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Homeomorphy classification of total spaces
of sphere bundles over spheres.
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Introduction.

The homeomorphy problem, $i$ . $e$ . the problem to determine whether two
given topological spaces are homeomorphic or not, has been approached
from various directions. Although we are as yet far from the general
solution of this problem, even for the case where the given spaces are
differentiable manifolds, the recent developments of the homotopy theory
and of characteristic classes seem to form significant contributions to the
homeomorphy theory of differentiable manifolds.

The present paper attempts a step in the homeomorphy theory of
differentiable manifolds. We shall consider here namely total spaces of
3-sphere bundles over the 4-sphere and those of 7-sphere bundles over the
8-sphere, and shall explicitly give homeomorphic maps between some of
these spaces. We shall see that these spaces have the same Pontrjagin
classes (with respect to differentiable structures defined naturally), and also
that, conversely, the spaces under our consideration (under some restrictions,
see Theorems 3.4 and 3.5) which have the same homotopy type and the same
Pontrjagin classes are homeomorphic. These results would offer some
interesting facts to the problem of ” topological invariance of Pontrjagin
classes”.

As an application we shall obtain the homotopy classification of the
sphere bundles over spheres which have no cross section. And also we are
able to generalize Milnor’s result (Milnor [3]), that is, we shall obtain
further examples of 7-dimensional and 15-dimensional manifolds which are
homeomorphic but not diffeomorphic.

Notations and terminologies used in the paper are made clear in sec-
tion 1. Section 2 contains a remark on Pontrjagin classes of sphere bundles
over spheres computed in the previous paper (Tamura [5]), and Pontrjagin
classes of the Cayley projective plane are obtained as a corollary.

In section 3, main part of this paper, we construct maps which induce
homeomorphisms between total spaces of 3-sphere bundles over the 4-sphere
and between total spaces of 7-sphere bundles over the 8-sphere. The total
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spaces are first covered by curves, and a map between total spaces is
naturally defined by a map between these curves. Moreover a relation
between homeomorphy and Pontrjagin classes is considered.

In section 4, homotopy classifications of 3-sphere bundles over the 4-
sphere and 7-sphere bundles over the 8-sphere which have no cross section,
are given. Section 5 is devoted to define the invariant $\lambda$ (Milnor [3]) for
7-dimensional (resp. 15-dimensional) manifolds in a slightly generalized form,
in order that we can apply it to the manifolds whose 4-dimensional (resp.

8-dimensional) cohomology groups are cyclic groups of finite order.
7-dimensional and 15-dimensional topological manifolds which possess

different differentiable structures are exposed in section 6, using invariant $\lambda$ .
The author wishes to express his hearty thanks to Prof. S. Iyanaga,

Mr. T. Nakamura and Mr. Akio Hattori for their kind discussions and
valuable suggestions during the preparation of this paper.

1. Preliminaries.

In this paper, we use the same notations as in the previous paper
(Tamura [5]).

Let $\mathfrak{B}=\{B,p, S^{q}, S^{r}, SO(r+1)\}$ be fibre bundles over the q-sphere $S^{q}$ with
total space $B$, r-sphere $S^{r}$ as fibre and the rotation group $SO(r+1)$ as struc-
tural group.

As is well-known, we have
$\pi_{3}(SO(4))\approx Z+Z$ , $\pi_{7}(SO(8))\approx Z+Z$ .

($Z$ means as usual the additive group of integers, $Z_{n}$ the group $Zmod n.$)

And generators $\{\rho\},$ $\{\sigma\}$ of $\pi_{3}(SO(4))$ are given respectively by

$\rho(u)v=uvu^{-1}$ , $\sigma(u)v=uv$ ;

where $u$ and $v$ denote quaternions with norm 1 as usual.
In the case of $\pi_{7}(SO(8))$ , we can write, by the recent result [6] (by H.

Toda, Y. Saito and I. Yokota), generators $\{\overline{\rho}\},$ $\{\overline{\sigma}\}$ of $\pi_{7}(SO(8))$ as follows:
$\overline{\rho}(x)y=xyx^{-1}$ , $\overline{\sigma}(x)y=xy$ ;

where $x$ and $y$ denote Cayley numbers with norm 1 as usual.
Now we define bundles $\mathfrak{B}_{m,n}^{(4,3)}$ and $\mathfrak{B}_{m,n}^{(8,7)}$ as follows:

$\mathfrak{B}_{m.n}^{(4,3)}=\{B_{m,n}^{(4,3)},p, S^{4}, S^{3}, SO(4)\}$ ,

$\mathfrak{B}_{m,n}^{(8,7)}=\{B_{m,n}^{(8,7)},p, S^{8}, S^{7}, SO(8)\}$ ,

where $\mathfrak{B}_{m}^{(4}$; and $\mathfrak{B}_{m,n}^{(8,7)}$ have the characteristic map $ m\rho+n\sigma$ and $m\overline{\rho}+n\overline{\sigma}$ re-
spectively.

Let $E^{\iota}$ be the 4-dimensional open cell which is defined by interior points
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of the unit circle of the space of quaternions and $S^{3}$ the boundary of $E^{4}$ .
For the north pole $x_{1}$ and the south pole $x_{2}$ of $S^{4}$ , we denote $S^{4}-\{x_{1}\}$

and $S^{4}-\{x_{2}\}$ by $V$ and $V^{\prime}$ respectively.
$B_{m,n}^{(4,3)}$ has an open covering constituted by $p^{-1}(V)$ and $p^{-1}(V^{\prime})$ which are

homeomorphic to $E^{4}\times S^{3}$ . (In this paper, homeomorphic always means ‘ homeo-
morphic onto.’) Consequently we can define a coordinate on $p^{-1}(V)$ and
$p^{-1}(V^{\prime})$ by $E^{1}\times S^{3}$ in natural manner, and we denote it by $(u, v)$ and $(u, v)^{\prime}$

respectively, where $u$ and $v$ have norm $||u||<1$ and $||v||=1$ . Then, by the
definition of $\mathfrak{B}_{m,n}^{(4,3)},$ $(u, v)$ and $((1-||u||)u/||u||, u^{m+n}vu^{-m}/||u||^{n})^{\prime}$ represent the
same point on $B_{m,n}^{(4.3)}$ for $u\neq 0$ . Since the transition function defined above is
differentiable, a differentiable structure is defined on $B_{m,n}^{(4,3)}$ . (In this paper,
the word differentiable always means ‘ differentiable of class $c\rightarrow.$) We denote
with $M_{m,n}^{(4,3)}$ the manifold thus defined. (All manifolds considered in this
paper are $C^{\infty}$-differentiable, orientable and compact.)

We obtain similar notions for $\mathfrak{B}_{m,n}^{(8,7)}$ by replacing quaternions by Cayley
numbers and use corresponding notations for them.

