g}_{\rho,0}=\rightarrow 0$ ,

where $w$ is a complex variable, $g(w)$ is an n-vector, and $\rho$ is an eigenvalue of
the matrix $A$ which will be fixed throughout this section. Following assump-
tions are made on the matrices $A$ and $B$.

(B.1) $B$ is a diagonal matrix with non-zero diagonal elemenls $\lambda_{1},$ $\lambda_{2},$ $\cdots$ , $\lambda_{n}$ .
(B.2) There is a finite positive integer $\omega$ such that

(4.3) $|\arg\lambda_{j}-\arg\lambda_{k}|\geqq\frac{\pi}{\omega}$ $(j\neq k, j, k=1,2, \cdots , n)$ .
(A.1) There is no integral value of $w$ for which
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(4.4) $\det[(\rho+w)E-A]=0$ .
(A.2) Quantities $\beta_{p}$ defined by

(4.5) $\beta_{p}=\rho-a_{pp}+1$ $(p=1,2, \cdots, n)$

with the p-th diagonal element $a_{pp}$ of $A$ , are not integers.
THEOREM 2. With conditions (B.1), (B.2), (A.1) and (A.2), there is a set of

solutions $\vec{g}_{1}(w),\vec{g}_{2}(w),$ $\cdots$ , $\vec{g}_{n}(w)$ of (4.1), which is linearly independent except for
those values of $w$ which are congruent to a finite set of complex numbers, and
each $\vec{g}_{p}(w)$ admits an asymptotic expansion of the form

(4.6) $\vec{g}_{p}(w)\cong\lambda_{p}^{w}\sum_{s=0}^{\infty}\frac{1}{\Gamma(w+\beta_{p}+s)}\vec{A}_{p}(s)$

in the right half plane

(4.7) ${\rm Re} w\geqq\omega+\epsilon$

where $\vec{A}_{p}(s)$ are constant vectors independent of $w$ . Specifically,

(4.8) $\vec{A}_{p}(0)=\lambda_{p}^{\beta_{p}-1}\cdot\frac{1}{\Gamma(1-\beta_{p})}1_{p}\rightarrow$

$where\rightarrow 1_{p}$ is a vector with all its elements zero except the p-th.
Moreover, there is a uniformly convergent expression of $\vec{g}_{p}(w)$ , in the form

(4.9)
$\vec{g}_{p}(w)=\lambda_{p}^{w}\sum_{s=0}^{\infty}\frac{1}{\Gamma(\frac{w}{\omega}+\beta_{p}+s)\cdot\Gamma(1-\beta_{p}+s)}b_{p}(s)\rightarrow$

which is also valid in (4.7).
PROOF. Consider a system of linear differential equations

(4.10) $(uE-B)\frac{d\vec{v}}{du}=(\rho E-A)\dot{v}$ .

This equation has regular singular points at $u=\lambda_{p}$ ($p=1,2,$ $\cdots$ , n) with charac-
teristic exponents $0,0,$ $\cdots$ , $\beta_{p}-1,$ $\cdots$ , $0$ , and there are no other singularities in
the finite u-plane. Define a $function\rightarrow v_{\rho}(u)$ as the solution of this system which
corresponds to the exponent $\beta_{p}-1$ at $u=\lambda_{p}$ . By the assumption (A.2), $\rightarrow v_{p}(u)$

has a convergent power series expansion of the form

(4.11) $\dot{v}_{p}(u)=(u-\lambda_{p})^{\beta_{p}-1}\cdot\sum_{s=0}^{\infty}(u-\lambda_{p})^{s^{\rightarrow}}d_{p}(s)$

with constant vectors $\vec{d}_{p}(s)$ . We remark that we can always define $\rightarrow v_{p}(u)$ so
that the condition

(4.12) $d_{p}^{\rightarrow}(0)=\rightarrow 1_{p}$

is satisfied.
Then, as can easily be verified, the integral expression
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(4.13) $\vec{g}_{p}(w)=\frac{1}{2\pi i\cdot\Gamma(w)}\int_{\iota_{p}}u^{w-1}v_{p}\rightarrow(u)du$

is a solution of (4.1), provided that the increment of $u^{w-1}(uE-B)v_{p}\rightarrow(u)$ along
the path of integration is zero, namely,

(4.14) $[u^{w-1}(uE-B)_{U_{p}}^{\rightarrow}(u)]_{l_{p}}=0\rightarrow$ .

