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Introduction. Let $F(q)(=F_{q})$ be the finite field with $q$ elements, $q$ being
a power of a prime number $p$ . We denote by $M.(F_{q})$ the total matric ring
of degree $n$ over $F_{q}$ , and by $GL(n, q)$ the group of regular elements of $j\psi_{n}(F_{q})$ .
To any irreducible representation $\xi$ of $GL(n, q)$ by complex matrices, we can
attach Gaussian sums $W(\xi, A)$ as follows. For every positive integer $d$, and
for every $\alpha\in F(q^{(\Sigma})$, put

$e_{a}[\alpha]=\exp[\frac{2\pi\sqrt{-1}}{p}$ Tr $F(qa)|F(p)(\alpha)]$ .

Then, for every $A\in M_{n}(F_{q})$ , we define $W(\xi, A)$ by

$W(\xi, A)=\sum_{X\in G(n,q)}\xi(X)e_{1}[tr(AX)]$ .

The matrices of this kind were investigated in E. Lamprecht [1] for the
multicative groups of more general finite rings, but the explicit values of
these matrices were not obtained.

The purpose of the present paper is to determine explicitly $W(\xi, A)$ for
non-singular $A$ and any irreducible representation $\xi$ of $GL(n, q)$ . To explain
our result, first we note that, if $A\in GL(n, q)$,

$W(\xi, A)=\xi(A)^{-1}W(\xi, 1_{n})$ ,

where $1_{n}$ denotes the identity element of $M_{n}(F_{q})$ . Moreover, we see easily
that $W(\xi, 1_{n})$ is a scalar matrix. Then define a complex number $w(\xi)$ by

$W(\xi, 1_{n})=w(\xi)\xi(1_{n})$ .
Fix once and for all an isomorphism $\theta$ of the multiplicative group of $F(q^{n1})$

into the multiplicative group of complex numbers. Further fix a generator
$\epsilon$ of the multiplicative group of $F(q^{n!})$ , and put, for every integer $d$ such that
$1\leqq d\leqq n$ ,

$\epsilon_{a}=\epsilon^{\kappa}$, $\kappa=\frac{q^{n!}-1}{q^{a}-1}$ .
Then $\epsilon_{a}$ is a generator of the multiplicative group of $F(q^{(}l)$ . For every irre-
ducible polynomial $g$ of degree $d$ with coefficients in $F(q)$, we define the usual
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Gaussian sum $\tau(g)$ in the following way: taking a root $\epsilon_{a}^{k}$ of $g$, put

$\tau(g)=\sum_{\alpha\in F(q}\theta(\alpha)^{k}e_{a}[\alpha]a_{)}$

It is easily verified that $\tau(g)$ does not depend on the choice of $k$ . Now, by

J. A. Green [1], we can obtain all the irreducible characters of $GL(n, q)$ . In
view of his result, we can speak of the type $(\cdots g^{\nu_{(g)}}\cdots)$ of every irreducible
character $\xi$, where the $g$ are irreducible polynomials with coefficients in $F(q)$

and $\nu(g)$ is a certain partition of a non-negative integer (cf. Notation and
\S 1.1). Then our principal result is stated as follows.

THEOREM. If $\xi$ is an irreducible representation of $GL(n, q)$ of type $(\cdots g^{\nu(g)}\cdots)$,

then

$w(\xi)=(-1)^{n-\Sigma|\nu(g)|}q\frac{n(n-1)}{2}\prod_{g\in P}\tau(g)^{|\nu(g)|}$ ,

where $P$ is the set of polynomials defined in \S 1.1 and the $|\nu(g)|$ are non-negative
integers defined in Notation.

In particular, the absolute value of $w(\xi)$ is $q^{\frac{n^{2}-k}{2}}$, if $\xi$ is of type $(\cdots(X-1)^{\kappa}\cdots)$

and $k=|\kappa|$ .
In \S 1, we recall the structure of the characters of $GL(n, q)$ given by J. A.

Green, and in \S 2.1, we consider the character sums attached to certain charac-
ters $B^{\rho}(h)$ and prove a property of polynomials $Q_{\rho}^{\lambda}(q)$ which appear in the
calculation of the characters of $GL(n, q)$ . Using this property of $Q_{\rho}^{\lambda}(q)$, the
character sums attached to $B^{\rho}(h)$ can be expressed by the product of the
usual Gaussian sums attached to finite fields. Then, in \S 2.2, the above theo-
rem is proved by virtue of this fact. In \S 2.3, we make some remarks in
the case where $A$ is a singular matrix and explain the relation between the
results of E. Lamprecht [2] and the ones of this paper.

The author wishes to express his gratitude to Proffesor G. Shimura for
his advice and encouragement.

