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Abstract. In this note, we prove almost sure global well-posedness of the energy-
critical defocusing nonlinear wave equation on T

d , d = 3, 4, and 5, with random initial data
below the energy space.

1. Introduction.
1.1. Energy-critical nonlinear wave equations. We consider the Cauchy problem

for the energy-critical defocusing nonlinear wave equation (NLW) on the d-dimensional torus
T
d = (R/2πZ)d , d = 3, 4 or 5:

(1.1)

{
∂2
t u−�u+ |u| 4

d−2 u = 0

(u, ∂tu)
∣∣
t=0 = (u0, u1) ,

(t, x) ∈ R × T
d ,

where u is a real-valued function on R × T
d . In particular, we prove almost sure global

well-posedness of (1.1) with randomized initial data below the energy space.
NLW on the Euclidean space R

d has been studied extensively from both applied and
theoretical points of view. Due to its analytical difficulty, the energy-critical defocusing NLW
(1.1) on R

d has attracted a tremendous amount of attention over the last few decades. After
substantial efforts by many mathematicians, it is known that (1.1) on R

d is globally well-
posed in the energy space and all finite energy solutions scatter [29, 13, 14, 27, 28, 16, 12, 2,
1, 21, 22, 31]. Thanks to the finite speed of propagation, these global well-posedness results of
(1.1) on R

d in the energy space immediately yield the corresponding global well-posedness of
(1.1) on T

d in the energy space. We point out that these well-posedness results in the energy
space are sharp in the sense that the energy-critical NLW (1.1) on R

d is known to be ill-posed
below the energy space [10].

In recent years, there has been a significant development in incorporating non-deter-
ministic points of view in the study of the Cauchy problems for hyperbolic and dispersive
PDEs below certain regularity thresholds, in particular a scaling critical regularity. For ex-
ample, the methodology developed in [6, 8, 4, 25] readily yields almost sure local well-
posedness of (1.1) with respect to randomized initial data below the energy space. There
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are also results on almost sure global well-posedness that go beyond the deterministic thresh-
olds. Burq-Tzvetkov [9] considered the energy-subcritical defocusing cubic NLW on T

3 and
established almost sure global well-posedness below the scaling critical regularity. Subse-
quently, Lührmann-Mendelson [19] applied the probabilistic high-low method developed in
[11] and proved almost sure global well-posedness for some energy-subcritical NLW on R

3

below the scaling critical regularity. See [20] for a recent improvement on this work.1 More
recently, the authors [25, 23] incorporated the deterministic energy-critical theory and proved
almost sure global well-posedness below the energy space of the energy-critical defocusing
NLW (1.1) on R

d , d = 3, 4, and 5. Our main goal in this paper is to consider the energy-
critical defocusing NLW (1.1) on T

d in the probabilistic setting and prove almost sure global
well-posedness below the energy space. In the classical deterministic setting, the finite speed
of propagation immediately allows us to transfer a deterministic global well-posedness result
of NLW on R

d to the corresponding deterministic global well-posedness result on T
d . This

finite speed of propagation also plays an important role in our probabilistic setting. As we see
below, however, the probabilistic results on R

d in [25, 23] are not directly transferrable to the
periodic setting and some care must be taken.

1.2. Main result. The energy-critical NLW (1.1) on R
d is known to enjoy the fol-

lowing dilation symmetry: u(t, x) �→ uλ(t, x) := λ
d−2

2 u(λt, λx). Namely, if u is a solution
to (1.1) on R

d , then uλ is also a solution to (1.1) on R
d with rescaled initial data. It is easy to

check that the Ḣ 1(Rd )× L2(Rd)-norm and the conserved energy E(u) defined by

E(u) = E(u, ∂tu) :=
ˆ

1

2
(∂tu)

2 + 1

2
|∇u|2 + d − 2

2d
|u| 2d

d−2 dx

are invariant under this dilation symmetry. Note that by Sobolev’s inequality, E(u, ∂tu) < ∞
if and only if (u, ∂tu) ∈ Ḣ 1(Rd ) × L2(Rd ). For this reason, the space Ḣ 1(Rd) × L2(Rd) is
called the energy space. While there is no dilation symmetry on T

d , we still refer toH 1(Td )×
L2(Td ) as the energy space for (1.1) posed on T

d .
Our main goal is to prove almost sure global well-posedness of (1.1) on T

d below the
energy space. We use the following shorthand notation for products of Sobolev spaces:

Hs(M) := Hs(M)×Hs−1(M) ,

where M = T
d or Rd .