The function $(u-\lambda_{p})^{1-\beta_{P}}\vec{v}_{p}(u)\equiv\sum_{s=0}^{\infty}(u-\lambda_{p})^{s}d_{p}^{\rightarrow}(s)$ is a holomorphic function of $u$ in

a simply connected domain which does not contain any singularity $u=\lambda_{j}$

except for $u=\lambda_{p}$ . So by the hypotheses (B.1) and (B.2), such a domain can
be so chosen that it contains the angular domain

(4.15) $D_{u}=\{u;0\leqq|u|<\infty,$ $|\arg u-\arg\lambda_{p}|<\frac{\pi}{\omega}\}$ .

By the change of variable $\zeta=\frac{u}{\lambda_{p}}$ , this domain $D_{u}$ is transformed into the

domain $D_{\zeta}$ defined by (3.12). We shall define the path of integration $l_{p}$ as
the inverse image of the contour $C$ defined in Lemma 4, by this transforma-
tion. Then we see that the condition (4.14) is automatically satisfied for $w$ in
the right half plane ${\rm Re} w\geqq 1+\epsilon$ .

If we write $\vec{V}_{p}(\zeta)$ for $\rightarrow v_{p}(u)=\rightarrow v_{p}(\lambda_{p}\zeta)$ , then $\vec{V}_{p}(\zeta)$ is holomorphic in $D_{\zeta}$ , and
has a convergent power series expansion in $(\zeta-1)$ in any circle around $\zeta=1$

contained in $D_{\zeta}$ :

(4.11)i $\vec{V}_{p}(\zeta)=\lambda_{p}^{\beta_{P}-1}\cdot(\zeta-1)^{\beta_{P}-1}\cdot\sum_{s=0}^{\infty}\lambda_{p}^{s}(\zeta-1)^{s}d_{p}(s)\rightarrow$ .

Applying the corollary of Lemma 4, with $\beta$ replaced by $\beta_{p}$ , we have the
expansion

(4.16) $\vec{g}_{p}(w)\cong\lambda_{p}^{w+\beta_{p}-1}\cdot\sum_{s=0}^{\infty}\frac{\lambda}{\Gamma(1-\beta_{p}-s)}ps\overline{\Gamma(w+\beta_{p}+s)}^{\vec{d}_{p}(s)}$

which is valid in (4.7).

Convergent expression is obtained in the form (4.9) from Lemma 4 (cf.

(3.20)). So it only remains to prove the linear independence of the solutions.
By taking the first terms of the expansion (4.16) for each $p$, we have an
asymptotic expansion of Casorati determinant $G(w)=\det(\vec{g}_{1}(w),\vec{g}_{2}(w),$ $\cdots,\vec{g}_{n}(w))$

for large positive value of ${\rm Re} w$ in a form

$G(w)=\prod_{p=1}^{n}\lambda_{p^{p}}^{\beta+w-J}\cdot\frac{1}{\Gamma(1-\beta_{p})\cdot\Gamma(w+\beta_{p})}$ . $\det[1_{1},1_{2}\rightarrow\rightarrow, \cdots, \rightarrow 1_{n}]\cdot(1+o(\frac{1}{w}))$ .

Since $\lambda_{p}\neq 0$ by (B.1), and the expression $\frac{1}{\Gamma(1-\beta_{p})\cdot\Gamma(w+\beta_{p})}$ vanishes only

for those values of $w$ such that
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$w+\beta_{p}=a$ : negative integer,

$G(w)\neq 0$ if ${\rm Re} w$ is large. As $G(w)$ satisfies the difference equation

$\det[(\rho+w)E-A]G(w)=det\cdot B\cdot G(w-1)$ ,

it happens that
$G(w)\neq 0$ , and $G(w-1)=G(w-2)=$ $=0$

only when $w$ is equal to one of the values for which

$\det[(\rho+w)E-A]=0$ .
Therefore the linear independence breaks down only for $w=\alpha-1,$ $\alpha-2,$ $\cdots$ ,
where $\alpha$ denotes any one of the roots of $\det[(\rho+w)E-A]=0$ . This completes
the proof.

