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1. Introduction.

Let F be a closed Riemann surface of genus p, and F be an un-
ramified and unbounded covering surface of F. If, above any closed
curve on F, there never lie two curves on 7, one of which is closed
and the other open, F' is said to be regular. As is well known, a
regular covering surface F' admits covering transformations onto itself,

which are one-to-one and continuous and carry each point P on F into

a point P with the same projection as P. The totality of these trans-
formations forms the covering transformation group I'(F), which
characterizes F.

DEFINITION. A regular covering surface F of F is called an un-
ramified abelian covering surface, if its covering transformation group
I'(F) is abelian?

In the present note, we shall investigate the structure of un-
ramified abelian covering surfaces in some detail (§§2-4), and prove
some function-theoretic properties of these surfaces (§§ 5-6).

An example of such surfaces is given by the Riemann surface F,
of an abelian integral w,” where dw is an analytic differential of the
first or the second kind defined on F. F, is an unramified and un-
bounded covering surface of F' characterized by the following property :
a curve ¥ on F,, is closed if and only if its projection v on F is closed

1) An “unramified abelian covering surface ” of a closed Riemann surface corresponds
to an “unramified abelian extension” of an algebraic function field. L. Sario [6],
used the term “ Abelsche Uberlagerungsfliche ” or “ abelian covering surface” for another
sort of covering surfaces (one of which is called “ die Uberlagerungsfliiche der Kommuta-
toren” in [1]), whose covering transformation groups are not abelian except for some
simple cases.

2) The Riemann surface of a multiplicative function gives a more general example.
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andS dw=0. Its covering transformation group I'(F,) is isomorphic
Y

to the additive group of complex numbers generated by the 2p periods
of dw, which are taken along 2p closed curves forming a homology
base on F (cf. §2). If there exist, between these 2p periods, no linear
equations with not all vanishing integral coefficients, I'(¥.,) is a free
abelian group with 2p generators, and F, coincides with the covering
surface of integral functions® (“die Uberlagerungsfliche der Integral-
funktionen ” in [9] or “ die Uberlagerungsflaiche der Homologien” in

[1] of F.

2. The group I’(ﬁ); constructive definition of F.

Let G 4, Co,i=1,---,p, be 2p (oriented) piecewise analytic simple
closed curves on F, such that

1) the system Cj j7=1,--,2p does not divide F intdo two or more
parts; ,

2) any two of C;, except the p pairs C;_;, Cy, =1, -, p, have no
points in common ; and

3) for each 7, C;_; and C,; have precisely one point in common.

Let P be an arbitrarily fixed point on * For each j=1,---,2p,

we denote by C,-(IB) the end point of a curve on F starting from P,
whose projection on F is closed and homotopic to the curve C;. Some
of these points may, of course, be mutually identical, or identical with
P. Since F'is regular by the assumption, there exist unique covering
transformations of Z, which carry P into C j(ﬁ), 7=1,---,2p, respective-
ly. These transformations form a system of generators of the group
I'(F'), and shall be denoted by the same letters C;® As to these
matters, cf. e.g. [1] or [9]

Now, I'(F') being an abelian group generated by C;, j=1,.,2p,
there exists a number of defining relations between these elements:

3) 1I.e.the “minimal” regular covering surface of F, on which every integral function
defined on F becomes single-valued.

4) In general, thesE transformations depend also on the choice of the point P In
the case of abelian I'(F'), however, they are uniquely determined by the curves Cj;.
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20

(1) 21 v,; C;i=0 (the identical transformation),
=

with integral coefficients v;;, whose gx2p matrix

(2) (Yeidk=1ira: j=1,.20

is of rank gq. The number 2p—g=r is the rank of the abelian group
I'(F). '

We shall represent the elements S22 m; C; of I'(F), where m; are
integers, by the lattice points (msy,---, m,,) of a 2p-dimensional euclidean
space E??. Let T be the group of transformations of E2?? generated by
the 2p translations carrying the origin into (1,0,---,0), ---, (0,---,0,1)
respectively, and $(F) be its subgroup generated by the ¢ translations
carrying the origin into (v, -, vz 2s), #=1,---, q, respectively. Obviously,
two lattice points of E?? represent one and the same element of 7'(Z)
if and only if they are equivalent with respect to (), and I'(F) is
isomorphic to the factor group I/3(F).