NOTAT.ION. The notation used in the introduction, $F(q),$ $M_{n}(F_{q}),$ $GL(n, q)$ ,
$e_{a}[\alpha],$ $\tau(g),$ $\theta,$

$\epsilon,$ $\epsilon_{a},$ $W(\xi, A),$ $w(\xi)$ will be preserved throughout the paper. By a
partition of a positive integer $n$ , we mean, as usual, the expression of $n$ as a
sum of positive integers. If $\rho$ is the partition of $n$ defined by $n=\sum_{a=1}^{n}ds_{l}($

$(1\leqq d\leqq n, 0\leqq s_{a})$ , we write
$\rho=(1^{s_{1}},2^{s_{2}}, \cdots)$ .

For $\rho=(1^{s_{1}},2^{s_{2}}, \cdots)$ , we put

$z_{\rho}=1^{s_{1}}s_{1}!2^{s_{2}}s_{2}$ ! $\cdots=\prod_{l(=1}^{n}d^{s}a_{S_{a}}$ !.

If $\rho$ is a partition of a positive integer $m$ , we put

$|\rho|=m$ .
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In addition to this, we consider the partition of $0$ , which will be denoted by
$0$ , and put

$|0|=0$ ,

$z_{0}=1$ .
For a polynomial $ F=X^{t}+aX^{t-1}+\cdots$ , we denote by $d(F)$ the degree of $F$, and
put tr $(F)=-a$ .

1. The character of $GL(n,q)$

In this section, we recall the structure of the characters of $GL(n, q)$ which
are given in J. A. Green $[1]^{1)}$ .

1.1. Symbol $(\cdots f^{\nu(f)}\cdots)$ . Let $P$ be the set of all irreducible polynomials
$f$ with coefficients in $F(q)$ such that

1) $1\leqq d(f)\leqq n$ ,
2) the leading coefficient of $f$ is 1,
3) $f$ has not zero as its root.

Let $\nu(f)$ be a function on $P$ which assigns a partition $\nu(f)$ to every $f\in P$,
such that

$\sum_{f\in P}|\nu(f)|d(f)=n$ .

For such a function $\nu(f)$ , we define a symbol

$(\cdots f^{\nu_{(f)}}\cdots)$ ,

where $f$ ranges over all elements of $P$. We call the polynomial $F=\Pi J^{1}$

the characteristic polynomial of the symbol $(\cdots f^{\nu(f)}\cdots)$ .
DEFINITION2). Let $\rho=(1^{s_{1}},2^{s_{2}}, \cdots)$ be a partition of $n$ and $F$ be a polynomial

of degree $n$ with coefficients in $F(q)$ whose leading coefficient is 1 and which
has not zero as its root. By a $\rho$ -decomposition $r$ of $F$, we mean a decomposi-
tion into several polynomials which is given in the following two steps;

1) $F=\prod_{a=1}^{n}F_{\mathfrak{c}l},$ $d(F_{a})=ds_{a}$ ,

2) $F_{a}=\Pi f^{k_{f(d)}}$ and $\frac{d}{d(f)}|k_{f}(d)$ ,

where the second product runs over all the elements $f$ of $P$ such that $d(f)$

1) For details we refer the reader to J. A. Green [1].
2) Instead of the notion “ mode from $\rho$-variables $X^{\rho}$ into the symbol $(\cdots f^{\nu_{(f)}} )$ ”,

which is used in [1, Definition 4.10, p. 423], we use “the $\rho$-decomposition of the
characteristic polynomial of the symbol $(\cdots f^{\nu(f)}\cdots)$ ” for convenience of the calcula-
tion of Gaussian sums. It is easy to see that every mode from $\rho$-variables $X^{\rho}$ to the
symbol $(\cdots f^{\nu(f)}\cdots)$ is canonically in one-to-one correspondence with every $\rho$-decomposi-
tion of the characteristic polynomial of the symbol $(\cdots f^{\nu_{(f)}} )$ .



Gaussian sums attached to the general linear groups 247

divides $d$.
For given $F$ and $\rho$ , it may happen that there is no $\rho$ -decomposition of $F$.

Further, a $\rho$ -decomposition of $F$ is not necessarily unique. For a $\rho$ -decomposi-
tion $r$ of $F$, and for an element $f$ of $P$ which appears in the decomposition $\gamma$

as above, we denote by $\rho(r,f)$ the partition of the integer $\sum_{a=\iota}^{n}k_{f}(d)$ ,

$(1^{c_{1}},2^{\iota_{2}}, \cdots)$ , $t_{i}=\frac{k(id(f))}{i}$ $(1\leqq i\leqq n)$ .