2. A remark on Pontrjagin classes.

We denote by $p_{i}$ i-th Pontrjagin class as usual.
Pontrjagin classes of $\mathfrak{B}_{n\iota,n}^{(4,3)},$ $\mathfrak{B}_{m,n}^{(8,7)},$ $M_{m,n}^{(4,3)}$ and $M_{m,n}^{(8,7)}$ were computed in the

previous paper (Tamura [5]). That is
$p_{1}(\mathfrak{B}_{m,n}^{(4,3)})=\pm 2(2m+n)\alpha_{4}$ , $p_{1}(M_{m,n}^{(4,3)})=\pm 4m\beta_{4}$ ,

where $\alpha_{4}$ and $\beta_{4}$ are generators of $H^{4}(S^{4})\approx Z$ and $H^{4}(M_{m}^{(4};_{n}^{3)})\approx Z_{n}$ respectively.
In the case of $\mathfrak{B}_{m}^{(8}$ ; and $1M_{m^{8}}^{(};_{n}^{7)}$ , we can express, by the result about the

generators of $\pi_{7}(SO(8))$ stated in section 1, Theorems 4.4. (i) and 6.2. (i) in
the previous paper as follows:

THEOREM 2.1. $p_{2}(\mathfrak{B}_{m}^{(87)};_{n})=\pm 6(2m+n)\alpha_{8}$ ,

where $\alpha_{8}$ is a generator of $H^{8}(S^{8})\approx Z$.
THEOREM 2.2. $p_{2}(M_{m^{8}}^{(};_{n}^{7)})=\pm 12m\beta_{8}$ ,

where $\beta_{8}$ is a generator of $H^{8}(M_{m,n}^{(8,7)})\approx Z_{n}$ .
As an application of Theorem 2.1, we compute Pontrjagin classes of

the Cayley projective plane $W$.
$Let--\mathfrak{B}_{0.1}^{(8,7)}=\{B_{0,1}^{(8,7)},p, S^{8}, \sigma^{8}, SO(8)\}$ be the bundle associated with $\mathfrak{B}_{0,1}^{(8,7)}$ , where

$c^{8}$ is the 8-cell of closed interior of $S^{7}$ . Differentiable structure is defined
on $\overline{B}_{0,1}^{(8,7)}$ in natural manner as on $B_{0,1}^{(8,7)}$ and we obtain the 16-dimensional
manifold $N_{0,I}^{(8,7)}$ with boundary $M_{0,1}^{(8,7)}$ . It is easily verified that $N_{0,1}^{(8,7)}$ is the
Cayley projective plane with a 16-cell removed.

By the Whitney product theorem of Pontrjagin classes and Theorem
2.1, we obtain
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$p_{2}(W)=6f$

where $f$ is a generator of $H^{8}(W)\approx Z$.
Since naturally $p_{1}(W)=p_{3}(W)=0$ , we can compute $p_{4}(W)$ by $p_{2}(W)$ and

the index theorem of Hirzebruch (Hirzebruch [2]):

$\tau(W)=<\nu,$ $\frac{1}{3^{4}\cdot 5^{2}\cdot 7}(381p_{4}(W)-71p_{3}(W)p_{1}(W)-19p_{2}^{2}(W)$

$+22p_{2}(W)p_{1}^{2}(W)-3p_{1}^{4}(W))>$ ,

where $\nu$ is the generator of $H_{16}(W;Z)$ determined by an orientation of $W$.
Therefore we obtain following (Hirzebruch [1]):

THEOREM 2.3. Non-zero Pontrjagin classes of the Cayley projective plane $W$

are
$p_{0}(W)=1$ , $p_{2}(W)=6f$ $p_{4}(W)=39\iota^{2}$ ,

where $\ell$ is a generator of $H^{8}(W)$ .

3. Homeomorphy classification of $B_{m,n}^{(4,3)}$ and $B_{m,n}^{(8,7)}$ .
First we consider $B_{m,n}^{(4,3)}$ .
Let $a$ be a point on $S^{3},$ $i$ . $e$ . a quaternion of norm $||a||=1$ . For $0\leqq t\leqq 1$ ,

we denote $\gamma_{a\in E^{I}}^{-}$ by $[a]_{t}$ . Obviously $[a]_{0}=0$ , $[a]_{1}=a$ and $\{[a]_{t};a\in S^{3}$ ,
$0\leqq t<1\}=E^{4}$ . Let $S^{2}$ be the great circle of $S^{3}$ determined by quaternions
$u$ with $\mathfrak{R}(u)=0$ . (We denote with $\mathfrak{R}(u)$ the real part of quaternion $u.$)

Let $b$ be a point on $S^{2}$ and $b_{t}$ the point on the arc $1,$ $b,$
$-1\wedge$ of great

circle in the distance $\pi t$ from $-1$ on $1^{\wedge}b,$$-1$ . Obviously $b_{0}=-1,$ $b_{1}=1$ and
$\{b_{\ell} ; b\in S^{2},0\leqq t\leqq 1\}=S^{3}$ .

Now let $S_{1}^{3}$ be the 3-sphere $p^{-1}(x_{1})$ , where $x_{1}$ is a pole of the base space
$S^{4}$ of $\mathfrak{B}_{m,n}^{(4,3)}$ defined in section 1. $S_{1}^{3}$ has the coordinate induced by one of
$p^{-1}(V^{\prime})$ defined in section 1.

Let $E_{1}^{4}$ be the 4-dimensional open cell $\{([a]_{t}, 1);a\in S^{3},0\leqq t<1\}$ contained
in $p^{-1}(V)$ , which can be identified with $E^{4}$ .

Then, since $([a]_{t}, 1)$ and $((1-t)[a]_{t}/t, a^{n})^{\prime}$ represent the same point on
$B_{m,n}^{(4,3)}$ for $0<t<1$ , the point $a$ on the boundary of $E^{4}$ can be regarded as
representing the point $a^{n}$ on $S_{1}^{3}$ .

Next we decompose $p^{-1}(V)-E_{1}^{4}$ by curves as follows.
For $0\leqq s\leqq 1,$ $a\in S^{3}$ and $b\in S^{2}$ , we denote by $l(a, [b]_{s})$ the subset { $([a]_{t}, b_{sl})$ ;

$0\leqq t<1\}$ and by $l([a]_{s}, b)$ the subset $\{([a]_{st}, b_{t});0\leqq t<1\}$ of $p^{-1}(V)$ . Obviously
$l(a, [b]_{s})$ and $l([a]_{s}, b)$ are curves having no common point except $(0, -1)$ and
the set of all these curves covers $p^{-1}(V)-E_{1}^{4}$ .