It is to be remarked that, according to the hypothesis (A.1), linear inde-
pendence is preserved for all integral values of $w$ .

COROLLARY. There is associated a set of $n$ constants $c_{1},$ $c_{2},$
$\cdots$ , $c_{n}$ for any

preassigned initial condition (4.2) for the system (4.1), such that the solution $g(m)\ovalbox{\tt\small REJECT}$

of the initial value problem is given by

(4.17) $\vec{g}(m)=\sum_{p=1}^{n}c_{p}\vec{g}_{p}(m)$

which is valid in (4.7).
PROOF. Since the existence of the inverse $[(\rho+w)E-A]^{-1}$ is assured for

integral value of $w$ by (A.1), we can determine $\vec{g}(m_{0})(m_{0}\geqq\omega+\epsilon)$ from $\vec{g}(O)$ by
the finite number of iterations

$\vec{g}(m)=[(\rho+m)E-A]^{-1}\cdot B\vec{g}(m-1)$ .
Then a system of $n$ algebraic equations of the first order

(4.18) $\vec{g}(m_{0})=\sum_{p=1}^{n}c_{p}\vec{g}_{p}(m_{0})$

for $n$ unknowns $c_{1},$ $c_{2},$ $\cdots$ , $c_{n}$ has a unique solution.
It is to be noted that the asymptotic expansion (4.6) is an asymptotic

expansion of $g.(w)$ in a neighborhood of the point $ w=\infty$ , and we can deter-
mine the constants $c_{1},$ $c_{2},$

$\cdots$ , $c_{n}$ explicitly with the help of the convergent
expansion (4.9). That is to say we have solved explicitly the Stokes Pheno-
menon for the difference system (4.1).

REMARK. We shall indicate some relaxation of the condition (A.2).

(i) When $\beta_{p}-1$ is zero, we take that path $l_{p}$ of the integration as the
straight line joining the origin to the point $u=\lambda_{p}$ . The condition (4.14) is
satisfied, and we can apply the Lemma 4 to have a convergent expansion, and
its corollary to have the asymptotic expansion, respectively. We have slightly
different expression
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$\vec{g}_{p}(w)\left\{\begin{array}{l}\cong\frac{1}{2\pi i}\sum_{s=0}^{\infty}(-\lambda_{p})^{s}\cdot\Gamma(s+1)^{-}\cdot\frac{1}{\Gamma(w+s+1)}\vec{d}_{p}(s),\\=\frac{1}{2\pi\omega i}\sum_{s=0}^{\infty}(-\lambda_{p})^{s}\cdot\Gamma(s+1)\cdot\frac{1}{\Gamma(\frac{w}{\omega}+s+l)}b_{p}(s)\rightarrow.\end{array}\right.$

(ii) When $\beta_{p}-1$ is a positive integer, the system (4.10) has a logarithmic
singularity at $u=\lambda_{p}$ , corresponding to the exponent $\beta_{p}-1$ . In this case the
expansion (4.11) takes the form

$\rightarrow v_{p}(u)=(u-\lambda_{p})^{\beta_{p}-1}[\log(u-\lambda_{p})]\sum_{s=0}^{\infty}d_{p}(s)(u-\lambda_{p})^{s}+(u-\lambda_{p})^{\beta_{p}-1}\rightarrow\cdot\rightarrow\star v_{p}(u)$

where $\rightarrow*v_{p}(u)$ is a holomorphic function of $u$ in $D_{u}$ . We will take the same
path $l_{p}$ as in the proof of the theorem, then since $(u-\lambda_{p})v_{p}(u)$ is holomor-
phic in $D_{u}$ for a positive integer $\beta_{p}-1$ , we have by Cauchy’s theorem

$\frac{1}{2\pi i}\int_{\iota_{p}}\theta_{p-1^{\rightarrow\star}}(u)du=0$ .

Similarly, for a holomorphic function $\varphi(u)$ in $D_{u}$

$\frac{1}{2\pi i}\int_{l_{p}}u^{w-1}[\log(u-\lambda_{p})]\cdot\varphi(u)du$

$=\frac{1}{2\pi i}\int_{0^{p}}^{\lambda}u^{w-1}\{[\log(u-\lambda_{p})]\varphi(u)-[\log(u-\lambda_{p})-2\pi i]\varphi(u)\}du$

$=\int_{0^{p}}^{\lambda}u^{w-1}\cdot\varphi(u)du$ .