Let $H$ be a polynomial of degree $ds_{d}$ which is decomposed into the pro-
duct $H=\Pi f^{k_{f}(a)}$ of the elements $f$ of $P$ such that $d(f)$ divides $d$. Assume

that $\frac{d}{d(f)}|k_{f}(d)$ . Then we define a positive integer $z_{d}(H)$ by

$z_{a}(H)=\prod_{tl(f)|l}(\frac{d}{d(f)})\frac{d(f)k_{f}(a)}{a}(\frac{d(f)k_{f}(d)}{d})!$ ,

the product being over all elements $f$ of $P$ such that $d(f)|d$. It is easy to
see that, if $F$ is the characteristic polynomial of a symbol $(\cdots f^{\nu(f)}\cdots)$ and $r$

is a $\rho$ -decomposition of $F$, then

(1) $|\nu(f)|=|\rho(r,f)|$ for every element $f\in P$ ,

(2) $\prod_{f\in P}z_{\beta(r,f)}=\prod_{a=1}^{n}z_{a}(F_{d})$ if $F=\Pi F_{a}$ .
We note that every symbol $(\cdots f^{\nu(f)}\cdots)$ is canonically in one-to-one corres-

pondence with every conjugate class of $GL(n, q)^{3)}$ . Later, in \S 1.3, we shall
construct an irreducible representation of $GL(n, q)$ for every symbol $(\cdot\cdot f^{\nu_{(f)}}\cdots)$ .

1.2. The character $B^{\rho}(h)$ . If $d$ is a positive integer and $h$ is an arbitrary
integer, we denote by $s_{a}(h;x)$ the function on $F(q^{a})$ defined by

$s_{(}l(h;x)=\theta(x)^{h}+\theta(x)^{hq}+$ $+\theta(x)^{hq^{d-1}}$

If $f$ is an element of $P$ such that $d(f)$ divides $d$ and if $\alpha$ is a root of $f$,
$s_{a}(h;\alpha)$ is independent of the choice of $\alpha$ . We can therefore write $s_{d}(h;a)$

$=s_{a}(h;f)$ .
Let $\rho=(1^{s_{1}},2^{s_{2}}, \cdots)$ be a partition of $n$ and $h_{11},$ $h_{12},$ $\cdots$ , $h_{1s_{1}}$ ; $h_{21},$ $\cdots$ , $h_{2s_{2}}$ ; $\ldots$ be

$\sum_{d=1}s_{(}nl$ integers. Then we define, for each $d$, a function $S_{a}(h_{d1}, h_{(}\iota_{S}a;x_{l1}, \cdots, x_{ls_{(}t})$

on the product $F(q^{a})\times\cdots\times F(q^{a})$ of $s_{a}$ copies of $F(q^{tl})$ by

$(\#)$
$S_{a}(h_{a1}, \cdots, h_{dsa};x_{a1}, \cdots, x_{ds_{\dot{a}}})=\sum_{1^{\prime},2^{\prime}\ldots s_{d}^{\prime}}.,s_{a}(h_{tl1^{\prime}};x_{a1})s_{a}(h_{a2^{\prime}};x_{a2})\cdots s_{tl}(h_{a};x_{(})$

the summation being over all permutations 1;, 2’, $\cdot$ .. , $s_{a}^{\prime}$ of 1, 2, $\cdot$ .. , $s_{d}$ .
Let $H_{(}t$ be a polynomial of degree $ds_{d}$ such that

3) Cf. [1, p. 406].
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$H_{a}=\Pi f_{J^{(a)}}^{k}$, $\frac{d}{d(f)}|k_{f}(d)$ .

For each $f$ appearing in the product $\Pi f^{k_{f}(a)}$, choose $\frac{d(f)k_{f}(d)}{d}$ variables among

the $x_{di}(1\leqq i\leqq s_{d})$ in such a way that their join for all $f$ becomes the whole
$\{x_{a1}, \cdots , x_{a_{S}a}\}$ . Substitute $f$ for $x_{ai}$ in the expression $(\#)$ if the variables $x_{ai}$

corresponds to $f$ by our choice. Then we get from $(\#)$ a complex number

$(\mathfrak{h})$

$1^{\prime},2^{\prime},\cdot\cdot s^{\prime}ff\Sigma.,(\cdots s_{a}(h(1*;f)\cdots s_{a}(h_{a*};f)\cdots)$

Since $S_{a}(h_{a1}, \cdots , h_{as_{d}} ; x_{(}l1’ , x_{asa})$ is symmetric in $x_{a1},$ $\cdots$ , $\chi_{(}ls_{d}$ ’ this number is
determined only by $h_{a1},$ $\cdots$ , $h_{asa}$ and $H_{a}$ ; it is independent of the choice of
variables among the $x_{ai}$ corresponding to $f$. We denote by $S_{a}(h_{d1}, \cdots , h_{dsa} ; H_{a})$

the complex number $(\#)$ .
Let $\gamma_{1}\gamma_{2},$

$\cdots$ , $\gamma_{t}$ be all distinct $\rho$ -decompositions of the characteristic poly-
nomial $F=\Pi f^{|^{\nu}(f)|}$ of a conjugate class $c=(\cdots f^{\nu(f)}\cdots)$, and write

$r_{i}$ : $F=\prod_{d=1}^{n}F_{a}^{(i)}$ , $F_{a}^{(i)}=\prod_{d(f)1d}f^{k_{f}^{(i)}(a)}$ .
Put

(3) $B_{\rho}(h;r_{i})=\prod_{(\iota}S_{a}(h_{a1}, \cdots , h_{a_{S}a} ; F_{a}^{(i)})$ .