Let $\overline{l}(a, [b]_{s})$ (resp. $\overline{l}([a]_{s},$ $b)$) be the closure of $l(a, [b]_{s})$ (resp. $l([a]_{s},$ $b)$) in
$B_{m,n}^{(4,3)}$ . Then the set of all $\overline{l}(a, [b]_{s})$ and $\overline{l}([a]_{s}, b)$ covers $B_{m}^{(43)}:n$ and $\overline{l}(a, [b]_{s})$
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$-1(a, [b]_{s})$ (resp. $\overline{l}([a]_{s},$ $b)-l([a]_{s},$ $b)$) are contained in $E_{1}^{4}\cup S_{1}^{3}$ .
We denote by $(l(a, [b]_{s}), t)$ (resp. $(l([a]_{s},$ $b),$ $t)$) the point $([a]_{t}, b_{st})$ (resp.

$([a]_{st}, b_{t}))$ for $0\leqq t<1$ , and by $(l(a, [b]_{s}), 1)$ (resp. $(l([a]_{s},$ $b),$ $1)$) the point $\overline{l}(a, [b]_{s})$

$-l(a, [b]_{s})$ (resp. $\overline{l}([a]_{s},$ $b)-l([a]_{s},$ $b)$).

Now we proceed to construct maps which will induce homeomorphisms
between $B_{m,n}^{(4,3)}$ and $B_{m\prime.n}^{(4,3)}$ .

(i) First we shall assume $n=1$ .
As was remarked above, $E_{1}^{4}$ in $B_{m}^{(4}$; can be identified with $E^{4}$ in the

space of quaternions. In this case $n=1$ , this identification can be continu-
ously extended to the closure $\overline{E_{1}^{4}}$ of $E_{1}^{4}$ and the boundary $S_{1}^{3}$ of $E_{1}^{4}$ is identi-
fied with the boundary $S^{3}$ of $E^{4}$ .

For $0\leqq s\leqq 1,$ $a\in S^{3},$ $b\in S^{2}$ and $0\leqq t\leqq 1$ , we define the points $f_{m}(a, [b]_{s})(t)$

and $f_{m}([a]_{s}, b)(t)$ of $B_{m,1}^{(4,3)}$ as follows;

$0\leqq t\leqq 1/4$ , $f_{m}([a]_{s}, b)(t)=(l([a]_{s}, b), t)$ $(s\neq 1)$ ,

$1/4\leqq t\leqq 1$ , $f_{m}([a]_{s}, b)(t)=(l([a]_{\frac{4}{3}S()}1-t’ b), t)$ $(s\neq 1)$ ,

$0\leqq t\leqq 1/4$ , $f_{m}(a, [b]_{s})(t)=(l(a, [b]_{s}), t)$ ,

$1/4\leqq t\leqq 1/2$ , $f_{m}(a, [b]_{s})(t)=(l(a, [b]_{s}),$ $\frac{1}{4}+3(1-s)(t-\frac{1}{4}$)),
$1/2\leqq t\leqq 3/4$ , $f_{m}(a, [b]_{0})(t)=(l(a, [b]_{0}), 1)$ ,

$f_{m}(a, [b]_{s})(t)=(l(a^{m+1}b_{s}b_{+}^{-1_{4(1)(t-\frac{1}{2})}}-Sa^{-m}$ ,

$[(a^{m+1}b_{s}b_{s+4(1-s)(t-\frac{1}{2})}^{1}a^{-m})^{-m}a^{m}ba^{-m}(a^{m+1}b_{s}b_{s+4(1-s)(t-\frac{1}{2})}^{1}a^{-m})^{m}]_{s+4(1-s)(t-\frac{1}{2})})$ ,

$1-\frac{3}{4}s)$ $(s\neq 0)$ ,

$3/4\leqq t\leqq 1$ , $f_{m}(a, [b]_{0})(t)=(l([-a]_{4(\iota)}1-, b), 1)$ ,

$f_{m}(a, [b]_{s})(t)=(l([a^{m+1}b_{S}a^{-m}]_{4()}1-t’(a^{m+I}b_{s}a^{-m})^{-m}a^{m}ba^{-m}(a^{m+1}b_{s}a^{-m})^{m})$ ,

$1-\frac{3}{4}s+3s(t-\frac{3}{4}))$ $(s\neq 0)$ .
Let $L^{()}m(a, [b]_{s})$ and $L^{()}m([a]_{s}, b)$ be the subsets of $B_{m,1}^{(4,3)}$ defined by

$L^{(m)}(a, [b]_{s})=\{f_{m}(a, [b]_{s})(t);0\leqq t\leqq 1\}$ ,

$L^{(m)}([a]_{s}, b)=\{f_{m}([a]_{s}, b)(t);0\leqq t\leqq 1\}$ $(s\neq 1)$ .
Then $L^{(m)}(a, [b]_{s})$ and $L^{(m)}([a]_{s}, b)$ are curves joining $(0, -1)$ and $(0,1)$ ,

where $(0, -1)$ and $(0,1)$ mean coordinates of $p^{-1}(V)$ defined in section 1.
Obviously they cover $B_{m^{4}}^{(}$; and any two of them have no common point
except $(0, -1)$ and $(0,1)$ . Moreover they depend on $a,$

$b$ and $s$ continuously.
Therefore we can regard $B_{m,1}^{(4,3)}$ as topological 7-sphere, whose poles are
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$(0, -1)$ and $(0,1)$ and whose circles of longitude are given by $L^{()}m(a, [b]_{s})$

and $L^{(m)}(\lceil a]_{s}, b$).

In the case of $B_{0}^{(4};_{1}^{3)}$ , it is clear that, in modifying these circles of
longitude in an obvious manner, we can make them coincide with those of
$M_{0,1}^{(4,3}$

‘ which is, as is well-known, diffemorphic to the 7-sphere with natural
differentiable structure.

Now we define the map

$g_{m}$ : $B_{0.1}^{(4.3)}\rightarrow B_{m.1}^{(4,3)}$

by

$g_{m}(l([a]_{s}, b), t)=(l([a]_{s}, b), t)$ $(0\leqq t\leqq 1/4)$ ,

$g_{m}(l([a]_{\frac{4}{3}\theta()}1-t’ b), t)=(l([a]_{\frac{4}{3}S()}1-t’ b), t)$ $(1/4\leqq t\leqq 1)$ ,

$g_{m}(l(a, [b]_{s}), t)=(l(a, [b]_{s}), t)$ $(0\leqq t\leqq 1/4)$ ,

$g_{m}(l(a, [b]_{s}),$ $\frac{1}{4}+3(1-s)(t-\frac{1}{4}))=(l(a, [b]_{s}),$ $\frac{1}{4}+3(1-s)(t-\frac{1}{4}))$

$(1/4\leqq t\leqq 1/2)$ ,

$g_{m(1-s}l(ab_{s}b_{s+4()(t-\frac{1}{2})}^{-1}, [b]_{s+4(1-s)(t-\frac{1}{2})}),$ $1-\frac{3}{4}s)$

$=(l(a^{m+1}b_{s}b_{s+4(1-s)(t-\frac{1}{2})}^{1}a^{-m}$,

$[(a^{m+1}b_{s}b_{s+4(1-s)(t-\frac{1}{2})}^{-1}a^{-m})^{-m}a^{m}ba^{-m}(a^{m+1}b_{s}b_{s+4(1-s)(t-\frac{1}{2})}^{-1}a^{-m})^{m}]_{s+4(1-s)(t-\frac{1}{2})}$ ,