Thus we have

$\vec{g}_{p}(w)=\frac{1}{2\pi i\Gamma(w)}\int_{\iota_{p}}u^{w-1}\cdot v_{p}\rightarrow(u)du=\frac{1}{\Gamma(w)}\int_{0^{p}}^{\lambda}(u-\lambda_{p})^{\beta_{p}-1}u^{w-1}\sum_{s=0}^{\infty}(u-\lambda_{p})^{s}d_{p}(s)du\rightarrow$

$\cong\lambda_{p^{w+\beta_{p}-1}}\sum_{s- 0}^{\infty}e^{\pi i(\beta_{p}-1+s)}\cdot\frac{\Gamma(\beta_{p}+s)}{\Gamma(w+\beta_{p}+s)}\lambda_{p}^{s}d_{p}(s)\rightarrow$

in (4.7). The convergent expression can be obtained similarly in the same
domain.

The case when $\beta_{p}-1$ is a negative integer is not solved yet. As it will
be clarified later, the essential hypothesis for the matrix $B$ is that it has
mutually different eigenvalues. The condition (A.1) means that $A$ has no two
eigenvalues which are congruent modulo integer. So (A.2) is the only one
assumption which is not invariant under a linear transformation.

5. Main theorems.

Now we can state the theorem about the asymptotic behavior of the
function $X_{p}(t)$ defined by (1.2) for an eigenvalue $\rho$ of the matrix $A$ .
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THEOREM 3. With conditions (B.1), (B.2), (A.1) and (A.2) imposed upon the
matrices $A$ and $B,$ $\rightarrow x_{p}(t)$ has an expression

(5.1) $\rightarrow x_{\rho}(t)=\sum_{p=1}^{n}c_{p^{\rightarrow}}\xi_{p}^{(\rho)}(t)$

where $\rightarrow\xi_{p}^{(p)}(t)$ is a vector admitting an asymptotic expansion

(5.2) $\rightarrow\xi_{p}^{(p)}(t)\cong e^{\lambda pt}t^{a_{pp}}\sum_{s=0}^{\infty}\frac{\rightarrow d_{p}(s)}{\Gamma(1-\beta_{p}-s)}t^{-s}+R_{h}(t, S(\lambda_{p}))$

as $t$ tends to infinity in an angular domain $S$ defined by

(5.3) $S=\bigcap_{p=1}^{n}S(\lambda_{p})$

and $h$ is a certain positive number satisfying the inequality

$h>\max\{\omega, \frac{1}{2}+{\rm Re} a_{11}, \frac{1}{2}+{\rm Re} a_{22}, \cdots , -2-+{\rm Re} a_{nn}\}1$ .
PROOF. Since the coefficient $g_{p,m}$ in the series (1.2) satisfies the system

(4.1) with the initial condition (4.2), applying the corollary of Theorem 2 we
have an asymptotic expansion (see (4.16) and (4.17))

(5.4) $\hat{g}_{p,m}\cong\sum_{p=1}^{n}C_{p}\sum_{s=0}^{\infty}\frac{\lambda}{\Gamma(m+}pm\beta_{p}\overline{+s)}^{\vec{A}_{p}(s)}$
$(\vec{A}_{p}(s)=\lambda_{p^{p}}^{\beta+s-1}\cdot\frac{d_{p}(s)\rightarrow}{\Gamma(1-\beta_{p}-s)})$ .

By Theorem 1, each expression in the linear combination $t^{\rho}\sum_{m-0}^{\infty}\vec{g}_{p,m}t^{m}$

$=\sum_{p=1}^{m}c_{p}(\sum_{m=0}^{\infty}\vec{g}_{p}(m)t^{m})\cdot t^{\rho}$ can be expanded asymptotically into the form

$t^{\rho}\sum_{m=0}^{\infty}\vec{g}_{p}(m)t^{m}\cong e^{\lambda_{p}t}t^{1-\beta_{p}+\rho}\cdot\lambda_{p}^{1-\beta_{p}}\cdot\sum_{s=0}^{\infty}\vec{A}_{p}(s)(\lambda_{p}t)^{-s}+R_{h}(t, S(\lambda_{p}))$

