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Introduction. Let F(g) (=F,) be the finite field with ¢ elements, ¢ being
a power of a prime number p. We denote by M, (F,) the total matric ring
of degree n over F, and by GL(xn, q) the group of regular elements of M,(F)).
To any irreducible representation & of GL(%n,q) by complex matrices, we can
attach Gaussian sums W(&, A) as follows. For every positive integer d, and
for every «a < F(¢%), put

e a]=exp [_Zn p‘i Tr F(qd)lF(p)(a)] .

Then, for every A e M, (F,), we define W(¢, A) by
WE, A= EX)eltr(AX)].
xXeG(n,q)

The matrices of this kind were investigated in E. Lamprecht for the
multicative groups of more general finite rings, but the explicit values of
these matrices were not obtained.

The purpose of the present paper is to determine explicitly W(¢&, A) for
non-singular A and any irreducible representation & of GL(n,q). To explain
our result, first we note that, if A< GL(#, q),

W, A)=EAW(E, L),

where 1, denotes the identity element of M (F,). Moreover, we see easily
that W(&,1,) is a scalar matrix. Then define a complex number w(¢) by

W&, 1) = w(&)E(,) .
Fix once and for all an isomorphism 6 of the multiplicative group of F(g™)
into the multiplicative group of complex numbers. Further fix a generator
¢ of the multiplicative group of F(q™), and put, for every integer d such that
1<d<an,

n!_l

&q = &%, K= —qéd—;T .
Then ¢, is a generator of the multiplicative group of F(¢g%). For every irre-
ducible polynomial g of degree d with coefficients in F(g), we define the usual
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Gaussian sum z(g) in the following way: taking a root ¢ of g, put
Q= 3 Oafelal.
a&F(q%)

It is easily verified that z(g) does not depend on the choice of k. Now, by
J. A. Green we can obtain all the irreducible characters of GL(n,¢q). In
view of his result, we can speak of the type (--- g"® -..) of every irreducible
character &, where the g are irreducible polynomials with coefficients in F(q)
and v(g) is a certain partition of a non-negative integer (cf. Notation and
§1.1). Then our principal result is stated as follows.

THEOREM. If & is an irreducible representation of GL(n, q) of type (---g"&>-..),

then
nin—1)

w(E)=(—1yp-Irv@ig = JJ ¢(g)*e",
gEeP

where P is the set of polynomials defined in § 1.1 and the |v(g)| are non-negative
integers defined in Notation. -

In particular, the absolute value of w(&)is qLZ", if € is of type (--«(X—1))
and k=|k|.

In §1, we recall the structure of the characters of GL(»n, ¢) given by J. A.
Green, and in § 2.1, we consider the character sums attached to certain charac-
ters B’(k) and prove a property of polynomials Q¥ g) which appear in the
calculation of the characters of GL(n,qg). Using this property of Q#(), the
character sums attached to B”(%Z) can be expressed by the product of the
usual Gaussian sums attached to finite fields. Then, in § 2.2, the above theo-
rem is proved by virtue of this fact. In §2.3, we make some remarks in
the case where A is a singular matrix and explain the relation between the
results of E. Lamprecht [2] and the ones of this paper.

The author wishes to express his gratitude to Proffesor G. Shimura for
his advice and encouragement.

NOTAT™ON. The notation used in the introduction, F(q), M,(Fy), GL(n, q),
e al, ©(2), 0, ¢, eq, W(E, A), w(&) will be preserved throughout the paper. By a
partition of a positive integer #, we mean, as usual, the expression of # as a

sum of positive integers. If o is the partition of #» defined by n:dé dsg
=1
ALd=n, 0<s,), we write
o =(1%1,2%,...),
For o=(1%, 2%, ---), we put

zp=1%15,12%5,1 ... =

P

dfds, ! .

If p is a partition of a positive integer m, we put

lol=m.
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In addition to this, we consider the partition of 0, which will be denoted by
0, and put

For a polynomial F= X'+aX''4 -+, we denote by d(F') the degree of F, and
put tr (F)= —a.

1. The character of GL(n, q)

In this section, we recall the structure of the characters of GL(%, ¢) which
are given in J. A. Green [17".

1.1. Symbol (--- /¢ ...). Let P be the set of all irreducible polynomials
S with coefficients in F(g) such that

D 1=d(f)En,

2) the leading coefficient of f is 1,

3) f has not zero as its root.
Let »(f) be a function on P which assigns a partition v(f) to every fe P,
such that

2 vNdf)=mn.
fEP
For such a function v(f), we define a symbol

(...f“(f) ) ,
where f ranges over all elements of P. We call the polynomial F=]]f'
the characteristic polynomial of the symbol (--- f*¢ ...