Now, suppose that 7'(F') is given by the defining relations (1). We
shall construct the covering surface F from F as follows. Let the two
shores of each of the curves G-, Gy, i=1,---, p, be denoted by GCs_;,
Cs-1, Csi, G5 respectively, in such a manner that the oriented curve
C,; intersects C,;_; from the shore C,/_; to the other shore C,_,, .and
that C,;_, intersects C, from Cj; to C;. We cut F along the 2p curves
C; to obtain a surface @ of planar character having p boundary curves,
each of which consists of four sides G-, C3;, Coi-1, Csi. To each residue
class (m,, -, m,,) mod I(F'), we associate a replica @(m, -, msp) of @.
Next, we identify the side C3 of each @(my, ---, my;_1, My, -+, Myp) With
the side Cj3 of @(mey,---, mey; 1+ 1, my, -+, m,,), and Cof_y of @(may, -, Mmy;_y,
My, -y Map) With Gy of @(my,---, my;_y, mo; +1,---, my,), where each point
on C; must be identified with the corresponding point on Cj
(U=1,---,2p).

By these procedures, each side of each @ is identified with some
unique side of some other (or the same) @, and, at each vertex of each
@, there meet four @’s: D(my, -, myi_y, Moy, Myp), D(mmy,--, M1 +1,
Mo, -y Myp), Dy, -, my; _y, M+ 1,-+-, myy), and @(may,---, w1+ 1, mp;+ 1,
.-+, Mm,p) (some of these four may be mutually identical). Thus, an un-
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ramified and unbounded covering surface of F is constructed. It is
evident that this covering surface has 7’(F) as its covering transforma-
tion group.

REMARK. Obviously, F* is closed if and only if the group I'(F)
is finite, i.e. »=0. Further, it is easily proved that, if »=1, the ideal
boundary of F' consists of two components (Randstiicke in [1D, and, if
7#=>2, it consists of a single one (cf. §3). As for the genus p of F we
have the followings: if the order g of I'(F) is finite, then p=g(p—1)
+1; if g=c and p=1, then p=0; and, if g= and $>2, then

ﬁ_—_ o,

3. An exhaustion {#,} of F.

Suppose that »>>0, so that F is open. Then, from the 2p Dbasis
vectors (1,0,---, 0),---,(0,---,0,1) of FE?”, we can choose # ones:
b,**, b, sSuch that the g+7»=2p vectors rp=(vum,:,ve2s) k=1,--,4q,
and y;, /=1,---, », are linearly independent. In order to construct a
convenient exhaustion of the surface F, we shall introduce in E?? a

new coordinate system (x,---, X4; Y1»,°:,¥,) With the same origin as
before and with &,---,%; Y,--*, v, as basis vectors:

3) (my, -+, Map)=(21,"", Xg3 Y- )T,

where T is a 2p x2p matrix obtained from (2) by attaching below 7
rows of the form (0,--,0,1,0,--,0), We put

(4) T '=(ajw Bj1)

wheve j=1,---,2p; k=1,---,q; I=1,---,7.

Two lattice points (2, -, mz,) and (my, -, m;,) are equivalent with
respect to I(F) if and only if their difference has integral x-coordinates
and vanishing y-coordinates :

25
Zldjk(m}—mj)zo mod 1, k=1,,q,
=
(5)
27 ,
;sz(mj—mj)=0, I=1,, 7.

The number @ of lattice points (#z,,---, m,,) contained in the 2p-
dimensional parallelepiped: 0<x,<1, 0y, <1, k=1,-,¢q, I=1,-,7,
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is equal to the absolute value of the determinant of T (cf. Minkowski
[2]).

Further we remark : if (x,---, x4; ¥1,---,¥1,--, ¥,) represents a lattice
point in E??, i e. if the components of the vector (x,-*, x4; Y15+, ¥») T
are all integers, (x,--, x4; ¥Y1,---, Vi+£1,---,9,) also represent lattice points,
and these are neighbours of the former one. In fact, as is seen from
3), (0,---,0; 0,---, +1,---,0)T have the form (0,---, +1,---, 0).