$1-\frac{3}{4}s)$ $(s\neq 0,1/2\leqq t\leqq 3/4)$ ,

$g_{m}(l[-a]_{4(-\iota)}1’ b),$ $1$ ) $=(l([-a]_{4(1-\iota)}, b), 1)$ $(3/4\leqq t\leqq 1)$ ,

$g_{m}(l([ab_{s}]_{4(1-t)}, b),$ $1-\frac{3}{4}s+3s(t-\frac{3}{4}))$

$=(l([a^{m+1}b_{s}a^{-m}]_{4(1-t)}, (a^{m+1}b_{s}a^{-m})^{-m}a^{m}ba^{-m}(a^{m+1}b_{s}a^{-m})^{m})$ ,

$1-\frac{3}{4}s+3s(t-\frac{3}{4}))$ $(s\neq 0,3/4\leqq t\leqq 1)$ .

Clearly $g_{m}$ is one to one and bicontinuous map. However, $g_{m}$ is not a
diffeomorphic map, unless $m=0$ or $-1$ . Moreover if $m\neq 0,$ $g_{m}$ is not a
bundle map $\mathfrak{B}_{0,1}^{(4,3)}\rightarrow \mathfrak{B}_{m^{4}}^{(};^{3_{1})}$ .

It is to be noticed that
$g_{m}(P^{-1}(V))=P^{-1}(V)$ ,

$g_{m}(p^{-1}(V^{\prime}))=p^{-1}(V^{\prime})$ .
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Moreover, if $g_{m}((u, v))=(u^{\prime}, v^{\prime})$ (resp. $g_{m}((u,$ $v)^{\prime})=(u^{\prime},$ $v^{\prime})^{\prime}$), we have
$\Re(u)=\mathfrak{R}(u^{\prime})$ , $||u||=|[u^{\prime}||$ .

REMARK. $g_{m}$ thus defined may be useful to make clear the properties of
the various differentiable structures defined on the 7-sphere.

(ii) Next we consider $B_{nr^{\prime},n}^{(43)}$ .
We define the map

$h_{n}^{(r)}$ : $B_{nr,n}^{(4,3)}\rightarrow B_{r^{(4},1^{8)}}$

by
$h_{n}^{(r)}((0, v))=(0, v)$ ,

$h_{n}^{(r)}((0, v)^{\prime})=(0, v)^{\prime}$ ,
$h_{n}^{(\gamma)}((u, v))=(u^{n}/||u||^{n-1}, v)$ $(u\neq 0)$ ,
$h_{n}^{(r)}((u, v)^{\prime})=(u^{n}/||u||^{n-1}, v)^{\prime}$ $(u\neq 0)$ .

Obviously $h_{n}^{(\gamma)}$ is well defined and continuous.
Let $(u_{1}, v_{1})$ (resp. $(u_{2},$ $v_{2})^{\prime}$) be a point of $B_{0,n}^{(4,3)}$ such that

$\mathfrak{R}(u^{n_{1}})\neq u_{1}^{n}$ (resp. $\mathfrak{R}(u_{2}^{n})\neq u_{2}^{n}$) ,

that is, $h_{n}^{(0)}((u_{1}, v_{1}))$ (resp. $h_{n}^{(0)}((u_{2},$ $v_{2})^{\prime})$) lies neither on $\overline{l}(\pm 1, [b]_{s})$ nor on
$\overline{l}([\pm 1]_{s}, b)$ .

Then, by the definition of $g_{r},$ $g_{r}h_{n}^{(0)}((u_{1}, v_{1}))=(u_{1}^{\prime}, v_{1^{\prime}})$ (resp. $g_{r}h_{n}^{(0)}((u_{2}, v_{2})^{\prime})$

$=(u_{2}^{\prime}, v_{2}^{\prime})^{\prime})$ satisfies
$\mathfrak{R}(u_{1}^{\prime})\neq u_{1}^{\prime}$ (resp. $\Re(u_{2}^{\prime})\neq u_{2}^{J}$).

Therefore there exists unique $(u_{1^{\prime\prime}}, v_{1^{\prime}})$ (resp. $(u_{2^{\prime\prime}},$ $v_{2}^{\prime})^{\prime}$) such that
$\mathfrak{R}(u_{1}^{\prime\prime})=\mathfrak{R}(u_{1})$ (resp. $\mathfrak{R}(u_{2^{\prime\prime}})=\mathfrak{R}(u_{2})$),

$h_{n}^{(\gamma)}((u_{1}^{\prime\prime}, v_{1}^{\prime}))=(u_{1}^{\prime}, v_{1}‘)$ (resp. $h_{n}^{(\gamma)}((u_{2}\prime\prime v_{2})^{\prime})=(u_{2}^{\prime},$ $v_{2^{\prime}})^{\prime}$).

We define the map $g_{r}^{(n)}$ by
$g_{r}^{(n)}((u_{1}, v_{1}))=(u_{1^{\prime\gamma}}, v_{1}^{\prime})$ ,

$g_{r}^{(n)}((u_{2}, v_{2})^{\prime})=(u_{2}^{\prime\prime}, v_{2}^{\prime})^{\prime}$ .
Then we have the commutative diagram

$B^{t4}0.\dot{n}_{I^{h_{n^{0l}}^{(}}}^{3)_{\backslash }}-RB_{0,\dot{n}^{\S)}}^{(4}\rightarrow^{g_{r}^{(n)}}B_{n\dot{r}_{*}n}^{(4\S)}-RB_{n\dot{r.}n}^{(43)}$

$\downarrow h_{n}^{(r)}$

$B_{0.\dot{\iota}^{3)}}^{t4}\leftrightarrow^{g,}B_{r^{4_{J^{\Re}}}}^{(}$.
where $RB_{0.n}^{(4,3)}$ (resp. $RB_{nr,n}^{t4,3)}$) denotes the subset $\{x;x\in B_{0n^{\S)}}^{(4_{*}},$ $h_{n}^{(0)}(x)\in\overline{l}(\pm 1, [b]_{s})$

$\cup\acute{l}([\pm 1]_{s}, b)\}$ (resp. $\{x;x\in B_{nr.n}^{(4,3)},$ $h_{n}^{(r)}(x)\in\overline{l}(\pm 1,$ $[b]_{s})\cup\overline{l}([\pm 1]_{s},$ $b)\}$) of $B_{0^{(4_{\mathcal{R}}3)}}$ (resp.
$B_{nr,n}^{14,3)})$ .
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It is clear that $g_{r}^{(n)}$ is homeomorphic.
Let $x$ be a point of $RB_{0,n}^{(4,3)}$ . Then since $\overline{B_{0,n}^{(4,3)}-RB_{0,n}^{(4,3)}}=B_{0}^{(4};_{n^{)}}^{s}$ , there exists

a sequence $\{x_{1}, x_{2}, \cdots, x_{i}, \cdots\}$ $(x_{i}\in B_{0,n}^{(4,3)}-RB_{0,n}^{(4,3)})$ such that

$\lim_{i\rightarrow\infty}x_{t}=x$ .
We define1) $g_{r}^{(n)}(x)$ by

$g_{r}^{(n)}(x)=\lim_{i\rightarrow\infty}g_{r}^{(n)}(x_{i})$ .
Then by the definition of $g_{7}.$ , we can easily verify that $g_{r}^{(n)}(x)$ is uniquely
determined independently from the choice of a sequence. $g_{r}^{(n)}(x)$ thus
defined is a homeomorphic map between $B_{0,n}^{(4,3)}$ and $B_{nr.n}^{(4,3)}$ .