Now, in [1], the polynomials $Q_{\rho}^{\lambda}(q)$ in $q$ are defined4), where $\lambda,$
$\rho$ are any two

partitions of a non-negative integer. Using these polynomials $Q_{\rho}^{\lambda}(q)$ , put

(4) $Q(r_{i} ; c)=\prod_{f\in P}\frac{Q_{\rho(rtf)(q^{a_{(f)}})}^{\nu(f)}}{z_{\rho(r_{i},f)}}$ .

(Remark that, by (1), $|\nu(f)|=|\rho(r,f)|$ for every $f\in P.$) Then there exists a
character $B^{0}(h)^{5)}$ whose value at the conjugate class $c=(\cdots f^{\nu_{(f)}}\cdots)$ is

(5) $B^{\rho}(h)(c)=\sum_{i\Rightarrow 1}^{f}Q(r_{i};c)B_{\rho}(h;r_{i})$ .

This character is fundamental for the calculation of irreducible characters of
$GL(n, q)$ and Gaussian sums.

1.3. The irreducible character of type $(\cdots g^{\nu_{(g)}}\cdots)$ . If a symbol $e$

$=(\cdots g^{\mathcal{V}(g)}\cdots)$ is given, we can construct an irreducible character of $GL(n, q)$

in the following way.

4) For the definition of $Q_{\rho}^{\lambda}(q)$ , we refer the reader to [1, Definition 4.1, p. 420].

The polynomials $Q_{\rho}^{\lambda}(q)$ have some interesting properties, but, later, we shall use only
one property of $Q_{\rho}^{\lambda}(q)$ except for some properties which are easily seen from the
definition. (Cf. footnote 10)).

5) Cf. [1, Definition 6.2, p. 433]. $B^{\rho}(h)$ is not necessarily the character of a matrix
representation, but $(-1)^{n-\Sigma s_{i}}B^{\rho}(h)$ is so.
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Let $\rho=(1^{s_{1}},2^{s_{2}}, \cdots)$ be a partition of $n$ and $r$ be a $\rho$ -decomposition of the
characteristic polynomial $G$ of the symbol $e=(\cdots g^{\nu(g)}\cdots)$ ; and write

$r$ : $G=\Pi G_{a}$, $G_{a}=\Pi g^{k_{g}(a)}$ .
For the $\rho$-decomposition $r$ of $G$ , we determine in the following way the in-
tegers $h_{a_{i}}$ , which appear in the definition of $B^{\rho}(h)$ .

For a moment we regard the $h_{di}$ as variables. Consider a fixed $d(1\leqq d\leqq n)$ .
Let $\epsilon_{a(g)}^{cg}$ be a fixed root of every element $g$ of $P$ such that $d(g)$ divides $d$.
Put

$n_{g}=c_{g}\frac{q^{a}-1}{q^{d(g)}-1}$ :

For each $g$ appearing in the product $G_{a}=\Pi g^{k_{g}(a)}$ , choose $\underline{d(g)k_{d^{\underline{g}}}}(d)$ variables

among the $h_{ai}$ in such a way that their join for all $g$ becomes $\{h_{a1}, \cdots , h_{as_{(}a}\}$ .
Then, if $h_{a\iota}$ corresponds to $g$, we put

$h_{di}=n_{g}$ .
Since $\sum_{g\in P}\frac{d(g)k_{g}(d)}{d}=s_{cl},$ $s_{a}$ integers $h_{di}$ have been determined. The function
$S_{d}(h_{a1}, \cdots , h_{as_{tl}} ; x_{a1}, \cdots , x_{as_{(j}})$ with these values as the $h_{tli}(1\leqq i\leqq s_{d})$ is, as easily
seen, determined only by $G_{d}$ ; it is independent of the choice of a root $\epsilon^{cg}$ of

$a(g)$

$g$ and variables $h_{li}$
( corresponding to $g$. Thus the symbol $(\cdots g^{\nu_{(g)}}\cdots)$ and the

$\rho$-decomposition $\gamma$ of its characteristic polynomial being given, the character
$B^{\rho}(h)$ with these values as the $h_{di}$ can be uniquely determined by the above
process. We denote by $B^{\rho}(rh)$ the character $B^{\rho}(h)$ with these values as the $h_{at}$ .