Given s < 1, fix a pair (u0, u1) ∈ Hs (Td ) of real valued functions. In terms of the
Fourier series, we have

uj (x) =
∑
n∈Zd

ûj (n)e
in·x , j = 0, 1 ,

such that ûj (−n) = ûj (n). We introduce a randomization (uω0 , u
ω
1 ) of (u0, u1) as follows.

For j = 0, 1, let {gn,j }n∈Zd be a sequence of mean zero complex-valued random variables
on a probability space (Ω,F , P ) such that g−n,j = gn,j for all n ∈ Z

d , j = 0, 1. In

1There is also a recent work by Sun-Xia [30] on almost sure global well-posedness for some energy-subcritical
NLW on T

3.
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particular, g0,j is real-valued. Moreover, we assume that {g0,j ,Re gn,j , Im gn,j }n∈I,j=0,1 are
independent, where the index set I is defined by

(1.2) I :=
d−1⋃
k=0

Z
k × Z+ × {0}d−k−1 .

Note that Zd = I ∪ (−I) ∪ {0}. Then, we define the randomization (uω0 , u
ω
1 ) of (u0, u1) by

(uω0 , u
ω
1 ) :=

( ∑
n∈Zd

gn,0û0(n)e
in·x,

∑
n∈Zd

gn,1û1(n)e
in·x

)
.(1.3)

In particular, if {g0,j ,Re gn,j , Im gn,j }n∈I,j=0,1 are independent standard complex-valued
Gaussian random variables, then the randomization (1.3) corresponds the white noise ran-
domization: (uω0 , u

ω
1 ) = (Ξ0 ∗ u0,Ξ1 ∗ u1), where Ξ0 and Ξ1 are independent Gaussian

white noise on T
d . See [23] for more on this.

In the following, we also make the following assumption on the probability distributions
μn,j of gn,j ; there exists c > 0 such that

(1.4)
ˆ
eγ ·xdμn,j (x) ≤ ec|γ |2 , j = 0, 1 ,

for all n ∈ Z
d , (i) all γ ∈ R when n = 0, and (ii) all γ ∈ R

2 when n ∈ Z
d \ {0}. Note that

(1.4) is satisfied by standard complex-valued Gaussian random variables, standard Bernoulli
random variables, and any random variables with compactly supported distributions.

Our main result reads as follows.

THEOREM 1.1. For d = 3, 4, or 5, let s ∈ R satisfy

(i) 1
2 < s < 1 when d = 3 , (ii) 0 < s < 1 when d = 4 , (iii) 0 ≤ s < 1 when d = 5 .

Given (u0, u1) ∈ Hs(Td ), let (uω0 , u
ω
1 ) be the randomization defined in (1.3), satisfying (1.4).

Then, the energy-critical defocusing NLW (1.1) on T
d is almost surely globally well-posed.

More precisely, there exists a set Ω(u0,u1) ⊂ Ω of probability 1 such that, for every ω ∈
Ω(u0,u1), there exists a unique solution uω to (1.1) with (uω, ∂tuω)|t=0 = (uω0 , u

ω
1 ) in the

class: (
Sper(t)(u

ω
0 , u

ω
1 ), ∂tSper(t)(u

ω
0 , u

ω
1 )

) + C(R;H1(Td)) ⊂ C(R;Hs(Td )) .

Here, Sper(t) denotes the propagator for the linear wave equation on T
d given by

Sper(t) (f0, f1) := cos(t|∇|)f0 + sin(t|∇|)
|∇| f1 .