DEFINITION?®. Let p=(1%, 2%, .--) be a partition of # and F be a polynomial
of degree » with coefficients in F'(¢) whose leading coefficient is 1 and which
has not zero as its root. By a p-decomposition r of F, we mean a decomposi-
tion into several polynomials which is given in the following two steps;

1) F=TIF, dF)=ds,
ad=1

2) Fy=11f"“ and 7(655; | B (d),

where the second product runs over all the elements f of P such that d(f)

1) For details we refer the reader to J. A. Green [1]

2) Instead of the notion “mode from p-variables X? into the symbol (--- f¥¢) ...)”,
which is used in [1, Definition 4.10, p. 423], we use “the p-decomposition of the
characteristic polynomial of the symbol (---f¥¢...)” for convenience of the calcula-
tion of Gaussian sums. It is easy to see that every mode from p-variables X? to the
symbol (.--f*¢...) is canonically in one-to-one correspondence with every p-decomposi-
tion of the characteristic polynomial of the symbol (.-- /¥ ...).
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divides d.
For given F and p, it may happen that there is no p-decomposition of F.

Further, a p-decomposition of F is not necessarily unique. For a p-decomposi-
tion » of ¥, and for an element f of P which appears in the decomposition 7

as above, we denote by o(7,f) the partition of the integer délkf(d),
s 2s, -, =) q<izm,

Let H be a polynomial of degree ds; which is decomposed into the pro-
duct H=TIr%» of the elements f of P such that d(f) divides d. Assume

that 7(%] k/d). Then we define a positive integer z,H) by
_ d_\2D 0 d(PkAd)
Zd(H)*d(EI.d( d(f)) ¢ ( d )

the product being over all elements f of P such that d(f)|d. It is easy to
see that, if F is the characteristic polynomial of a symbol (--- f*“...) and »
is a p-decomposition of F, then

¢)) v =0, )| for every element fe P,
@ 20 p=112dF0) if F=TIF.

We note that every symbol (--- ¥ ...) is canonically in one-to-one corres-
pondence with every conjugate class of GL(%n, ¢)®. Later, in §1.3, we shall
construct an irreducible representation of GL(%n, ¢) for every symbol (---f¥...).

1.2. The character B?(%). If dis a positive integer and % is an arbitrary
integer, we denote by su(%; x) the function on F(¢% defined by

sdh; x)= 5(x)”+ﬁ(x)hq—|~ +0(x)hqd—<1 )

If £ is an element of P such that d(f) divides d and if « is a root of f,
s¢#; ) is independent of the choice of «. We can therefore write sq«%; )

= Sa(lt; 1)
Let p=(1%,2%,-.-) be a partition of » and /7, Ay, -, Bysy s Bary =+, Basy 3 -+ be

i sq integers. Then we define, for each d, a function Sy(%a,, ***, a5 ; Xa1s **s Xasg)
d=1
on the product F(g%) X -+ X F(q% of s, copies of F(g% by

@ Sallay, - Pasq s Xar -+ Kasg) :1, 22 Sa(Par 5 Xa0)SadPas: 5 Xaz) ++ sd(}lds’d; Xasq)
N ”""sld

the summation being over all permutations 1/,2/, ---,s; of 1,2, -+, s,.
Let H; be a polynomial of degree ds; such that

3) Cf.[1, p. 406].
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Hy=TLf*, —d(% | EAd).

For each f appearing in the product I1f*r*?, choose

%f_(._d) variables among

the x5 (1 <i<s;) in such a way that their join for all f becomes the whole
{Xays +++ 5 %asq}. Substitute f for x4 in the expression () if the variables xy
corresponds to f by our choice. Then we get from (¥) a complex number

) ,22. s}ﬂ({"' Sallase; 1) - Sdhax s ) )

/
17,2700

Since Siflay, = s Basqs Xars *++ s Xasg) 1S Symmetric in gy, -+, Xz5 this number is '
determined only by Z%g4, -+, hgsy and Hy; it is independent of the choice of
variables among the x,;; corresponding to f. We denote by Sy(f4y, -+, %asq; Ha)
the complex number ().