$\cong e^{\lambda_{p}t}t^{a_{pp}}\sum_{s=0}^{\infty}\frac{1}{\Gamma(1-\beta_{p}-s)}d_{p}(s)t^{-s}+R_{h}(t, S(\lambda_{p}))\rightarrow$

as $t$ tends to infinity in the angular domain $S(\lambda_{p})$ .
Since, to $n$ different eigenvalues $\lambda_{p}$ ($p=1,2,$ $\cdots$ , n) of $B$, correspond $n$

different sectors $S(\lambda_{p})(p=1,2, \cdots, n)$ , the asymptotic expansion of the function
\langle 5.1) is valid in their intersection S. This completes the proof.

It is easy to verify that the leading term of the asymptotic expansion of
$\xi_{p}^{(\rho)}(t)$ coincides with the formal solutions of (1.1) at infinity, which corresponds
to the eigenvalue $\lambda_{p}$ . More exactly, we have the following lemma.

LEMMA 5. The formal series

(5.5) $e^{\lambda p^{J}}t^{a_{pp}}\cdot\sum_{s=0}^{\infty}\frac{\vec{d}_{p}(s)}{\Gamma(1-\beta_{p}-s)}t^{-s}$

is a formal solution of the system (1.1).



284 K. OKUBO

PROOF. Substituting the formal solution (1.3) into the system (1.1), we
have a system of difference equations for $\vec{h}_{p}(s)$

(5.6) $(\lambda_{p}-B)h_{p}(s+1)\rightarrow=(A-a_{pp}+s)h_{p}(s)\rightarrow$ , $\rightarrow h_{p}(0)=1_{p}\rightarrow$ .

On the other hand, since $\vec{d}_{p}(s)$ is the coefficient of the power series expansion
(4.11), we have a system of difference equations for it, by substituting the
expansion (4.11) into (4.10),

(5.7) $(\lambda_{p}-B)(\beta_{p}+s)\vec{d}_{p}(s+1)=(a_{pp}-s-A)d_{p}(s)\rightarrow$ .

The substitution $h_{p}^{\star}\rightarrow(s)=\frac{\vec{d}_{p}(s)}{\Gamma(1-\beta_{p}-s)}$ yields a same system as (5.6) for $\overline{h}_{p}^{\star}(s)$ ,

and the initial condition $\vec{h}_{p}^{*}(0)=\frac{1}{\Gamma(1-\beta_{p})}1_{p}\rightarrow$ which is different from that

for $\rightarrow h_{p}(s)$ by only a constant multiplier. This completes the proof.
To verify the Theorem 3, and Lemma 5 for cases where some of the

quantities $\beta_{p}-1$ are zero or positive integers, we can only modify the asymp-
totic expansion of $\xi_{p}^{(\beta)}(t)\rightarrow$ . For in these cases we have, by the remark in \S 4,

$\vec{g}_{p}(w)\cong\lambda_{p}^{w+\beta_{p}-1}\cdot\sum_{s=0}^{\infty}\Gamma(\beta_{p}+s)\cdot\frac{(-\lambda_{p})^{s}}{\Gamma(w+\beta_{p}+s)}\vec{d}_{p}(s)$ .
Accordingly,

$\xi_{p}^{(p)}(t)\rightarrow\cong e^{\lambda p^{t}}t^{a_{pp}}\cdot\sum_{s=0}^{\infty}(-1)^{s}\Gamma(\beta_{p}+s)\vec{d}_{p}(s)t^{-s}+R_{h}(t, S(\lambda_{p}))$

where $\vec{d}_{p}(s)$ satisfies the same difference equations as (5.7). The substitution
$h_{p}^{9\epsilon}\rightarrow(s)=(-1)^{s}\Gamma(\beta_{p}+s)\vec{d}_{p}(s)$ yields the same system (5.6).