Then the irreducible character of type $e=(\cdots g^{\nu(g)}\cdots)$ is

(6) $(-1)^{n-\Sigma|\nu(g)|}\sum_{\rho}\sum_{f}\chi(r, e)B^{\rho}(rh)$ ,

where the first summation is over all partitions of $n$ , the second one over all
$\rho$-decompositions of the characteristic polynomial of the symbol $e=(\cdots g^{\nu(g)}\cdots)$,

and $\chi(r, e)$ is the constant determined by the symbol $e=(\cdots g^{\nu(g)}\cdots)$ and the
$\rho$-decomposition $\gamma$ of its characteristic polynomial6). All irreducible characters
of $GL(n, q)$ are obtained in this way [1, Th. 14].

2. Gaussian sum $W(\xi,1_{n})$

2.1. Before calculating $W(\xi, 1_{n})$ , we consider the character sum attached
to the character $B^{\rho}(h)$ ,

$W(B^{\rho})=\sum_{X\in GL(n,q)}B^{\rho}(X)e_{1}[tr(X)]$ ,

6) We need not the explicit formula of $\chi(r, e)$ . For this formula we refer the
reader to [1, Lemma 8.2, p. 441].
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where the $h_{a\iota}$ are dropped for simplicity. Put

$\psi_{n}(q)=_{i}I_{=}^{n}I_{1}(q^{i}-1)$ ,

$c_{\rho}(q)=\prod_{i=1}^{n}(q^{i}-1)^{s_{i}}$ if $\rho=(1^{s_{1}},2^{s_{2}}, \cdots)$ ,

$\tau_{a}(h_{ai})=\sum_{aa\in F(q)}\theta(\alpha)^{h}aie_{a}[\alpha]$ .

Then we have the following
LEMMA 1.

$W(B^{\rho})=q^{\frac{n(n-1)}{2}}\frac{\psi_{n}(q)}{c_{\rho}(q)}\prod_{a,i}\tau_{a}(h_{di})$ .
PROOF. If $c$ is the conjugate class which corresponds to the symbol

$(\cdots f^{\nu(f)}\cdots)^{7)}$ , then the centralizer in $GL(n, q)$ of an element of $c$ is of order

$a_{c}(q)=\prod_{f\in P}a_{\nu(f)}(q^{d(f)})^{8)}$ .

Therefore the number of elements of $c$ is

$\frac{q^{\frac{n(n-1)}{2}}\psi_{n}(q)}{\prod_{\mu^{-P}}a_{\nu(f)}(q^{a(f})}$

since $q\frac{n(n-1)}{2}\psi_{n}(q)$ is the order of $GL(n, q)$ . Then we have

$W(B^{\rho})=q^{\frac{n(n-1)}{2}}\psi_{n}(q)\sum_{c}\frac{B^{\rho}(c)}{a_{c}(q)}e_{1}[tr(F_{c})]$ ,

the summation being over all conjugate classes of $GL(n, q),$ $B^{\rho}(c)$ the value at
the conjugate class $c$ of the character $B^{\rho}(h)$ , and $F_{c}$ the characteristic poly-
nomial of the conjugate class $c$ . By (3), (4) and (5),

(7) $B^{\rho}(c)=\sum_{i}Q(r_{i}, c)B^{\rho}(h;r_{i})$

$=\sum_{if}\prod_{\in P}\frac{Q_{\rho(r}^{\nu(f_{i^{)}J)}}(q^{a(f)})}{z_{\rho(r\iota,f)}}\coprod_{d=1}^{n}S_{a}(h_{a1}, h_{dsa};F_{a}^{(i)})$ .

If $F$ is a polynomial of degree $n$ , we consider the sum $\sum_{F=F_{C}}\frac{B^{\rho}(c)}{a_{c}(q)}$, extended

over all conjugate classes whose characteristic polynomials are $F$. Then we
have by (2) and (7)

$\sum_{F_{C}=F}\frac{B^{\rho}(c)}{a_{c}(q)}=\sum_{|\nu(\gamma)|}\sum_{r_{i}}\prod_{f}\frac{Q_{\beta(r_{i}}^{\nu(f)}f)(q^{d(f)})}{a_{\nu(f)}(q^{a(f)})}\prod_{d}\frac{S_{a}(h_{a1},\cdots,h_{dsa};F_{a}^{(i)})}{z_{a}(F_{a}^{(i)})}$ ,

7) Cf. footnote 3).
8) Cf. [1, p. 409 and Lemma 2.4, p. 410]. $a_{\lambda}(q)$ is a polynomial in $q$ which is de-

fined for every partition $\lambda$ of a non-negative integer.
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the summation $\sum_{I\nu(f)1}$
being over all combinations of partitions of $|\nu(f)|$ for

every $f\in P$.
Now we need a property of polynomials $Q_{\rho}^{\lambda}(q)$ which is not given in

Green’s paper.
LEMMA 2.