This is the first result on almost sure global existence of unique solutions to energy-
critical hyperbolic/dispersive PDEs in the periodic setting. In particular, when d = 4, The-
orem 1.1 provides an affirmative answer to a question posed in [7]. When d = 4, Burq-
Thomann-Tzvetkov [7] previously proved almost sure global existence (without uniqueness)
of weak solutions to (1.1) on T

4 for 0 < s < 1. Moreover, the continuity (of the nonlinear
part) of the solution constructed in [7] was obtained only in a weaker topology. Their main



458 T. OH AND O. POCOVNICU

approach was to establish a probabilistic energy estimate and apply a compactness argument.
The lack of uniqueness in [7] comes from the use of the compactness argument. Theorem 1.1
allows us to upgrade the weak solutions in [7] to strong solutions.2

In the Euclidean setting, we introduced in [25, 23] the probabilistic perturbation theory
and proved almost sure global existence of unique solutions to (1.1) on R

d , d = 3, 4, and 5.
Let us briefly discuss the randomization of real-valued functions on R

d employed in [25, 23].
Let ψ ∈ S(Rd ) be such that suppψ ⊂ [−1, 1]d , ψ(−ξ) = ψ(ξ), and∑

n∈Zd
ψ(ξ − n) ≡ 1 for all ξ ∈ R

d .(1.5)

Then, any function u on R
d can be written as

u =
∑
n∈Zd

ψ(D − n)u,(1.6)

where ψ(D − n) denotes the Fourier multiplier operator with symbol ψ( · − n). We then
consider a randomization adapted to the decomposition (1.6). More precisely, given a pair
(u0, u1) of functions on R

d , we define the Wiener randomization (uω0 , u
ω
1 ) of (u0, u1) by

(uω0 , u
ω
1 ) :=

( ∑
n∈Zd

gn,0(ω)ψ(D − n)u0,
∑
n∈Zd

gn,1(ω)ψ(D − n)u1

)
.(1.7)

This randomization is based on the uniform decomposition of the frequency space R
d
ξ into

the unit cubes, called the Wiener decomposition [32]. In [25, 23], we proved that, given
s < 1 satisfying the condition in Theorem 1.1 and any (u0, u1) ∈ Hs(Rd), the energy-
critical defocusing NLW onRd is almost surely globally well-posed with respect to the Wiener
randomization (uω0 , u

ω
1 ) defined in (1.7). See [19, 4, 5, 20] for other results utilizing the

Wiener randomization (1.7).
Our basic strategy for the proof of Theorem 1.1 is to make use of the finite speed of

propagation of solutions and reduce the problem on T
d ∼= [ − 1

2 ,
1
2

)d to a problem in the
Euclidean setting. Fix η ∈ C∞

c (R
d;R) such that η ≡ 1 on [−1, 1]d . Given T > 0, let

η
T
(x) = η

(〈T 〉−1x
)
,(1.8)

where 〈 · 〉 = 1 + | · |. Let u be a solution to the following energy-critical defocusing NLW on
R
d :

(1.9)

{
∂2
t u −�u + |u| 4

d−2 u = 0

(u, ∂tu)
∣∣
t=0 = (u0,T ,u1,T ) := (η

T
u0, ηT u1) ,

(t, x) ∈ [0, T ] × R
d ,

where we view (u0, u1) as periodic functions on R
d with period 1. Then, by the finite speed

of propagation, we see that u := u|[0,T ]×Td is a solution to the periodic NLW (1.1) on the
time interval [0, T ] with initial data (u0, u1). In the classical deterministic setting, this al-
lows us to transfer global well-posedness on NLW on R

d to the corresponding global well-

2Here, we are indeed referring to the nonlinear part of a solution u.
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posedness of the periodic NLW on T
d . In our current probabilistic setting, however, this is

not so straightforward. In particular, under such a reduction from the periodic setting to the
Euclidean setting, our random initial data (uω0 , u

ω
1 ) on T

d of the form (1.3) does not give rise
to an appropriate random initial data on R

d of the form (1.7) such that the results in [25, 23]
are directly applicable.