Naturally the following commutative diagram

$B^{t4,3}\rightarrow B_{n^{4}\dot{r}.n^{)}}^{(}\downarrow^{0_{h_{n^{)}}^{n_{(0)}}}}g_{r}^{tn)}\downarrow^{h_{n^{r)}}^{3_{(}}}$

$B_{0.1}^{(4,3)}\overline{g_{r}}*B_{r.1}^{(4.3)}$

holds.
(iii) General case.
Clearly $g_{r}^{(\eta)}$ satisfies

$g_{r}^{(n)}(p^{-1}(V))=p^{-1}(V)$ ,

$g_{r}^{(n)}(p^{-1}(V^{\prime}))=p^{-1}(V^{\prime})$ .
Now we define the map

$mg_{r}^{(n)}$ ; $B_{m.n}^{(4,3)}\rightarrow B_{m^{4}}^{(}\dotplus a_{n^{)}r,n}$

by
$mg_{r}^{(n)}((0, v))=(0, v)$ ,

$m(n)g_{r}((u, v)^{\prime})=((u^{\prime}, v^{\prime})^{\prime})$ ,

1) We can define $g_{r}^{(n)}(x)(x\in RB_{oi)}^{(43)}n$ also as follows.

Let $x=(u, v)$ be a point $ofp-1(V)\cap p-1(V^{\prime})\subset B_{0.n}^{(4.3)}$ and let $h_{n}^{(0)}(x)$ lie on $L^{(0)}([a]_{s}, b)$

or on $L^{(0)}(a, [b]_{S})$ . Then $a$ depends continuously on $x$ by the definitions of $L^{(0)}([a]_{S}, b)$

and $L(0)(a, [b]_{s})$ .
Now we define $g_{r}^{(n)}(x)(x\in RB_{0,n}^{(4.3)})$ by

$g_{r}^{(n)}((u, v))=(a^{r}ua^{-r}, a^{\gamma}va-r)$ $(u\neq 0)$ ,
$g_{r}^{(n)}((0, v))=(0, v)$ ,
$g_{r}^{(n)}((0, v)^{\prime})=(0, v)^{\prime}$ .

It is easy to verify that this definition of $g_{r}^{(n)}(x)(x\in RB_{0,n}^{(4,3)})$ coincides with the

definition in the text. The continuity of $g_{\gamma}^{(n)}$ : $B_{0.n}^{(4.3)}\rightarrow B_{nr,n}^{(I,3)}$ at the point of $RB_{0,n}^{(4,3)}$

follows directly from the second definition.
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where $u^{\prime}$ and $v^{\prime}$ are quaternions satisfying
$g_{r}^{(n)}((u, v)^{\prime})=(u^{\prime}, v^{\prime})^{\prime}$ .

Then it is clear that $mg_{r}^{(n)}$ is one to one and bicontinuous2).

Thus we have proved the following theorem:
THEOREM 3.1. If $m\equiv\pm m^{\prime}mod n,$ $B_{m,n}^{(4,3)}$ and $B_{m’.\pm n}^{(4,3)}$ ( $i$ . $e$ . $M_{m,n}^{14,3)}$ and $M_{m_{*}\pm n}^{(4,3)}$)

are homeomorphic.
In the case of $B_{m.n}^{(8.7)}$ , we have only to replace quaternions by Cayley

numbers to obtain the following theorems:
THEOREM 3.2. If $m\equiv\pm m^{\prime}mod n,$ $B_{m,n}^{(8,7)}$ and $B_{m.\pm n}^{(8_{j}7)}(i$ . $e$ . $M_{m,n}^{(8,7)}$ and $M_{m^{i)}}^{(87)_{\pm n}}$

are homeomorphic.
THEOREM 3.3. $B_{m.\pm 1}^{(8,7)}(m=0, \pm 1, \pm 2, \cdots)$ are topological 15-spheres.
REMARK. As is well-known, by the equivalence of bundles, $B_{m.n}$ and

$B_{m+n,-n}$ are homeomorphic. And moreover by the weak equivalence of
bundles, $B_{m.n}$ and $B_{-m,-n}$ are naturally homemorphic.

As was noticed in section 2, non zero Pontrjagin classes of $M_{m.n}^{(4,3)}$ and
$M_{m,n}^{(8,7)}$ are

$p_{1}(M_{m,n}^{(4,3)})=\pm 4m\beta_{4}$ $(mod n)$ , $p_{2}(M_{m.n}^{(8,7)})=\pm 12m\beta_{8}$ $(mod n)$ .
So the manifolds which were proved to be homeomorphic by Theorems 3.1
and 3.2, have the same Pontrjagin classes. In particular we state some of
our results as follows:

THEOREM 3.4. If $n$ is odd, manifolds $M_{m}^{(4}$; which have the same homotopy
type (see section 4) and the same Pontrjagin class, are homeomorphic.

THEOREM 3.5. If $n$ satisfies $(12, n)=1$ , manifolds $M_{m,n}^{(8,7)}$ which have the same
homotopy type (see section 4) and the same Pontrjagin classes, are homeomorphic.

On the other hand, in the case of manifolds which have different
Pontrjagin classes, attempts to prove them to be homeomorphic, even to
have the same homotopy type, meet with great difficulties. Moreover we
shall see in section 6 that Pontrjagin classes of differentiable structures
defined on the spaces which possess different differentiable structures, are
always vanishing in our cases. These facts seem to suggest that Pontrjagin
classes would play important r\^ole in the homeomorphy theory of manifolds
or even that they might probably be topologically invariant.