So, in the following discussions, we will replace the condition (A.2) by a
milder condition:

(A.2)* $\beta_{p}-1$ are not negative integers.
We shall denote by a matrix $X(t)$ the matrix whose k-th column is a

vector $x_{\rho_{k}}(t)$ of the form (1.2) corresponding to the k-th eigenvalue $\rho_{k}$ of $A$ .
Thus $X(t)$ is a fundamental set of solutions at the origin. And let $\Xi(t)$ be a
matrix which has the formal solution $\xi_{p}(t)\rightarrow$ defined by (1.3) as the p-th column
vector. There are infinitely many determinations of the arguments of the
eigenvalues $\lambda_{p}$ , which are different by integral multiples of $ 2\pi$ . Let us denote
by $S(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ the angular domain

$S=\bigcap_{p=1}^{n}S(\lambda_{p})$

which corresponds to the set of determinations

(5.8) $\arg\lambda_{p}=\theta_{p}$ $(p=1,2, \cdots , n)$ .
Then we can summarize our discussion in the form:
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THEOREM 4. With conditions (B.1), (B.2) imposed upon the matrix $B$, and
conditions (A.1), $(A.2)^{*}for$ every eigenvalue $\rho$ of $A$ imposed upon the matrix $A$ ,

there is a unique $n$ by $n$ matrix $C(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ corresponding to each sector
$S(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ such that the asymptotic expansion

(5.9) $X(t)\cong\Xi(t)C(\theta_{1}, \theta_{2}, \cdots, \theta_{n})+R_{h}(t, S(\theta_{1}, \theta_{2}, \cdots, \theta_{n}))$

holds as $t$ tends to infinity in the sector $S(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ .

The column
$\left(\begin{array}{l}c_{1}\\c_{2}\\\vdots\\ c\end{array}\right)$

of the matrix $C(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ which corresponds to the.

solution $x_{\rho}\rightarrow(t)$ , or to the eigenvalue $\rho$ of $A$ , is determined from the equations

$\vec{g}(m_{0})=\sum_{p=1}^{n}c_{p}\vec{g}_{p}(m_{0})$ .

If we move from the sector $S(\theta_{1}, \cdots , \theta_{p}, \cdots , \theta_{n})$ to the sector $S(\theta_{1}$ , $\cdot$ .. , $\theta_{p}+2q_{p}\pi_{k}$

, $\theta_{n}$)($q_{p}$ : integer), which is supposed to be non-empty, this change reflects.
in the vector $\vec{g}_{p}(m_{0})$ as follows: From the defining equation (4.13), we have

$\vec{g}(m_{0})=\frac{1}{2\pi i\cdot\Gamma(m_{0})}\int_{\ell_{p}}u^{w-1}(u-\lambda_{p})^{\beta_{p-1}}\vec{\varphi}_{p}(u)du$

where $\vec{\varphi}_{p}(u)$ is holomorphic in $D_{u}$ , which is defined by (4.15). Corresponding $\cdot$

to the change, $\lambda_{p}\rightarrow\lambda_{p}\cdot\exp(2q_{p}\pi i)$ , we change the variable of integration from
$u$ to $u\cdot\exp(2\pi q_{p}i)$ . Thus for an integer $m_{0}$ , the change which takes place is

$\vec{g}_{p}(m_{0})\rightarrow\frac{1}{2\pi i\cdot\Gamma(m_{0})}\int_{\iota_{p}}u^{m_{0}-1}\exp[2q_{p}(\beta_{p}-1)\pi i](u-\lambda_{p})^{\beta_{P^{1-\rightarrow}}}\varphi_{p}(u)du$

$=\exp[2q_{p}(\beta_{p}-1)\pi i]\vec{g}_{p}(m_{0})$ .
Accordingly, we have

$c_{p}\rightarrow c_{p}\exp[-2q_{p}(\beta_{p}-1)\pi i]=c_{p}\exp[2q_{p}(a_{pp}-\rho)\pi i]$ .
Thus we have an important connection formula:

THEOREM 5. Let $c_{pk}(\theta_{1}, \theta_{2}, \cdots, \theta_{n})$ be the $(p, k)$ element of the matrix
$C(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ , then we have the relation

(5.10) $c_{pk}(\theta_{1}+2q_{1}\pi, \theta_{2}+2q_{2}\pi, \cdots, \theta_{n}+2q_{n}\pi)$

$=c_{pk}(\theta_{1}, \theta_{2}, \cdots, \theta_{n})\cdot\exp[2q_{k}(a_{pp}-\rho_{k})\pi i]$ .