Consider two @’s of F' adjacent to each other along some side or
having some vertex in common : @(my,---, My;_1, My, -, Myp) =@PL X1, Xq;}
yl)"'oyr] » and ¢(”’ll‘-"'s M1+ €1, Myt ez 0, m?ﬁ)=¢[xi’”" x:I > y],_,,y;»],
where ¢, e,=0, +1, not both zero. By (3) and (4), we have y,—y,=
€18 1,1+ €2 Bei.1, I=1,---,». Hence, if we put

M=[1\;IEIIX (IBoi-1, 1]+ 182, N]1+1,

where [ ] denotes the integral part of the number lying in, we have
(6) ly;_yll<M, l=1,"',7’.

Now, for any integer n>>0, let F', be the part of # which con-
sists of all @(m, -+, myy) =@l x1, -+, Xq; Y1, *, ¥,] satisfying —Mn=<y,<
M(n+1), I=1,--,». The number of such @’s is equal to M"2n+1)@Q;
and the sequence F,, n=0,1,---, exhausts /. Further, as is seen from
(6), any @ of F' having points in common with some @ of F, belong
to F,,.. Hence, F,, together with its boundary, is contained in the
interior of F,,,.

Finally we shall prove that 7, is connected if # is sufficiently
large: #n>>n,® First, we connect each of M"Q @’s of F, to @[O0, -, 0;
0,---,0] by a chain of @’s on F, and take 7, so large that F,, contains
these M7Q chains. Suppose that @[x;, -, x4 ; yl,---,y,]iﬁ‘,,. Then, while
reducing the absolute values of y’s one by one, we construct a chain
of @’s on F,, which connects @[x;, -, xq; V1, ¥,] to one of the M7Q

@’s of F,. Thus, @[x, -, %q; y1,--,¥-] can be connected to &[0,--,0;
0,---,0] in F, if n>>n,

5) In the notation of replicas of @, we shall use square brackets instead of round
ones, if the corresponding lattice point is represented in terms of the (x, y)-coordinates.
6) E.g. it is sufficient to take ny=2g, ;| vzj | +7M.



A note on unramified abelian covering surfaces. 167

4. Estimation of boundary lengths of Z,.

Suppose that a curve on # consists of a finite number of the arcs
C;,Cj;, j=1,-,2p, of some @s on E. For simplicity, we shall call the
number of these arcs the ‘ length ” of that curve.

~1) We shall first evaluate the total length L, of the boundary 17,
of F,.

For any 7 integers t,,---,¢,, let Z(¢,,---,,) be the part of F consisting
of M"Q @[x1,---,%,; ¥1,", ] satisfying Mt <y, < M(t;+1), I=1,---, 7.
As is seen from (6), any @ of F adjacent to some @ of Z(t,,--,t,) be-
longs to one of Z(¢,+8&,, -, t,+8,), where §,=0, +1, I=1,--,7.

For not all vanishing &’s, let «(#,---, ¢, ; &, -, 9,) be the part of the
boundary of Z(¢,,---,t,), along which it adjoins to Z(¢,+8y,---, ¢,+8,), and
L(s,,---,8,) be its length. Since any Z(#, -, t,) is congruent to Z(0,---, 0)
=F,, L(8;,,8,) does not depend on ¢#,---,¢,, The sum of L(s;, -,3,)
for the 37—1 admissible value combinations of &’s is equal to the
boundary length L, of F,.

Suppose that Z(t,---, t,)F,, i.e. —n<t;<<n, I=1,---,». The curve
v(t, -, t,; 8,-,98,) belongs to the boundary of F, if and only if Z(#,+
S, t,+8,)d=F,. As is easily seen, the number of such value com-
binations of #s for fixed &s is equal to (2n+1)—(2n)’' 2n+1) "7,
where 7’ is the number of non-vanishing &’s. Hence, the total boundary
length of F, is found to be: L,=31{(2n+1)—(2n)" 2n+1)""7"}x
L&y, -+, 8,)<{(@2n+1)y—2n)} 3T L(&, ", 8,)={(2n+1)"—(2n)"}L,, where
the summation ranges over the 3”—1 value combinations of &’s.