\langle 8) $\sum_{\lambda}\frac{Q_{\rho}^{\lambda}(q)}{a_{\lambda}(q)}=\frac{1}{c_{\rho}(q)}$ ,

the summation being over all partitions $\lambda$ of $n$ .
The proof will be given later.
We return to the proof of Lemma 1.
Since

$\sum_{|\nu(f)|}\prod_{f}\frac{Q_{\rho(r,f)}^{\nu(f)}(q^{a(f)})}{a_{\nu(f)}(q^{a(f)})}$

$=\prod_{r\lambda=}\sum_{|\nu(f)|}\frac{Q_{\rho(r,f)}^{\lambda}(q^{d(f)})}{a_{\lambda}(q^{a(f)})}$

$=\prod_{r}\frac{1}{C\rho(r.f)}$ (by Lemma 2)

$=\overline{c_{\rho}}(\overline{q)}1$ (by the definition of $\rho(r,f)$)

we have

\langle 9) $\sum_{Fc^{=F}}\frac{B^{\rho}(c)}{a_{c}(q)}=\frac{1}{c_{\rho}(q)}\sum_{i7}\prod_{a}\frac{S_{a}(h\cdots,h;F_{a}^{(t)})}{z_{a}(F_{a}^{(i)})}$ .
Therefore we have

(10) $W(B^{\rho})=\frac{q^{\frac{n(n-1)}{2}}\psi_{n}(q)}{c_{\rho}(q)}\sum_{F}\sum_{\gamma}\prod_{d}\frac{S_{a}(h_{a1},\cdots,h_{a_{S}a};F_{a})}{z_{a}(F_{a})}e_{1}[tr(F)]$ ,

the first summation being over all polynomials $F$ with coefficients in $F(q)$ of
degree $n$ such that the leading coefficient of $F$ is 1 and $F$ has not zero as its
root, the second one over all $\rho$ -decompositions $r$ of $F(r:F=\prod_{a}F_{a})$ . On the
other hand, it is obvious that

$\tau_{a}(h_{di})=\sum_{d(f)|a}\frac{d(f)}{d}s_{a}(h_{ai} ; f)e_{1}[\frac{d}{d(f)}$ tr $(f)]$ ,

the summation being over all elements $f$ of $P$ such that $d(f)$ divides $d$. A
direct computation shows

$\prod_{i=1}^{sa}\tau_{a}(h_{di})=\sum_{aF}\frac{e_{1}[tr(F_{a})]}{z_{a}(F_{a})}S_{d}(h_{d1}, \cdots, h_{as_{(}t} ; F_{a})$ ,

the summation being over all polynomials $F_{1}$, of degree $ds_{a}$ such that
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$F_{a}=\prod_{a(f)|a}f^{k_{f}(d)}$ and $\frac{d}{d(f)}$ divides $k_{f}(d)$ . By the definition of $\rho$ -decomposition,

we have

(11) $\prod_{d,i}\tau_{a}(h(li)=\sum_{F}e_{1}[tr(F)]\sum_{7}\prod_{a}\frac{S_{a}(h_{t1}(’\cdots,h_{asa};F_{d})}{z_{a}(F_{a})}$ ,

where the $\rho$ -decomposition $r$ of $F$ is $F=\prod_{a=1}^{n}F_{(}t$ . By (10) and (11), we obtain

$W(B^{\rho})=\frac{q^{\frac{n(n-1)}{2}}\psi_{n}(q)}{c_{\rho}(q)}\prod_{a,\iota}\tau_{a}(h_{a?})$ .

This completes the proof of Lemma 1.
Proof9) of Lemma 2. This proceeds by induction on $n$ . In the proof of

the above Lemma 1, if $|\nu(f)|<n$ , we may assume that (8) holds and, there-
fore, so does (9). We note that $|\nu(f)|=n$ can occur if and only if $F=l^{n}$

where $l$ is a linear polynomial. If we put

$Y_{\rho}(q)=\sum_{\lambda}\frac{Q_{\rho}^{\lambda}(q)}{a_{\lambda}(q)}$ ,

we have by (9)

$(12_{X\in GL(n,q)})\Sigma B^{\rho}(X)=q^{\frac{n(n-1)}{2}}\psi_{n}(q)(Y_{\rho}(q_{F})\sum_{=\iota n}\sum_{r}\prod_{a}\frac{S_{a}(h_{d1},\cdots,h_{dsa^{j}}F_{d})}{z_{a}(F_{a})}+\frac{1}{c_{\rho}(q)}\sum_{F\neq\iota n}\sum_{r}\prod_{a}\frac{S_{a}(\cdots;F_{a})}{z_{a}(F_{a})})$ .