4. Homotopy classification of $B_{m,n}^{(4,3)}$ and $B_{m,n}^{(8.7)}$ .
We have proved in the previous paper that if $m\equiv m^{\prime}mod 12,$ $B_{m.n}^{(4,3)}$ and

2) Notice that if $(u, v)$ is a point in a sufficiently small neighbourhood of a
point $x$ in $p-1(x_{2})-(0,1),$ $g_{r}^{(n)}$ satisfies

$g_{r}^{(n)}((u, v))=(u, v)$ .
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$B_{m^{j^{3)}}.n}^{(4}$ have the same homotopy type, and also that if $m\equiv m^{\prime}mod 120,$ $B_{m.n}^{(8,7)}$

and $B_{m,n}^{(87)}$ have the same homotopy type (Tamura [5], Theorem 2.2. (i),

Theorem 2.3. $(i))$ .
Combining these and Theorems 3.1 and 3.2, we obtain easily:
THEOREM 4.1. If $m\equiv\pm m^{\prime}mod (12, n),$ $B_{m}^{(4}$; and $B_{m,\pm n}^{(4_{j}3)}$ have the same homo-

topy type.
THEOREM 4.2. If $m\equiv\pm m^{\prime}mod (120, n),$ $B_{m,n}^{(8,7)}$ and $B_{m.\pm n}^{(8_{i}7)}$ have the same homo-

$top_{\mathcal{Y}}$ type.
In particular, we have:
THEOREM 4.3. If $n$ satisfies $(n, 12)=1,$ $B_{m.n}^{(4,3)}(m=0, \pm 1, \pm 2, \cdots)$ have the same

homotopy type.
THEOREM 4.4. If $n$ satisfies $(n, 120)=1,$ $B_{m,n}^{(8.7)}(m=0, \pm 1, \pm 2, \cdots)$ have the same

homotopy type.
REMARK. We cannot expect the same conclusions as Theorems 4.3 and

4.4 for arbitrary $n$ . For example, $B_{1;_{3}}^{(43)}$ and $B_{0,3}^{(4,3)}$ have different homotopy
types. Suppose, in fact, that they have the same homotopy type. Since

$p_{1}(M_{1.3}^{(4,3)})=\pm\alpha_{4}$ $(mod 3)$ , $p_{1}(M_{0.3}^{(4,3)})=0$ $(mod 3)$ ,

it contradicts to the homotopy invariance of Pontrjagin classes $mod 3$ .

5. The invariant $\lambda$ .
We consider here 7-dimensional manifolds and 15-dimensional manifolds

which satisfy certain conditions.
First we define $P^{7}(n)$ manifold as follows.
DEFINITION $1^{3)}$ . If 7-dimensional closed oriented manifold $M^{7}$ satisfies

following conditions, $M^{7}$ is called a $P^{7}(n)$ manifold.
(i) $H^{3}(M^{7} ; Z)=0$, $H^{4}(M^{7} ; Z)\approx Z_{n}(n\neq 0)$ .
(ii) There exists an 8-dimensional manifold $N^{8}$ with boundary $M^{7}$ such

that $p_{1}(N^{8})$ is divisible by $n$ . Such $N^{8}$ will be called a manifold
associated with the $P^{7}(n)$ manifold $M^{7}$ .

Now let $M^{7}$ be a $P^{7}(n)$ manifold and let $N^{8}$ be a manifold associated

3) We can replace the condition (ii) by the following (ii)’.
(ii)i $p_{1}(M^{7})=0$ .

The existence of $N^{8}$ in condition (ii) is assured by a well-known result $\Omega^{7}=0$ ,
where $\Omega^{7}$ denotes the homogeneous part of the 7th degree of Thom algebra $\Omega$ . By (i)
and $($ ii $)^{}$ , it is easily verified that $p_{1}(N^{8})$ is divisible by $n$ , making use of the
Whitney product theorem of Pontrjagin classes. Thus (ii)’ implies (ii). The con-
verse can also be proved.

However, we can not replace the condition (ii) in Definition 3 by $p_{2}(M^{15})=0$ ,
say, since the homogeneous part of the 15th degree of $\Omega$ is not zero.
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with $M^{7}$ .
An orientation $\nu\in H_{8}(N^{8}, M^{7} ; Z)$ is determined by the relation $\partial\nu=\mu$ ,

where $\mu$ is the generator of $H_{7}(M^{7} ; Z)$ determined by the orientation of
$M^{7}$ .

Define a quadratic form over the group $H^{4}(N^{8}, M^{7} ; R)$ by the formula
$\alpha\rightarrow<\nu,$ $\alpha^{2}>$ , where $R$ is the real number field. Let $\tau(N^{8})$ be the index of
this form.

By Definition 1 and the exact sequence
$i$

$\rightarrow H^{3}(M^{7} ; Z)\rightarrow H^{4}(N^{8}, M^{7};Z)\rightarrow H^{4}(N^{8} ; Z)\rightarrow H^{4}(M^{7} ; Z)\rightarrow\cdots$ ,

there exists unique element $i^{-1}p_{I}(N^{8})$ of $H^{4}(N^{8}, M^{7} ; Z)$ .
If we replace here $Z$ by real number field $R,$ $i$ becomes isomorphism

onto $i_{R}$,
$i_{R}$ : $H^{4}(N^{8}, M^{7} ; R)\approx H^{4}(N^{8} ; R)$ .

Then we define Pontrjagin number $q(N^{8})$ by

$q(N^{8})=<\nu,$ $(i^{-1}p_{1})^{2}>$ .
DEFINITION 2. For a $P^{7}(n)$ manifold $M^{7}$ , we define $\lambda(M^{7})$ by

$\lambda(M^{7})=2n^{2}q(N^{8})-\tau(N^{8})$ $mod 7$ .
Let $N_{1}^{8},$ $N_{2}^{8}$ be two manifolds associated with $M^{7}$ . Then $C^{8}=N_{1}^{8}\cup N_{2}^{8}$ is

a closed 8-dimensional manifold. Choose that orientation $\nu$ for $C^{8}$ which is
consistent with the orientation $\nu_{1}$ of $N_{1}^{8}$ and $-\nu_{2}$ of $N_{2}^{8}$ . Let $q(C^{8})$ be the
Pontrjagin number $<\nu,p_{1}^{2}(C^{8})>$ . Then, using the index theorem (Hirzebruch
[2]), we have

1
$\tau(C^{8})=<\nu,$ $\overline{45}(\overline{/}p_{2}(C^{8})-p_{1}^{2}(C^{8}))>$ ,

and therefore
$2q(C^{8})-\tau(C^{8})\equiv 0$ $(mod 7)$ .

In the same way as in Milnor [3] lemma 1, we can prove that

$\tau(C^{8})=\tau(N_{1}^{8})-\tau(N_{2}^{8})$ ,

$q(C^{8})=n^{2}q(N_{1}^{8})-n^{2}q(N_{2}^{8})$ ,
and

$2n^{2}q(N_{1}^{8})-\tau(N_{1}^{8})\equiv 2n^{2}q(N_{2}^{8})-\tau(N_{2}^{8})$ $(mod 7)$ .
Therefore $\lambda(M^{7})$ is a diffeomorphy invariant of $M^{7}$ .

REMARK. In the case of $P^{7}(1)$ manifold, our definition coincides with
Milnor’s.

Next we consider 15-dimensional manifolds.
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DEFINITION 3. If 15-dimensional closed oriented manifold $M^{15}$ satisfies
following conditions, $M^{15}$ is called a $P^{15}(n)$ manifold.