Thus, we have

(7) L,=0(n1").

2) Next, we shall estimate from above the length of each connected
component of I,.

Suppose that a boundary arc «, one of C{,C;,Cs,C; say, of a
D(m,,--, myp) of F, belongs to I',. At each end point of «, there meet
four @’s of " (not all belonging to F): ®(m, my, ma,---, M), D(my+ey,
Mgy M3y, Myp), D(my, Myt ey, Mgy, Myp), and D(m + e1, My + €3, Mzy--+, Myp),
where e, e;=+1. Hence, the arc of I’,, which adjoins to « at this
point, must be one of C;,Cy, Cs, C; of one of above four @’s. Hence
we see: the connected component of I”, containing « consists only of
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the arcs C{,Cy,Cy,Cs; of @’s with constant me,,---, my, (i.e. @’s, which
allow one such representation respectively).

Now, let @(mj, my, m¥,---, m3,) be a @ belonging to F,. We denote
by 42=42(m3, --, m,) the part of I, consisting of @’s of the form
&O(my, my, m¥ -, mi,), and by y2=o2(m3, -, m3,) the part of the bound-
ary of 42 consisting of the arcs Ci{,C;i,Cs,C;. Then, in order to
estimate from above the length of a component of I°, consisting of
C:,Ci,Cy,Cy, it suffices, by the above remark, to estimate the length
L}f:L}lz(m;,---’ m;P) of 7212.

By the definition of F,, @(m,, m,, ms, -, m,) belongs to F, if and
only if

2p
(8) “‘Mng@umr*‘:@zzmz"“2331'1”’&;<M(n+1), I=1,-,r.
P

According to the rank of the 2x» matrix
811,"', B]r
(9) ,
Ble' ) BZr
we distinguish three cases from each others.
(@): The matrix (9) has the rank 2.
Then, the inequalities (8) define a bounded convex region &2 on
the (s, m,)-plane through (me, my, m¥, -, m$s), i.e. the plane m;=my,
e, mpp=mp in E??.  Further, there exists on this plane no pair of

mutually equivalent lattice points. For, if (my, m,), (mi, m;) are such a
pair, there hold by (5)

B]l(mi—ml)_*-BZl(mé——mZ):O) l:l:"', 7,

so that mi=m,, my=m,.

To each lattice point (me,, ;) on this plane, we associate a square
S(m,, m,), whose centre is at (m,;, m,) and whose sides are parallel to the
coordinate axes and have the length unity respectively. S(m,, m,) may
be considered as a model of the replica @(m,, m,, m3, -, m3,) ; the sides
parallel to the m;-axis are the models of the boundary arcs C{ and
Ci, and the sides parallel to the mz,-axis are those of C; and C;. The
part 42 is represented by the sum D!? of all S(mz,, m,) with (m,, m,)e s,
and L? is equal to the length of the boundary of DI

Suppose, for instance, that By Bxn— B Bx=+0. Then, the first two
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inequalities of (8) define a parallelogram =2 containing 8!2. Let P2 be
the sum of all S(m,, m,) with (m,, my)e=)2. Since 82 is convex and
contained in =%, it is easily seen that the boundary length L1 of D2
does not exceed that of P

The directions of the sides of =12 are independent of », and their
lengths are respectively proportional to ». Hence we see that the
boundary length of P2 of is ~const. z. This constant depends only on
Bi1, Bz, Bty B, and not on my,---, m5, since, as is seen from (8), a
change in these latter quantities only causes a translation of =2

Hence, in the case (a), we have

LXm3, -, m,) < const. n (n=>1),

where the constant on the right-hand side depends only on the matrix 7.

(b): The matrix (9) has the rank 1.

Suppose, for instance, that |Byul+|Bx|=FF0. In this case, the in-
equalities (8) define a parallel strip region 812 on the (wmey, m,)-plane,
which is parallel to the straight-line By m,+ By #,=0.

A lattice point (w2, m,) on the (my, m,)-plane is, by (5), an equi-
valent of the lattice point (0, 0), if and only if

alkm1+a2km2—;:0 mod 1, k:l,"',q,
(10)
B my+ By m,;=0, : =1, 7.