Let 7,7, -+, 7; be all distinct po-decompositions of the characteristic poly-
nomial F=T[f"“" of a conjugate class ¢ =(--- f*Y ...), and write

n . ; @
ni F=I1FP, FP= 1L 1%,
a=1 d(Nid

Put
3) Bl r)= 1} Siltars s hasg; FP) .

Now, in [1], the polynomials Q}(g) in ¢ are defined®, where 2, p are any two
partitions of a non-negative integer. Using these polynomials QX(g), put

v(f acf
@ Qri; 0= 11 Lrun(@™),
rep Zotry,
(Remark that, by (1), |v(f)|=]e(r,f)]| for every f=P) Then there exists a
character B°(4)” whose value at the conjugate class ¢ =(-- f* ...} is

) BUiXe) = 2 Qs OBih; 7).

This character is fundamental for the calculation of irreducible characters of
GL(n, g) and Gaussian sums.

1.3. The irreducible character of type (.--g"®...). If a symbol e
=(---g"®...) is given, we can construct an irreducible character of GL(#n, q)
in the following way.

4) For the definition of Q3(g), we refer the reader to [1, Definition 4.1, p. 420].
The polynomials Q4(g) have some interesting properties, but, later, we shall use only
one property of Q4(g) except for some properties which are easily seen from the
definition. (Cf. footnote 10)).

5) Cf. [1, Definition 6.2, p. 433]. BP(%) is not necessarily the character of a matrix
representation, but (—1)n-2s; B?(%) is so.
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Let p=(1%,2%, -..) be a partition of #» and » be a p-decomposition of the
characteristic polynomial G of the symbol e=(--- g¥® ...); and write

r: G=11Gs Gg=TIg"®.

For the p-decomposition » of G, we determine in the following way the in-
tegers A4, which appear in the definition of B°(%).
For a moment we regard the /;; as variables. Consider a fixed d(1=d=<n).
Let €, be a fixed root of every element g of P such that d(g) divides d.
Put
g’—1

Me=Ceqams 7 *

For each g appearing in the product G,=T1[g*¢®, choose @%@ variables

among the 4, in such a way that their join for all g becomes {Zgy, ***, fgsy}-
Then, if A4 corresponds to g, we put

hdi =Ng.
Since g;‘i@——zg(dl:sd, s; integers %4 have been determined. The function
g
Silhar, s Basg; Xapr *+ » Xasg) With these values as the 7y (1 =i<s,) is, as easily
seen, determined only by G;; it is independent of the choice of a root &%, of

d(g)
g and variables %4 corresponding to g. Thus the symbol (:-- g¥®>...) and the

o-decomposition 7 of its characteristic polynomial being given, the character

B(h) with these values as the 44 can be uniquely determined by the above

process. We denote by B?(v%) the character B?(4) with these values as the 4y,
Then the irreducible character of type e=(--- g"® ...) is

©) (=Dr-2v@1 323 x(r, )B(rh),
o T

where the first summation is over all partitions of #, the second one over all
p-decompositions of the characteristic polynomial of the symbol e=(---g"®...),
and x(7,e) is the constant determined by the symbol e=(-:- g¥® ...) and the
o-decomposition 7 of its characteristic polynomial®. All irreducible characters
of GL(n,q) are obtained in this way [1, Th. 147.

2. Gaussian sum W(§ 1,)

2.1. Before calculating W(¢,1,), we consider the character sum attached
to the character B*(%),

WE)= S B(Xe[tr(X)],

6) We need not the explicit formula of y(7,e). For this formula we refer the
reader to [1, Lemma 8.2, p. 441].
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where the /%4 are dropped for simplicity. Put

=111,

¢o(q) :11:11((11:_' s if p=(1%,2%,.--),
Ta(hai) = ae;(qd) O(a)rdie [ a] .

Then we have the following
LeMMmA 1.

W(BY=q T ’9[”2((]%) T zalas) -

ProOOF. If ¢ is the conjugate class which corresponds to the symbol
(- fY9 .. then the centralizer in GL(%, g¢) of an element of ¢ is of order

alq) = II @, g * )P .