(i) $H^{3}(M^{16} ; Z)=H^{4}(M^{16} ; Z)=H^{7}(M^{1\text{\’{o}}}$
’ ; $Z)=H^{11}(M^{16};Z)=H^{12}(M^{15};Z)=0$ ,

$H^{8}$ $(M^{15} ; Z)\approx Z_{n}$ $(n\neq 0)$ .
(ii) There exists a 16-dimensional manifold $N^{16}$ with boundary $M^{15}$

such that $p_{2}(N^{16})$ is divisible by $n$ . Such $N^{16}$ will be called a
manifold associated with the $P^{15}(n)$ manifold $M^{15}$ .

Now let $M^{15}$ be a $P^{15}(n)$ manifold and let $N^{16}$ be a manifold associated
with $M^{15}$ .

An orientation $\nu\in H_{16}(N^{16}, M^{15} ; Z)$ is determined by the relation $\partial\nu=\mu$ ,
where $\mu$ is the generator of $H_{16}(M^{16} ; Z)$ determined by the orientation of
$M^{15}$ .

Define a quadratic form over the group $H^{8}(N^{16}, M^{15} ; R)$ by the formula
$\alpha\rightarrow<\nu,$ $\alpha^{2}>$ and let $\tau(N^{16})$ be the index of this form.

For $j=1,2,3$ , by Definition 3 and the exact sequence
$\rightarrow H^{4j-1}(M^{16} ; Z)\rightarrow H^{4j}(N^{16}, M^{15} ; Z)^{i}\rightarrow H^{4j}(N^{16} ; Z)\rightarrow H^{4j}(M$” ; $ Z)\rightarrow\cdots$ ,

there exists unique element $i^{-1}p_{j}(N^{16})$ of $H^{4j}(N^{16}, M^{15} ; Z)$ .
If we replace $Z$ by $R,$ $i$ becomes isomorphism onto $i_{R}$ ,

$i_{R}$ : $H^{8}(N^{16}, M^{15} ; R)\approx H^{8}(N^{16} ; R)$ .
Then for integers $j_{1},$ $\cdots,j_{k}$ such that $0<j_{1}\leqq j_{2}\leqq\cdots\leqq j_{k}$ and $j_{1}+j_{2}+\cdots+j_{k}=4$ ,
we define Pontrjagin number $q_{(j_{1},j_{2},\cdots,j_{k})}(N^{16})$ by

$ q_{(j_{1},j_{2},\cdots,j_{k})}(N^{16})=<\nu$ , $(i^{-1}p_{j_{1}}(N^{16}))(i^{-1}p_{j_{2}}(N^{16}))\cdots(i^{-1}p_{j_{k}}(N^{16}))>$ .
Let $N_{1}^{16},$ $N_{2}^{16}$ be two manifolds associated with $M^{15}$ . Then $C^{16}=N_{1}^{16}\cup N_{2}^{16}$

is a closed 16-dimensional manifold. Choose that orientation $\nu$ for $C^{16}$ which
is consistent with the orientation $\nu_{1}$ of $N_{1}^{16}$ and $-\nu_{2}$ of $N_{2}^{16}$ . Let $q_{(j_{1},j_{2},\cdots,j_{k})}$

$(C^{16})$ be Pontrjagin number $<\nu,$ $p_{j_{1}}(C^{16})p_{j_{\theta}}(C^{16})\cdots p_{j_{k}}(C^{1b})>$ .
Using the index theorem (Hirzebruch [2]), we have

$\tau(C^{16})=<\nu,$ $\frac{1}{3^{4}\cdot 5^{2}\cdot 7}(381p_{4}(C^{16}\rangle$ $-71p_{3}(C^{16})p_{1}(C^{16})-19p_{2}^{2}(C^{16})$

$+22p_{2}(C^{16})p_{1}^{2}(C^{16})-3p_{1}^{4}(C^{16}))>$

and therefore

$78\tau(C^{16})+71q_{(1,3)}(C^{16})+19q_{(2,2)}(C^{16})-22q_{(1,1,2)}(C^{1b})+3q(l11.1)(C^{16})\equiv 0$ $(mod 381)$ .
In the same way as for $M^{7}$ , we can prove that

$\tau(C^{16})=\tau(N_{1}^{16})-\tau(N_{2}^{16})$ ,

$q_{(1.1,2)}(C^{16})=nq_{(1,1,2)}(N_{1}^{16})-nq_{(1,1,2)}(N_{2}^{16})$ ,

$q(2.2)(C^{16})=n^{2}q(2.2)(N_{1}^{16})-n^{2}q_{(}2,2)(N_{2}^{16})$ ,
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$q_{(j_{1},j_{n},\cdots,j_{k})}(C^{16})=q_{(JJ_{2*}\cdots,j_{k})}1,(N_{1}^{16})-q_{(j_{1}.j_{2}\ldots..j_{k})}(N_{2}^{16})$

$(j_{1},j_{2}, \cdots,j_{k})\neq\{(1,1,2)(2,2)$

And so
$78\tau(N_{1}^{16})+71q_{(1,3)}(N_{1}^{1G})+19n^{2}q_{()}2,2(N_{1}^{16})-22nq_{(I,I,2)}(N_{1}^{16})+3q_{(1,1,1,1)}(N_{1}^{16})$

$\equiv 78\tau(N_{2}^{16})+71q_{(1,3)}(N_{2}^{1C})+19n^{2}q_{()}2,2(N_{2}^{16})-22nq_{(1.1,2)}(N_{2}^{16})+3q_{(1_{*}1,1,1)}(N_{2}^{16})$

$mod 381$ .
Therefore we can define a diffeomorphy invariant $\lambda$ for a $P^{15}(n)$ manifold

$M^{18}$ as follows.
DEFINITION 4. For a $P^{15}(n)$ manifold $M^{15}$ , we define $\lambda(M^{15})$ by

$\lambda(M^{15})=78\tau(N^{16})+71q_{(1,3)}(N^{16})+19n^{2}q_{(2,2)}(N^{16})-22nq_{(1,1.2)}(N^{16})$

$+3q(1,1.1,1)(N^{16})$ $mod 381$ ,

where $N^{16}$ is a 16-dimensional manifold associated with $M^{15}$ .