The sector $S(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ has usually its central angle at least $\pi$ , if we
restrict ourselves for the principal values for the arguments of $\lambda_{p},$ $p=1,2,$.

, $n$ . For example, if the angles $\theta_{1},$ $\theta_{2},$

$\cdots,$
$\theta_{n}$ are ordered in such an

order as
$ 0\leqq\theta_{1}<\theta_{2}<\ldots<\theta_{n}<2\pi$ ,
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we have, by assumption (B.2),

$0_{1}+2\pi-\theta_{n}\geqq\frac{\pi}{\omega}$ .

From the definition, the central angle of $S(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ is given by

$-(-32-\pi-\epsilon)-\theta_{1}\leqq\arg t\leqq-2-\pi-\epsilon-\theta_{n}3$

and hence

$(-32-\pi-\theta_{n}-\epsilon)-(--32-\pi+\epsilon-\theta_{1})=\pi+(\theta_{1}+2\pi-\theta_{n})\geqq\pi+\frac{\pi}{\omega}2\epsilon$ .

In a special case, when the inequality $\theta_{n}-\theta_{1}<\pi$ holds, we have

$(\frac{3}{2}\pi-\theta_{n}-\epsilon)-(-\frac{3}{2}\pi+\epsilon-\theta_{1})=3\pi-(\theta_{n}-\theta_{1})-2\epsilon>2\pi-2\epsilon$ .

That is to say, the sector $S(\theta_{1}, \theta_{2}, \cdots , \theta_{n})$ covers an entire angle $ 2\pi$ of the
plane.

In the classical theory of irregular singular points, the domain of asymp-
totic validity for a formal solution $\xi_{p}(t)\rightarrow$ of the form (1.3) is determined by
the quantities $\arg(\lambda_{p}-\lambda_{k}),$ $p,$ $k=1,2,$ $\cdots$ , $n$ . Because the classical theory has
its foundation on the integral equations, where the relative magnitude of the
quantities $\exp(\lambda_{p}t),$ $p=1,2,$ $\cdots,$ $n$ to each other plays a fundamental role.
Since we have an additional term $O(t^{h})$ , our asymptoticity is concerned with
the relative magnitude of $\exp(\lambda_{p}t)$ to this expression. Thus our domain of
validity is determined by the arguments of the eigenvalues of $B,$ $\arg\lambda_{p}$ ,

$p=1,2$ , , $n$ . In a way, our domain of validity is more natural than that of
the classical theory, because we deduced it from the corresponding single
inhomogenecus equation (2.2).

The conditions (B.1) and (B.2) are not essential for our discussion. For,
if $B$ has different eigenvalues, its diagonalization is always possible, and by
the transformation

$\rightarrow x(t)\rightarrow e^{\lambda}\iota x\rightarrow(t)$

we can always find a complex number $\lambda$ such that the conditions (B.1) and
(B.2) are satisfied for the new set of eigenvalues $(\lambda_{1}-\lambda, \lambda_{2}-\lambda, \cdots , \lambda_{n}-\lambda)$ . We
note that in this case the additional term has the form $O(e^{\lambda^{t}}t^{h})$ and the
sector $S$ depends on the choice of $\lambda$ .

We shall remark the relation between our theory and that of Hopf-Knob-
loch. The latter theory has its foundation on the following formula based
on the Cauchy’s theorem

$\overline{g}(m_{0})=\frac{1}{2\pi i}\oint x_{p}\rightarrow(t)t^{-\rho-m_{0}-1}dt$ .
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The evaluation of this integral is done on a sufficiently large circle so that
the integrand $\rightarrow x_{\rho}(t)t^{-p-m_{0}-1}$ can be replaced by its asymptotic expansion. If,
as is shown by Knobloch, the formal term by term integration is admitted
for each term in the linear combination,

$\vec{g}(m_{0})=- 2\frac{1}{\pi i}\oint[\sum_{p=1}^{n}c_{p}\xi_{p}(t)]t^{-\rho-m_{0}-1}dl\rightarrow=\sum_{p=1}^{n}c_{p}\cdot\frac{1}{2\pi i}\oint\xi_{p}^{\backslash }(t)t^{-p-m_{0}-1}dt$ .