Therefore the number of elements of ¢ is

n(n-1)
q * ¢dq
1T @, (g*)’
JEP
n{n-1
since ¢ ? ¢,(¢) is the order of GL(»%,q). Then we have

WED =4 % 4T 2 e,

the summation being over all conjugate classes of GL(%n, q), B’(c) the value at
the conjugate class ¢ of the character B°(%), and F, the characteristic poly-
nomial of the conjugate class ¢. By (3), (4) and (5),

O, B(c) =X Qr;, )B*(h; 1)
Vi) @y =
=311 Mnsd(hdl, o Rasy s FP) .
i feP 2peri, d=1
0
If F is a polynomial of degree #, we consider the sum 3} g((;)), extended
F=F, ¢

over all conjugate classes whose characteristic polynomials are . Then we
have by (2) and (7)

B(¢) _ QD). (g ) Saltar, s Rasqs FP)
romr adq) Vo F @u(g®) 24FP) ’

7) Cf. footnote 3).
8) Cf. [1, p. 409 and Lemma 2.4, p. 4107. «;(¢) is a polynomial in ¢ which is de-
fined for every partition 1 of a non-negative integer.
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the summation l,?_)) being over all combinations of partitions of |v(f)| for
v(NI

every fe P.

Now we need a property of polynomials QXg) which is not given in
Green’s paper.

LEMMA 2.

8 Qg _ 1

7 alg  clg’

the summation being over all partitions A of n.
The proof will be given later.
We return to the proof of

Since
Qa) g
Nt 1 av(f)(qd(f))
— E _Qj’.(l"fl(g@
Fa=tim  a@®)
=1+ (by Lemma 2)
f o(r,
= E}EIF (by the definition of o(r, /)
we have
Bp<()) 1 Sd(hdlr e hdsd; F‘(iz))
9 = ‘
® e ale) @ 21 2l FP)
Therefore we have
1 0 :i____n‘q“ d\2q1y **" s Rasg s L'a
W W=y BRI amy el

the first summation being over all polynomials F with coefficients in F(g) of
degree » such that the leading coefficient of ' is 1 and F has not zero as its
root, the second one over all p-decompositions » of F (r: F=1IF,). On the
other hand, it is obvious that ‘

td(has) :dg;l dj(;) Salhas; e 1[76?) tr (f ):I )

the summation being over all elements f of P such that d(f) divides d. A
direct computation shows

' _w eltrE)] .
E Td(}ldi)—-% lzd(Fd) Sehass -+ hasg s Fa),

the summation being over all polynomials F, of degree ds, such that
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F;= TI f* and divides k{d). By the definition of p-decomposition,
a(Nld d(f)
we have

(11) Efd(}ldz) e % ell:tr(F)] ; 1;[ Sd(hdl, . hde : Fd)

2 (Fd)

where the p-decomposition 7 of F is F=TIFy. By and we obtain
d=1

n(n—-1)

wiBn= 42 4D 11e ny).

This completes the proof of Lemma 1.

Proof® of This proceeds by induction on #. In the proof of
the above Lemma 1, if |v»(f)| <, we may assume that (8) holds and, there-
fore, so does (9). We note that [v(f)|=x can occur if and only if F=["
where / is a linear polynomial. If we put

Yp(Q) Z 21’((5)) »

we have by (9)

" nr Sillass s hasq; Fa) S.i( Fy)
12)_% B0O=q * $0(Vh) S IO s +c,,<q>F§n, 1oL e,

On the other hand, if we put s ()= X  6(a)*?¥, we have a formula
a<F (%)
analogous to
_ Silhars =+ s hasg; Fa)
4> elhd=2 2"y
If we choose integers /44 so that 4430 mod ¢g°—1 for some 4 and i, we have
obviously

(14) E sd(hdi) =0,
Then we have by (13) and [(14)
Slhay, -+ hdsd s F d) Sd(hdh ooy Basq s Fa)
P 2dFy) = 2dFy)
> H(a)d
wGF(q)

where the last equality follows from the definition of Sy(%4, «-*, A4sy; Fg) and
z2(F;). Therefore by (12),

15) 2 B0=q 7 @Yk~ ) T @)

XEGL(n,q) EF(q)

9) The proof is similar to that of [1, Theorem 10, p. 431].
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We have imposed on the integers %4 the condition /4 =0 mod ¢g?—1 for some
d and i. We can take the %4 so that they satisfy one more condition > /4,=0
d,1t

mod g—1. Then it follows from that ( ’p(q)—c—%qj)(q——l) is always an
0

integer for each prime power g since 2( )B"(X) is an integer divisible by
XeGL(n,q

n(n-1)
the order (=q ? ¢,(q) of GL(n, ¢) on account of an elementary property of
group character. On the other hand, (Yp(q)—c—%q—)>(q——1) is a rational func-
0

tion in ¢ whose numerator is of smaller degree than the denominator:®, pro-
vided that »>1. This means that it must be identically zero, i.e.