On the other hand, if we put $s_{a}(h_{di})=\sum_{\alpha\in F(q^{a_{)}}}\theta(\alpha)^{h_{di}}$ , we have a formula
analogous to (11),

(13) $\prod_{d.i}s_{a}(h_{ai})=\sum_{F}\sum_{7}$ II $\frac{S_{a}(h_{d1},\cdots,h_{dsa};F_{a})}{z_{a}(F_{a})}$

If we choose integers $h_{(1i}$ so that $h_{di}\not\equiv 0mod q^{a}-1$ for some $d$ and $i$, we have
obviously

(14) $\prod_{d,i}s_{a}(h_{di})=0$ .
Then we have by (13) and (14)

$\sum_{F\neq\iota^{n}}\sum_{r}\prod_{a}\frac{S_{a}(h_{d1},\cdots,h_{a_{S}a};F_{a})}{z_{a}(F_{a})}=-\sum_{F=\downarrow n}\sum_{\gamma}\prod_{a}\frac{S_{a}(h_{a1},\cdots,h_{as_{d}};F_{a})}{z_{a}(F_{a})}$

$=\sum_{a\in F(q)}\theta(\alpha)^{\sum_{d,i}h_{di}}$

where the last equality follows from the definition of $S_{a}(h_{d1}, \cdots , h_{as_{d}} ; F_{a})$ and
$z_{a}(F_{a})$ . Therefore by (12),

(15) $\sum_{X\in GL(n,q)}B^{\rho}(X)=q^{\frac{n(n-1)}{2}}\psi_{n}(q)(Y_{p}(q)-\frac{1}{c_{\rho}(q)})_{a\in F(q)}(\Sigma\theta(\alpha)a^{\Sigma}i^{hai})$ .

9) The proof is similar to that of [1, Theorem 10, p. 431].
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We have imposed on the integers $h_{!1i}$ the condition $h_{ai}\not\equiv 0mod q^{a}-1$ for some
$d$ and $i$ . We can take the $h_{a\iota}$ so that they satisfy one more condition $\sum_{a,i}h_{ai}\equiv 0$

$mod q-1$ . Then it follows from (15) that $(Y_{\rho}(q)-\frac{1}{c_{p}(q)})(q-1)$ is always an

integer for each prime power $q$ since $\sum_{X\in GL(n,q)}B^{\rho}(X)$ is an integer divisible by

the order $(=q\psi_{n}(q))\frac{n(n-1)}{2}$ of $GL(n, q)$ on account of an elementary property of’

group character. On the other hand, $(Y_{\rho}(q)-\frac{1}{c_{\rho}(q)})(q-1)$ is a rational func-

tion in $q$ whose numerator is of smaller degree than the $denominator1$ ), pro-
vided that $n>1$ . This means that it must be identically zero, $i$ . $e$ .

$Y_{\rho}(q)=\frac{1}{c_{\rho}(q)}$ .
This completes the proof of Lemma 2.

2.2. Proof of the Theorem. Let $\xi$ be an irreducible character of type $\cdot$

$e.=(\cdots g^{\nu(g)}\cdots)$ whose structure is described in \S 1.3. Then we shall prove
that the character sum attached to $B^{\rho}(rh)$ is

$(-1)^{g}q^{\frac{n(n-1)}{2}}\psi_{n}(q)\prod_{g}\tau(g)^{|\nu(g)|}\Sigma|\nu(g)I-\Sigma s_{i}$

if $\rho=$ $(1^{s_{1}},2^{s_{2}}$ , $\cdot$ .. $)$ . In fact, each $h_{di}$ in $B^{\rho}(rh)$ is of the form $n_{g}=c_{g\overline{q}^{q_{a_{k}}}}\frac{a-1}{(g)-1}$

where $\epsilon_{a(g)}^{cg}$ is a root of an element $g$ of $P$ such that $d(g)$ divides $d$. Then by
a well known property of usual Gaussian sums attached to finite fields11), and
the definition of $\tau(g)$ , we have

$\tau_{a}(c_{ga\overline{q}^{q}}\frac{a-1}{(g)-1})$

$=\sum_{\alpha\in F(q^{a_{)}}}\theta(\alpha)^{n_{g}}e_{a}[\alpha]$

$=\sum_{\alpha\in F(Q^{a_{)}}}\theta(N(\alpha))^{c_{g}}e_{a(g)}[Tr(\alpha)]$

$=(-1)^{\frac{a}{d(g)}-1}\tau(g)^{\frac{e}{dag)}}11)$

where $N(\alpha)$ , Tr (a) are norm and trace from $F(q^{a})$ to $F(q^{a_{(g)}})$ respectively..
Therefore, we have, by the above Lemma 1 and the definition of $B^{\rho}(rh)$

(16) $W(B^{\rho}(rh))=(-1)^{\Sigma|\nu(g)|-\Sigma s_{i}}gq^{\frac{n(n-1)}{2}}\psi_{n}(q)\prod_{g}\tau(g)^{|\nu(g)|}$