Fix a pair (u0, u1) of real-valued functions defined on Hs(Td ). Given T > 0, define a
pair (uω0,T ,uω1,T ) of random functions on R

d by setting

(uω0,T ,uω1,T ) := (η
T
uω0 , ηT u

ω
1 )

=
( ∑
n∈Zd

η
T
(x)gn,0(ω)̂u0(n)e

in·x,
∑
n∈Zd

η
T
(x)gn,1(ω)̂u1(n)e

in·x
)
,(1.10)

where η
T

is as in (1.8) and (uω0 , u
ω
1 ) is the randomization of (u0, u1) defined in (1.3), satisfying

(1.4). Then, in order to prove Theorem 1.1, we need to prove almost sure well-posedness of
(1.9) on [0, T ] × R

d with (u, ∂tu)
∣∣
t=0 = (uω0,T ,uω1,T ) for some sequence of T → ∞. First,

note that the randomized initial data (uω0,T ,uω1,T ) in (1.10) depends on T . Moreover, it is not
of the form (1.7). Indeed, we have

ũωj,T (ξ) = η̃
T
uωj (ξ) =

∑
n∈Zd

η̃
T
(ξ − n)gn,j (ω)̂uj (n), j = 0, 1.(1.11)

In particular, the Fourier transform ũωj,T (ξ) depends on infinitely many gn,j ’s for each ξ ∈ R
d .

See Remark 1.2 below.
The proof of almost sure global well-posedness of (1.1) on R

d in [25, 23] consists of
two disjoint parts: (i) a probabilistic part and (ii) a deterministic part. We can apply the
deterministic part of the argument without any change. Therefore, our main task is to adapt
the probabilistic part to our current problem. In particular, we will establish probabilistic
Strichartz estimates (Propositions 4.1 and 4.4 below) that allow us to control random linear
profiles on R

d in terms of functions on T
d . See Section 4. We then need to adjust the argument

in [25, 23] suitably to our setting.
We conclude this introduction by stating several remarks.

REMARK 1.2. If there were a function η ∈ L2(Rd ) with the properties (i) η(x) ≡ 1
on [− 1

2 ,
1
2 )
d and (ii) its Fourier transform η̃ has a compact support, then we could basically

apply the arguments in [25, 23] to study (1.9) with random initial data (uω0,T ,uω1,T ) defined in
(1.10). However, Paley-Wiener Theorem (Theorems IX.11 and IX.12 in [26]) states that there
is no such function η ∈ L2(Rd) satisfying both (i) and (ii).

REMARK 1.3. The uniqueness statement in Theorem 1.1 holds in the following sense.
The existence part of Theorem 1.1 states that given any ω ∈ Ω(u0,u1), there exists a global
solution uω to (1.1). Now, we fix one such ω ∈ Ω(u0,u1) and let f ω := Sper(·)(uω0 , uω1 ).
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Setting vω := uω − f ω, we see that vω is a global solution to the perturbed NLW on T
d :{

∂2
t v
ω −�vω + |vω + f ω| 4

d−2 (vω + f ω) = 0

(vω, ∂t v
ω)|t=0 = (0, 0) .

(1.12)

Then, the uniqueness in Theorem 1.1 holds for vω in

X(R) := {
(v, ∂t v) : (v, ∂t v) ∈ C(R, Ḣ1(Td )), v ∈ L

d+2
d−2
loc (R, L

2(d+2)
d−2 (Td))

}
.(1.13)

This follows from a standard deterministic analysis of the perturbed NLW (1.12) on T
d . See

Appendix B. In terms of uω, the uniqueness holds in(
Sper(t)(u

ω
0 , u

ω
1 ), ∂tSper(t)(u

ω
0 , u

ω
1 )

) +X(R) .

Lastly, note that the almost sure global solutions constructed in [25, 23] also satisfy the same
kind of uniqueness.