Yol = ?i? .

This completes the proof of Lemma 2.

2.2. Proof of the Theorem. Let & be an irreducible character of type:
e=(---g"® ...) whose structure is described in §1.3. Then we shall prove
that the character sum attached to B°(vh) is

ZIv(g)—~Zs; nln-1)

(—1¢ q ¢n(q)£Ir(g)'”(g o

d_—
if p=(1m,29 ..). In fact, each kg in B(rk) is of the form ngzcgz‘ld%

1*
where €%, is a root of an element g of P such that d(g) divides d. Then by

a well known property of usual Gaussian sums attached to finite fields', and.
the definition of z(g), we have

(e glat)

= 3 6y eela]
)

a<F(q
= ¥ ON(a))gese Tr ()]
acF(g?h)
2 4 _a_
=(— 1o o(gfam,
where N(a), Tr(a) are norm and trace from F(g?%) to F(q%®) respectively..
Therefore, we have, by the above and the definition of B°(+%)

(16) W(B(rh)) = (— 1)21 V(@) —~Zsg qmn—z—l)gbn(q) 1;[ (g)V@!

Then, by (6) and we have the matrix character of W(§,1,)

10) Cf. [1, Lemma 2.4 and Lemma 4.3].
11) Cf. E. Lamprecht [2] S. 41, or, for example, A. Weil. Number of solutions of’
equations in finite fields. Bull. Amer. Math. Soc., 55 (1949).
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n

— (1=t T (S 20, € LH D (- 1y ) T (g
0,7 o\qd gcP

Since Z(——1)‘””(5’)"Esi—%—@%)l-x(r, e) is the degree of the irreducible character of
p:7 0

type e:——(---g“‘g) - )12 we have, by the definition of w(é),

n(n-1)

w(f):(_l)n—}:w(g)lq 2 Hf(g)w(g)l.
g<sP

If g=X—1, by the definition of z(g), we have z(g)=—1. Further, it is well
ag)
known that, if g+ X—1, the absolute value of z(g) is q‘ig‘. Therefore, if & is

ni-k

of type (---(X—1)*---) and |« |=~F, the absolute value of w(¢) is ¢ 2. This
completes the proof of the theorem.

2.3. In[2] E. Lamprecht introduced some notions “vollkommen”, “echt ”,
‘“eigentlich ”, “quasi-echt”, in order to explain the properties of Gaussian
sums attached to finite rings. In the case of M,(F,), it is easy to see that

(i) the additive character e,[tr(AX)] is “echt”, if and only if A is non

singular;

(ii) if A(#0) is a singular matrix, e,[tr(AX)] is “ quasi-echt”;

(iii) if & is not a trivial representation, & is “eigentlich ”.

Moreover, if & is of type (--- g¥® -..), € is “ vollkommen ” if and only if the
characteristic polynomial of the symbol (---g"® ...) is not divisible by the
polynomial X-—11®,

Let A be nonsingular. Then our theorem solves completely the case where
multiplicative representation is arbitrary (“vollkommen” or “ non-vollkom-
men ”) and additive character is “echt”®. However, if A is singular, Kor. 2
to Satz 3 of says that W(¢&, A) is a zero matrix if & is “vollkommen ”,
while, if & is not “vollkommen ”, Kor. 1 to Satz 3 of [2] says only that the
determinant of W(&, A)is zero. In this case where A is singular and & is not
“vollkommen ”, examples!® show that W(&, A) is not necessarily a zero mat-
rix, but the author has been unable to obtain the numerical value of this
matrix.

2.4. Finally, we note that the W(E,1,) has a property analogous to that of
the usual Gaussian sums attached to finite fields;

20

12) This follows from (6) and the fact that the degree of Bf(%) is (—1)n- 2% co(@)’
0

Cf. [1, p. 437].

13) Cf. [1, Theorem 13], and [2]

14) Cf. [2, Satz 4 and Satz 4 Kor. 2]. In the case where the finite ring is M, (F,),
our theorem implies Satz 4 of [2] and, if ¢ is not “ vollkommen ”, it is more precise
than Kor. 2 to Satz 4 of [2]

15) Cf. [2, S. 43-44].
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(17) W(E, ln)W(f_’ 1n> — E(_1n>qﬂ2_k ,
wheve & is the irreducible representation of GL(n,q) which is complex conjugate
to E.

This follows easily from the fact that the absolute value of w(é) is
q(nz—k)/z.

The College of General Education,
University of Tokyo
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