Then, by (6) and (16), we have the matrix character of $W(\xi, 1_{n})$

10) Cf. [1, Lemma 2.4 and Lemma 4.3].
11) Cf. E. Lamprecht [2] S. 41, or, for example, A. Weil. Number of solutions of $\cdot$

equations in finite fields. Bull. Amer. Math. Soc., 55 (1949).
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$=(-1)^{n-\Sigma\dagger\nu(g)1}q^{\frac{n(n-1)}{2}}(\sum_{\rho,r}\chi(r, e)\frac{\psi_{n}(q)}{c_{\rho}(q)}(-1)^{\Sigma|\nu(g)|-\Sigma s_{i}})\prod_{g\in P}\tau(g)^{|\nu(g)|}$ .

Since $\sum_{\rho,r}(-1)^{\Sigma|-\Sigma}|\nu(g)s_{i}\frac{\psi_{n}(q)}{c_{\rho}(q)}\chi(r, e)$ is the degree of the irreducible character of

type $e=(\cdots g^{\nu(g)}\cdots)^{12)}$ , we have, by the definition of $w(\xi)$ ,

$w(\xi)=(-1)^{n-\Sigma|\nu(g)|}q^{\underline{n(}n_{2}\underline{-1)}}\prod_{g\in P}\tau(g)^{|^{\nu}(g)|}$ .

If $g=X-1$ , by the definition of $\tau(g)$ , we have $\tau(g)=-1$ . Further, it is well

known that, if $g\neq X-1$ , the absolute value of $\tau(g)$ is $q^{\frac{a(g)}{2}}$ . Therefore, if $\xi$ is

of type $(\cdots(X-1)^{\kappa}\cdots)$ and $|\kappa|=k$ , the absolute value of $w(\xi)$ is $q^{\frac{n-k}{2}}$. This
completes the proof of the theorem.

2.3. In [2], E. Lamprecht introduced some notions ” vollkommen”, ” echt “,
“ eigentlich “, ” quasi-echt ”, in order to explain the properties of Gaussian
sums attached to finite rings. In the case of $M_{n}(F_{q})$ , it is easy to see that

(i) the additive character $e_{1}[tr(AX)]$ is “echt ”, if and only if $A$ is non
singular;

(ii) if $A(\neq 0)$ is a singular matrix, $e_{1}[tr(AX)]$ is “ quasi-echt “ ;
(iii) if $\xi$ is not a trivial representation, $\xi$ is “ eigentlich ”.

Moreover, if $\xi$ is of type $(\cdots g^{\nu(g)}\cdots),$ $\xi$ is “vollkommen “ if and only if the
characteristic polynomial of the symbol $(\cdots g^{\nu_{(g)}}\cdots)$ is not divisible by the
polynomial $X-l^{13)}$ .

Let $A$ be nonsingular. Then our theorem solves completely the case where
multiplicative representation is arbitrary (” vollkommen ” or ” non-vollkom-
men ”) and additive character is “ echt 14) However, if $A$ is singular, Kor. 2
to Satz 3 of [2] says that $W(\xi, A)$ is a zero matrix if $\xi$ is ”vollkommen ”,
while, if $\xi$ is not “ vollkommen ”, Kor. 1 to Satz 3 of [2] says only that the
determinant of $W(\xi, A)$ is zero. In this case where $A$ is singular and $\xi$ is not
“ vollkommen “, examplesi5) show that $W(\xi, A)$ is not necessarily a zero mat-
rix, but the author has been unable to obtain the numerical value of this
matrix.

2.4. Finally, we note that the $W(\xi, 1_{n})$ has a property analogous to that of
the usual Gaussian sums attached to finite fields;

12) This follows from (6) and the fact that the degree of $B^{p}(h)$ is $(-1)^{n-\Sigma s_{i}\frac{\psi_{n}(q)}{c_{\rho}(q)}}$ .
Cf. [1, p. 437].

13) Cf. [1, Theorem 13], and [2].
14) Cf. [2, Satz 4 and Satz 4 Kor. 2]. In the case where the finite ring is $M_{n}(F_{q})$ ,

our theorem implies Satz 4 of [2], and, if $\xi$ is not “ vollkommen “, it is more precise
than Kor. 2 to Satz 4 of [2].

15) Cf. [2, S. 43-44].
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(17) $W(\xi, 1_{n})W(\overline{\xi}, 1_{n})=\xi(-1_{n})q^{n^{2}-k}$ ,

where $\overline{\xi}$ is the irreducible representation of $GL(n, q)$ which is complex conjugate
to $\xi$ .

This follows easily from Ehe fact that the absolute value of $w(\xi)$ is
$q^{(n^{2}-k)/2}$ .

The College of General Education,
University of Tokyo
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