REMARK 1.4. Let u0 : Ω → Hs(Td ) be the map given by u0(ω) := (uω0 , u
ω
1 ), where

(uω0 , u
ω
1 ) is as in (1.3). Then, the map u0 induces a probability measure μ = μ(u0,u1) =

P ◦ u0
−1 on Hs(Td ). Now, let Σ(u0,u1) = u0(Ω(u0,u1)), where Ω(u0,u1) is as in Theorem

1.1. Then, while μ(Σ(u0,u1)) = 1, it is possible that μ
(
Φ(t)(Σ(u0,u1))

)
becomes smaller for

some t �= 0 and even tends to 0, where Φ(t) denotes the solution map of (1.1). Arguing as in
[25], we can strengthen the statement in Theorem 1.1 and show that there exists another set of
μ-full measure Σ ⊂ Hs(Td ) such that (a) for any (φ0, φ1) ∈ Σ , there exists a unique global
solution u to (1.1) with initial data (u, ∂tu)

∣∣
t=0 = (φ0, φ1) and (b) μ

(
Φ(t)(Σ)

) = 1 for any
t ∈ R. Namely, the measure of our new initial data set Σ does not become smaller under the
dynamics of (1.1). See [9, 24, 25] for related discussions in this direction.

2. Notations. Given a periodic function f on T
d , we use f̂ (n) = FTd (f )(n) to de-

note the Fourier coefficient of f on T
d . Given a function f on R

d , we use f̃ (ξ) = FRd (f )(ξ)

to denote the Fourier transform of f on R
d . Let f be a periodic function on T

d . By viewing
f as a tempered distribution on R

d we have

f̃ (ξ) =
∑
n∈Zd

δ(ξ − n)f̂ (n) .

Moreover, given η ∈ S(Rd), we have

η̃f (ξ) =
∑
n∈Zd

η̃(ξ − n)f̂ (n) .(2.1)

Given n ∈ Z
d , let Qn be the unit cube Qn := n+ [ − 1

2 ,
1
2

)d centered at n.
Next, we briefly go over the Littlewood-Paley theory on R

d . Let ϕ : R → [0, 1] be a
smooth bump function supported on [− 8

5 ,
8
5 ] and ϕ ≡ 1 on

[ − 5
4 ,

5
4

]
. Given dyadic N ≥ 1,

we set ϕ1(ξ) = ϕ(|ξ |) and

ϕN(ξ) = ϕ
( |ξ |
N

) − ϕ
( 2|ξ |
N

)
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for N ≥ 2. Then, we define the Littlewood-Paley projection PN as the Fourier multiplier
operator with symbol ϕN . Moreover, we define P≤N and P≥N by P≤N = ∑

1≤M≤N PM and
P>N = ∑

M>N PM . For a periodic function f on T
d , we define PN to be the projection onto

the frequencies { 1
2N < |n| ≤ N} if N ≥ 2 and {|n| ≤ 1} if N = 1. In the following, we use

PN to denote the Littlewood-Paley projection for both functions on R
d and T

d , depending on
the context.

We use S(t) to denote the propagator for the linear wave equation on R
d given by

(2.2) S(t) (f0, f1) := cos(t|∇|)f0 + sin(t|∇|)
|∇| f1 .

We say that u is a solution to the following nonhomogeneous wave equation on R
d :

(2.3)

{
∂2
t u−�u+ F = 0

(u, ∂tu)|t=t0 = (φ0, φ1)

on a time interval I containing t0, if u satisfies the following Duhamel formulation:

(2.4) u(t) = S(t − t0)(φ0, φ1)−
ˆ t

t0

sin((t − t ′)|∇|)
|∇| F(t ′)dt ′

for t ∈ I . We now recall the Strichartz estimates for wave equations on R
3. We say that (q, r)

is an s-wave admissible pair if q ≥ 2, 2 ≤ r < ∞,

1

q
+ d − 1

2r
≤ d − 1

4
, and

1

q
+ d

r
= d

2
− s .

Then, we have the following Strichartz estimates. See [12, 18, 17] for more discussions on
the Strichartz estimates.

LEMMA 2.1. Let s > 0. Let (q, r) and (q̃, r̃) be s- and (1 − s)-wave admissible pairs,
respectively. Then, we have

‖(u, ∂tu)‖L∞
t (I ;Ḣs

x(R
d)) + ‖u‖Lqt (I ;Lrx) � ‖(φ0, φ1)‖Ḣs (Rd) + ‖F‖

L
q̃′
t (I ;Lr̃′x (Rd))

(2.5)

for all solutions u to (2.3) on a time interval I � t0.