Hence, any equivalent of (0, 0) on this plane lies on the straight-line
Bu my+ By m,=0. Further, since the elements of the matrix Q7 ™! are
integers, the point (—@?8,, @*B;) is actually a lattice point ==(0, 0)
satisfying (10).

Let (w1, u2)3=(0,0) be one of the equivalents of (0,0) nearest to
(0, 0). Then, any equivalent of (0, 0) is represented in the form
(vpy, vis), »=0, +1,---. Hence, two lattice points (me,, m,), (m1, m;) are
mutually equivalent if and only if my=m+vu, my=m,+vu, for some
integer v.

As in (a), we may consider the square S(my,m;) as a model of
@Q(my, my, ms, -, mp). Then, a model of 4? is constructed from the
sum of all S(m,, m,) with (m, m;)e8? by identifying the squares
S(my + vy, ma+vpy), v=0, +1,---, mutually. As is easily seen, the re-
sulting cylinder-shaped figure has two boundary components, each of
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which has the length ||+ |u;]. Hence, we have L2Z=2(|u|+|p:l)

<26%1 Bul+18al).
Thus, in the case (b), we have

Lilﬂz(m.;’ ) mZyP) gconst- ’

where the constant on the right-hand side depends only on the matrix 7.

(c): The matrix (9) has the rank 0.

In this case, any point on the (m,, m.)-plane satisfies (8); and the
lattice points (@, 0) and (0, @) both satisfy (10), i. e. they are equivalents
of (0, 0). Then, by the well known Minkowski’s procedure we can
find two lattice points (u, u;) and (ug, p#3) equivalent to (0, 0), such
that any equivalent of (0, 0) is uniquely expressed in the form (wu,+
v i, veo+v'uy) with integral coefficients v, »'.

As before, we take the square S(my, m,) as a model of @(m,, m;,
ms, -, m3) and construct the model of 4!2 from the whole (m,, m,)-
plane by identifying the mutually equivalent squares S(my;+vu;+ v ui,
my+vps+v'py), v,»' =0, +1,---. The resulting torus-shaped figure has
no boundary arcs, i.e. y¥ is empty.

Thus, in the case (c), we have

L}‘Z(m;’ "7y m;ﬁ) = 0 .

5. Main theorem and lemmas.

As usual, let O denote the class of Riemann surfaces with null
boundary, and O ,p, O4p the classes of those not tolerating non-constant
analytic functions which are bounded or have finite Dirichlet integrals
respectively. Now, we shall formulate our theorem in the following
form.

THEOREM. Let I be an unramified abelian covering surface of a
closed Riemann surface F, and I'(F) be its covering transformation
group.

i) Let » be the rank of the abelian group 1'(F). Then, FeOg
if and only if »r<2.

iii) Let Cy-y, Cy,t=1,---,p, be the system of generators of I'(F)
mentioned in §2. If theve exists, for each i=1,---, p, a relation of the
form
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(11) ¥2i-1 Coj—1+ 2i Co; =0

‘with not both vanishing integral coefficients .-, and v,”, then Fe O 4p.
Let # be a surface of planar character obtained from F by cutting

along p disjoint non-dividing loop cuts. According to Royden [5], we

shall call an unramified and unbounded covering surface of F a cover-

ing surface of type S, if it consists of a (finite or infinite) number of
replicas of ¥. Then,

COROLLARY OF iii). An abelian covering surface of type S of a
closed Riemann surface belongs to the class Oy4p.

In fact, taking the p loop cuts as Cy;_;, ¢=1,---,p, we can easily
construct p curves Cy;,i=1, -, p, such that the system C;,j=1,---,2p,

satisfies the conditions mentioned in §2. Then, is satisfied with
vi-1=1, v2=0.

Our proof of the theorem is based on the following existence criteria
due to Royden, Nevanlinna, Sario, and Pfluger.

Let FA be an unramified and unbounded covering surface of F,
which is composed of an infinite number of replicas of @ We may
then represent the structure of 1/5 by the WeAll known Speiser linear
graph (Streckenkomplex), where each @ of F is represented by a knot
1% (u=0,1,---), and two knots representing two @’s adjacent /:co each
other are connected by a segment t! (»=0,1,---). If two @’s of F adjoin
to each other along two or more sides, their representative knots are
connected by the same number of segments; and, if a @ of i?‘\ adjoins
to itself along a number of sides, its representative knot has the same
number of segments starting from it and returning to itself. Since @
has 4p sides, there meet 4p segments at each knot (returning segments

being counted twice). We fix an orientation for each segment ¢! once
for all, and distinguish one knot #} from others.