The resulting series is

$\frac{1}{2\pi i}\oint e^{\lambda p^{t}}t^{\alpha_{pp}-\rho-m_{0}-1}\cdot\sum_{s=0}^{\infty}\frac{\vec{d}_{p}(s)}{\Gamma(1-\beta_{p}-s)}t^{-S}ds=\sum_{s=0}^{\infty}\lambda_{p}^{mo+\beta_{\Delta}}0+s.\frac{\vec{d}_{p}(s)}{\Gamma(1-\beta_{p}-s)\cdot\Gamma(m_{0}+s+\beta_{p})}$

The formal series on the right is exactly the asymptotic expansion of $g(m_{0})$ .
Thus our theory gives another foundation for the formal procedure of Hopf.
In the theory of Knobloch, the above formal series has a meaning only when
the function defined by

$\sum_{s=0}^{\infty}\frac{\rightarrow d_{p}(s)}{\Gamma(1-\beta_{p}-s)\cdot\Gamma(m_{0}+s+\beta_{p})}z^{m_{0}+\beta_{P}+s}$ ( $|z|$ : sufficiently small)

is continued analytically to the point $\lambda_{p}$ . However he did not give the method
how to carry out the continuation procedure explicitly. Our theory furnishes
the method of the calculation, and assures the asymptoticity with respect to
$m_{0}$ .

We have reasons to believe that the additional term $O(t^{h})$ is identically
zero. We shall give a proof of this fact for a system of two equations with
$B=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ and with any $A$ for which conditions (A.1) and (A.2) are satisfied.

Let us define sectors S-and $S_{+}$ by

$\left\{\begin{array}{l}S_{-}=\{t,\cdot|t|\geqq K_{22}^{\pi\pi}---+\epsilon\leqq argt\leqq--\},\\S_{+}=\{t.\cdot|t|\geqq K,-2\pi-\leqq argt\leqq-32-\pi-\epsilon\}.\end{array}\right.$

$Let\rightarrow\xi_{+}(t)and\rightarrow\xi_{-}(t)$ be the formal solutions corresponding to the eigenvalues 1
and $-1$ respectively, then we know in the classical theory that there are
uniquely determined solutions $x_{+}\rightarrow(t)$ and $x_{-}\rightarrow(t)$ which have the asymptotic expan-
sion

(5.11) $\left\{\begin{array}{l}\overline{x}_{-}(t)\cong\xi_{-}(t)\\P_{+}(t)\cong\rightarrow\xi_{+}(t)\end{array}\right.$ $(t\in S_{+}^{-})(t\in S).$

’

These solutions constitute a fundamental set of solutions in the combined
sector $S=S_{+}\cup S_{-}$ , and they maintain the same asymptotic expansions respect-
ively in S. $Let\rightarrow x_{p}(t)$ be a solution defined by (1.2). Then by Theorem 3 there
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is a set of constants $c_{+}$ and $c$-such that

$\rightarrow x_{p}(t)\cong c_{-}\xi_{-}(t)+c_{+}\xi_{+}(t)+R_{h}(t, S)\rightarrow\rightarrow$ $(t\in S)$ .
The solution $x\rightarrow(t)\equiv\rightarrow x_{p}(r)-(c_{-x_{-}(t)+cx_{+}(t))}^{\rightarrow}+^{\rightarrow}$ has an asymptotic expansion

$\rightarrow x(t)=R_{h}(t, S)\cong\left\{\begin{array}{l}c_{-}^{*}\xi_{-}(t) (t\in S_{-}),\\c_{+}^{*^{\rightarrow}}\xi_{+}(t) (t\in S_{+}),\end{array}\right.$

but since $\rightarrow x_{+}(t)$ and $\rightarrow x_{-}(t)$ constitute a fundamental set in $S$ , and since they
are the unique solutions for which (5.11) hold, we have

$\rightarrow x(t)=c_{-}^{*}\rightarrow x_{-}(t)=c_{+^{\rightarrow}}^{*}x_{+}(t)$ $(t\in S)$ .
This is possible if and only if $c_{-}^{*}=c_{+}^{*}=0$ by the linear independence of $x_{-}\rightarrow(t)$

and $x_{+}(t)$ .
Tokyo Metropolitan University
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