6. Manifolds which are homeomorphic and not diffeomorphic.

Now we consider bundles $\mathfrak{B}_{m,n}^{(4,8)}$ and $\mathfrak{B}_{m^{8}}^{(};_{n^{)}}^{7}$ .
We associate to $\mathfrak{B}_{m,n}^{(4,3)}$ (resp. $\mathfrak{B}_{m,n}^{(8,7)}$ ), the bundle $\overline{\mathfrak{B}}_{m,n^{)}}^{t4,3}=\{\overline{B}_{m.n}^{(4,3)},p, S^{4}, \sigma^{4}, SO(4)\}$

(resp. $\overline{\mathfrak{B}}_{m,n}^{(8,7)}=\{\overline{B}_{m,n}^{(8,7)},p,$ $S^{8},$ $\sigma^{8},$ $SO(8)\}$ ) with 4-cell $\sigma^{4}$ (resp. 8-cell $\sigma^{8}$ ) of closed
interior of $S^{3}$ (resp. $S^{7}$ ) as fibre. Differentiable structure is defined on $B_{m^{4}}^{(}$;
and on $B_{m}^{t8}$; in natural way, and we obtain an 8-dimensional manifold
$N_{m,n}^{(4,3)}$ with boundary $M_{m.n}^{(4,3)}$ and a 16-dimensional manifold $N_{m,n}^{(8,7)}$ with boundary
$M_{m,n}^{(8,7)}$ .

Non trivial cohomology groups of $N_{m,n}^{(4,3)}$ and $N_{m,n}^{(8,7)}$ are
$H^{4}(N_{m,n}^{(4,3)};Z)\approx Z$ , $H^{8}(N_{m.n}^{(8,7)};Z)\approx Z$ .

We denote by $\gamma_{4}$ and $\gamma_{8}$ generators of $H^{4}(N_{m,n^{)}}^{14,8} ; Z)$ and $H^{8}(N_{m,n}^{(8,7)} ; Z)$ respec-
tively.

Making use of the Whitney product theorem of Pontrjagin classes,
Pontrjagin classes of $N_{m,n}^{(4,3)}$ and $N_{m,n}^{(8,7)}$ are easily computed by Pontrjagin
classes of $\mathfrak{B}_{m.n}^{(4,3)}$ and $\mathfrak{B}_{m.n}^{(8,7)}$ (see section 2). They are zero except

$p_{1}(N_{m,n}^{(4,3)})=\pm 2(2m+n)\gamma_{4}$ ,
$p_{2}(N_{m,n}^{(8,7)})=\pm 6(2m+n)\gamma_{8}$ .

Hence by Definitions 1 and 3 in section 5, we have
$M_{nr,n}^{(4,3)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{7}(n)$ manifolds ,
$M_{nr.2n}^{(4,3)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{7}(2n)$ manifolds ,
$M_{nr^{\prime}.4n}^{(43)}(r=0, \pm 1, \pm 2, \cdots )$ are $P^{7}(4n)$ manifolds,
$M_{nr.n}^{(8,7)}$ $(\gamma=0, \pm 1, \pm 2, \cdots )$ are $P^{15}(n)$ manifolds,
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$M_{nr,2n}^{(8,7)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{15}(2n)$ manifolds,

$M_{nr.3n}^{(8,7)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{15}(3n)$ manifolds,

$M_{nr.4n}^{(8,7)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{15}(4n)$ manifolds,

$M_{nr,6n}^{(8,7)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{15}(6n)$ manifolds,

$M_{nr.12n}^{(8,7)}$ $(r=0, \pm 1, \pm 2, \cdots )$ are $P^{15}(12n)$ manifolds.

That is, $M_{m}^{(43)}j_{n}$ (resp. $M_{m.n}^{(8.7)}$ ) is a $P^{7}(n)$ (resp. $P^{15}(n)$) manifold, if Pontrjagin
classes vanish.

And their invariant $\lambda$ are:

$\lambda(M_{nr^{\prime},n}^{(43)})\equiv n^{2}(2r+1)^{2}-1$ $(mod 7)$ ,

$\lambda(M^{(}n^{43)}\dotplus 2nr,2n)\equiv 2n^{2}(r+1)^{2}-1$ $(mod 7)$ ,

$\lambda(M_{n\dot{k}+4nr.4n}^{(43)})\equiv 2n^{2}(4r+2+k)^{2}-1$ $(mod 7)$ ,

$\lambda(M_{nr,n}^{(8,7)})\equiv 78(1-n^{2}(2r+1)^{2})$ $(mod 381)$ ,

$\lambda(M^{(}n^{87}\dotplus 2^{)}nr,2n)\equiv 78(1-16n^{2}(r+1)^{2})$ $(mod 381)$ ,

$\lambda(M_{nk+8nr.3n}^{(8,7)})\equiv 78(1-n^{2}(6r+2k+3)^{2}$ $(mod 381)$ ,

$\lambda(M_{n\dot{k}+4nr,4n}^{(87)})\equiv 78(1-n^{2}(8r+2k+4)^{2})$ $(mod 381)$ ,

$\lambda(M_{nk+6nr.6n}^{(8,7)})\equiv 78(1-n^{2}(12r+2k+6)^{2})$ $(mod 381)$ ,

$\lambda(M_{nk+12nr,12n}^{(8,7)})\equiv 78(1-n^{2}(24r+2k+12)^{2})$ $(mod 381)$ .
Since, by Theorems 3.1 and 3.2, $B_{m+nr,n}$ are homeomorphic to $B_{m.n}$ , we

can regard $M_{m+nr.n}$ as a manifold defined on $B_{m,n}$ .
Hence we obtain following theorems:
THEOREM 6.1. If $n\not\equiv O$ mod 7, each of the following spaces possesses different

differentiable structures.

$B_{0,n}^{(4,3)}$ , $B_{n.2n}^{(4,3)}$ , $B_{n.4n}^{(4,3)}$ , $B_{3n,4n}^{(4,3)}$ .
THEOREM 6.2. If $n\not\equiv O$ mod 127, each of the following spaces possesses diffe-

rent differentiable structures.

$B_{0,n}^{(8,7)}$ , $B_{n,2n}^{(8,7)}$ , $B_{n,3n}^{(8,7)}$ , $B_{2n,3n}^{(8,7)}$ , $B_{n.4n}^{(8,7)}$ , $B_{3n,4n}^{(8,7)}$ ,

$B_{n,6n}^{(8.7)}$ , $B_{5n,6n}^{(8,7)}$ , $B_{n,12n}^{(8,7)}$ , $B_{5n,12n}^{(8.7)}$ , $B_{7n,12n}^{(8,7)}$ , $B_{11}^{(87)}i_{\iota.12n}$ .
REMARK. If $n\neq\pm n^{\prime},$ $B_{rn,n}^{(4,3)}$ and $B_{r’ n}^{(4,3)}$ , (resp. $B_{rn,n}^{(8.7)}$ and $B_{rn^{7)},n}^{t8},$ ) are not the

same topological space, because they have different homotopy types. On
the other hand, in case $n=\pm n^{\prime}$ (for example, for $B_{O,2n}^{(4,3)}$ and $B_{7}^{(4,3)}$ ), we do not
know whether they are the same topological space or not.

Since $B_{0.1}^{(8.7)}$ is a topological 15-sphere (Theorem 3.3), we have in particu-
lar (Shimada [4], Tamura [5] Remark 4.6.):
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THEOREM 6.3. 15-sphere possesses differentiable structures diJferent from
natural one.

University of Tokyo.
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