LemMA 1. (Royden [5])®. If there exists, on the linear graph of
ﬁ‘, a one-dimensional chain >S5 a, t, with real coefficients a., such that
(12) ST atly=t§ and >SFlafl+coo,
then ﬁ‘e; Og.

7) Clearly, the effectiveness of this condition depends on the choice of the curves Cj,
j: 1, ZP-

8) For the brevity of statements, we put this rather restrictive assumption.

9) A simple proof of this theorem was given by M. Tsuji L8]
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Let W be an open Riemann surface, and A}, «=1, -, k(1) <+ oo,
n=0,1,---, be a collection of doubly connected subregions of W satisfy-
ing the following conditions :

1) each annulus A is bounded by two piecewise analytic curves
v, and v;;;

2) any two of the annuli A have no points in common ;

3) the complementary set of \JX¥? Ar with respect to W has pre-
cisely one compact component B, ; and

4) B, is bounded by the k(x) curves v% and contains the annuli

5 with 7/ <n.

Let «5 be the harmonic measure of v: with respect to A%, i.e. the
function harmonic in A%, continuous on the closure of AL, =0 on «~,
and =1 on v;. We denote by v5 the conjugate harmonic function of
uy, and put

w5 =2 | o w=1/3]

These quantities are called the harmonic moduli of Ar and \J¥7% Ax
respectively. We put w,=Min, x5, and K(N)=Max, - k(n).
LEMMA 2. (Nevanlinna [3]). If

Eo-n:_*"ooy

n

then WeOg.
LEMmMA 3. (Sario [6], [7]). If

E/"n:+o°’

n

then WGOAD.
LEMmmMmA 4. (Pfluger [4])).7” If

fim {ﬁ fon— ,; log K(N)} =+ <o,

N0

then We OAB-

10) PAuger states this theorem in terms of a conformal metric defined on W.
4 is proved by a slight modification of his proof.
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6. Proof of the theorem.

Since the theorem is trivial for closed covering surfaces F, we
assume that 7 is open.

1) PROOF OF i): NECESSITY OF r=<2.

Suppose that »=>3. Since [/ consists of an infinite number of
@’s, it can be represented by the Speiser linear graph mentioned in §5.
We shall construct on this graph a one-dimensional chain > a, #
satisfying [(12).

Let E?? be the space mentioned in §2. By segments of unit length,
we connect every two neighbouring lattice points in E?*: (my,---, m;,
-, myp) and (mey, -+, m;+1,---,my,), so that a net of segments is con-
structed in E??, If we identify the lattice points and the segments
with each others, which are mutually equivalent with respect to the
group 3(F), we obtain from this net a linear graph G?? representing
the structure of F.

Since =3, we can choose, from the 2p generators C; of I'(F),
three ones, C;, C,, and C, say, which are mutually free. Then, the
three-dimensional subspace E?: m,=0, -, m;;=0, of E?* contains no
pair of points equivalent to each other with respect to I(F). Let G
be the subgraph of G?? consisting of the knots (lattice points) and the
segments lying in FEBS.

To the segments ¢! of G** not appearing in G° we attribute the
value @,=0. For the segments # in G° we determine «, as follows.
Let M, be the middle point of 1, and O be.the origin (0,0,0) of E®.
Through M, we draw a plane in E® parpedicular to #, and let S, be
the square on this plane, whose centre is at M,, and whose sides are
parallel to the coordinate axes of E® and have the length unity respec-
tively. Let «, be the solid angle spanned by S, at O. We assume
that ¢! is so oriented that its positive direction and QM: make an angle
<a/2, and put a,= —w./(47).