In our argument, we will only use the following wave admissible pairs:
(
d+2
d−2 ,

2(d+2)
d−2

)
with

s = 1 and (∞, 2) with s = 0. For simplicity, we denote the space Lqt (I ;Lrx) by LqIL
r
x or

L
q
T L

r
x if I = [0, T ].
In the following, constants in various estimates depend on the smooth cutoff function η,

appearing in (1.8). Since we fix such η once and for all, we suppress the dependence on η.
Lastly, in view of the time reversibility of the equation, we only consider positive times in the
following.

3. Reduction to the Euclidean setting. We first reduce Theorem 1.1 to the following
proposition on “almost” almost sure global well-posedness of (1.1).
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PROPOSITION 3.1. Let (s, d) be as in Theorem 1.1. Given (u0, u1) ∈ Hs(Td ), let
(uω0 , u

ω
1 ) be the randomization defined in (1.3), satisfying (1.4). Then, for any given T ≥ 1

and ε > 0, there exists a set ΩT,ε ⊂ Ω with P(Ωc
T ,ε) < ε such that, for every ω ∈ ΩT,ε,

there exists a unique solution uω to (1.1) with (uω, ∂tuω)|t=0 = (uω0 , u
ω
1 ) in the class:(

Sper(t)(u
ω
0 , u

ω
1 ), ∂tSper(t)(u

ω
0 , u

ω
1 )

) + C([0, T ];H1(Td )) ⊂ C([0, T ];Hs(Td )).(3.1)

It is easy to see that Proposition 3.1 implies Theorem 1.1. See, for example, [11, 25].
Therefore, in the remaining part of the paper, we focus on the proof of Proposition 3.1 for
each fixed T ≥ 1 and ε > 0.

Given (u0, u1) ∈ Hs(Td ) and T ≥ 1, let (uω0,T ,uω1,T ) be the random functions on R
d

defined in (1.10). Consider the following Cauchy problem:

(3.2)

{
∂2
t uω −�uω + |uω| 4

d−2 uω = 0

(uω, ∂tuω)
∣∣
t=0 = (uω0,T ,uω1,T ) ,

(t, x) ∈ [0, T ] × R
d .

In view of the finite speed of propagation, Proposition 3.1 follows once we prove the following
proposition. See Appendix A for this part of the reduction.

PROPOSITION 3.2. Let (s, d) be as in Theorem 1.1. Given (u0, u1) ∈ Hs (Td ) and
T ≥ 1, let (uω0,T ,uω1,T ) be the random functions on R

d defined in (1.10), satisfying (1.4).

Then, for any ε > 0, there exists a set Ω̃T ,ε ⊂ Ω with P(Ω̃c
T ,ε) < ε such that, for every

ω ∈ Ω̃T ,ε, there exists a unique solution uω to (3.2) with (uω, ∂tuω)|t=0 = (uω0,T ,uω1,T ) in the
class:(

S(t)(uω0,T ,uω1,T ), ∂tS(t)(u
ω
0,T ,uω1,T )

) + C([0, T ];H1(Rd)) ⊂ C([0, T ];Hs(Rd)) .

Moreover, the nonlinear part vω := uω − S(·)(uω0,T ,uω1,T ) of the solution satisfies the bounds

‖vω‖Lqt ([0,T ],Lrx(Rd)) ≤ C(T , ε, ‖(u0, u1)‖Hs (Td )) ,(3.3)

for all 1-wave admissible pairs (q, r).

The main idea is to adapt the argument in [25, 23] on almost sure global well-posedness
of (1.1) on R

d with random initial data of the form (1.7). Denoting the linear and nonlinear
parts of the solution uω to (3.2) by

(3.4) zω(t) = zωT (t) := S(t)(uω0,T ,uω1,T ) and vω := uω − zω ,

we can reformulate (3.2) as the following perturbed NLW:

(3.5)

{
∂2
t vω −�vω + F(vω + zω) = 0

(vω, ∂tvω)|t=0 = (0, 0) ,

where F(u) = |u| 4
d−2u. As mentioned above, the argument in [25, 23] can be divided into

two parts: (i) the probabilistic part and (ii) the deterministic study of the perturbed NLW:

(3.6)

{
∂2
t v −�v + F(v + f ) = 0

(v, ∂tv)
∣∣
t=0 = (v0, v1) ,
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where f is a deterministic function, satisfying some a priori space-time bounds. This de-
terministic part (Proposition 4.3 in [25] and Proposition 5.2 in [23]) can be applied to our
problem without any change, and hence we take it as a black box in this paper. Therefore, our
main task is to appropriately modify the probabilistic part of the argument.