Now, consider the boundary of the chain > a@,#.. Obviously, a
knot #% of G?? not appearing in G® has the coefficient zero in (377 a,tl)
=S¢ a,tl. Suppose that # (u=1,2,---) is a knot of G* other than the
origin denoted by #]. At #° there meet six segments I of G® and the
corresponding six squares S, form the surface of a unit cube with
centre at t%. By the mentioned orientation of the segments tI and by
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the fact that the origin lies outside that cube surface, we see that the
coefficient of #0 in S @, #! vanishes. Similarly, the coefficient of 1) in
Sva, il is found to be =1. Hence, we have

5 a t%)‘:ﬂ)’ .

Since w,=0(1/OM?%), we have 3¢ |a,?<const. 3¢ (1/OM )< const.
SV{1/(mE+m3+ m3)?} < + co, where the summation S ranges over all
lattice points (w7, m,, m;) in E® except (0,0, 0).

Hence, by Lemma 1, we have F¢Og.

2) CONSTRUCTION OF ANNULI Af.

In order to prove the remaining parts of the theorem, we shall
construct on F a collection of annuli A% satisfying the four conditions
mentioned in §5.

For each j=1,---,2p, we construct on £ a doubly connected strip
region D; containing the curve C; in its interior, such that any two of
D;, except the p pairs D,;_;, Dy, t=1,---, p have no points in common,
and that, for each i, D, _; 1D, is a simply connected region. Further,
we assume that, by the cutting of F' into @, D; is transformed into
two simply connected strip regions D; and D; on @, respectively ad-
jacent to the boundary arcs C; and C; of &. Then, D;_;N Dy,
Dy;_1N D3, D;:.1N Dy, Dy, 1N Dj; are simply connected subregions of @
respectively having a vertex of @ on the boundary.

Let {F,} be the exhaustion of F defined in §3, and 7™ («x=1, -,
k(n)) be a connected component of the boundary I’, of F,. Let A%
be the sum cf the replicas of D}, Dj, D3;_,n D3, Dy;_.n D3, D3N D5,
and Ds_, N Dz on F,, which adjoin to the arcs of I'% or have some
vertex of 7’5 on the boundary. Aj is a doubly connected subregion of
F,. Since I',=\/X¥?I* is the whole boundary of F,, and since F, U,
is contained in the interior of F,.; the annuli A%, «=1,---, k(%), n=ny,
ny,+1,---, satisfy the mentioned conditions.

Now, Aj is composed of L; replicas of D} and Dj;, and at most
the same number of replicas of Dy, Dy, Dsi-1N\Ds, DsiiND3;, or
D;;_,nDj;, where L is the “length” of I't. Hence, it is easily seen
that the harmonic modulus uxf of A% satisfies an inequality

(13) pan=c/Ls

with a positive constant ¢ independent of « and n#. Hence, we have
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for the harmonic modulus o, of \J%% A,
(14) Oy gC/Ln ’

where L,=3>"%7% L% is the total “length” of I,.
3) PROOF OF 1i): SUFFICIENCY OF »<2.

If »<<2, we have, by (7) in 1) of §4 and by [(14), o.=>const. (1/%)
—>0. Hence

-]
i

g-n:—}—oo ,
n

so that, by Lemma 2, FeO.

4) PROOF OF ii).

By the results of 2) of §4, we have Max, L:=0(n). Hence, by
pn=Min, u%=>const.(1/#2)>0. Consequently

;/“‘n:—l—oo ’
so that, by FeOup

5) PROOF OF iii).

Suppose that [11) holds for each i=1,---,p. Then, the p lattice
pOIHtS ('Yl’ 72: O): (09 ) 0’ Yoi-1, Vais 0,' ) 0)9 ’ (O , Y2p-1s 'YZI’) in
E?? are equlvalents of (0,---,0) with respect to the group ‘T(F‘), so that,
on any (mw;_1, my)-plane through any lattice point in E??, there exist
pairs of lattice points equivalent to each other. Hence, among the
three cases distinguished in 2) of §4, the case (a) cannot occur. Con-
sequently, we have Lg<const. for any » and «, whence, by [13),

=Min, p&=>const.>0. On the other hand, since L,=O(n""!), we have
k(n) O(nr1), so that K(N)=O(NN""1). Hence,

S fim— %_ log K(N')=const. N —O(log N).

The right-hand side tends to + o with N, whence, by [Lemma 4,
FeO 45 follows.
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