In the next section, we prove new probabilistic Strichartz estimates (Propositions 4.1 and
4.4), controlling the size of the random linear solution S(t)(uω0,T ,uω1,T ) on R

d in terms of the

deterministic initial data (u0, u1) on T
d . Then, in Section 5, we briefly discuss how to modify

the argument in [25, 23] to prove Proposition 3.2. In Appendix A, we consider the issue on the
finite speed of propagation on random solutions at a low regularity and show how to deduce
Proposition 3.1 from Proposition 3.2. Finally, we sketch the uniqueness part of Theorem 1.1
in Appendix B.

Let us conclude this section by stating a lemma, which allows us to compare the Hs-
norms of a periodic function on R

d and T
d through the multiplication by ηT .

LEMMA 3.3. Let 0 ≤ s < 1. Then, there exists C > 0 such that

1

C
〈T 〉 d2 ‖f ‖Hs(Td)‖ ≤ ‖ηT f ‖Hs(Rd) ≤ C〈T 〉 d2 ‖f ‖Hs(Td) ,(3.7)

for any T > 0 and any periodic function f ∈ Hs(Td ).

PROOF. Givenm ∈ Z
d and T > 0, set 〈T 〉Qm := {ξ ∈ R

d : 〈T 〉−1ξ ∈ Qm}. Then, for
s ≥ 0, it follows from (1.8) that

‖〈 · 〉s η̃T ‖L2(Qm)
≤〈T 〉 d2 ‖〈 · 〉s η̃‖L2(〈T 〉Qm)�〈T 〉 d2

∑
k∈Zd∩〈T 〉Qm

〈k〉s‖ψ(D−k)η‖L2(Rd),(3.8)

where ψ is as in (1.5). Then, by (2.1), the triangle inequality (with s ≥ 0), Minkowski’s
integral inequality, Young’s inequality, and (3.8), we have

‖η
T
f ‖Hs(Rd) =

( ˆ
〈ξ〉2s

∣∣∣∣ ∑
n∈Zd

η̃
T
(ξ − n)f̂ (n)

∣∣∣∣
2

dξ

) 1
2

�
( ˆ ( ∑

n∈Zd
〈ξ − n〉s |̃ηT (ξ − n)| · 〈n〉s |f̂ (n)|

)2

dξ

) 1
2

�
( ∑
m∈Zd

ˆ
Qm

( ∑
n∈Zd

〈ξ − n〉s |̃ηT (ξ − n)| · 〈n〉s |f̂ (n)|
)2

dξ

) 1
2

�
( ∑
m∈Zd

( ∑
n∈Zd

‖〈 · 〉s η̃
T
‖L2(Qm−n)〈n〉s |f̂ (n)|

)2) 1
2

≤ ‖〈 · 〉s η̃T ‖�1
mL

2(Qm)
‖f ‖Hs(Td) � 〈T 〉 d2 ‖η‖Ms

2,1
‖f ‖Hs(Td ).(3.9)

Here, Ms
2,1 denotes the (weighted) modulation space defined by the norm

‖η‖Ms
2,1

= ∥∥〈n〉s‖ψ(D − n)η‖L2(Rd)

∥∥
�1(Zd )

.



464 T. OH AND O. POCOVNICU

Let Td
T

:= [ − T − 1
2 , T + 1

2

)d
. Then, by the definition of ηT , we have

〈T 〉 d2 ‖f ‖L2(Td ) ∼ ‖f ‖L2(Td
T
) ≤ ‖η

T
f ‖L2(Rd) .(3.10)

By the characterization of the Ḣ s-norms on the physical side (see, for example, [15] and [3]
on R

d and T
d , respectively), the periodicity of f , and the definition of ηT , we have

〈T 〉 d2 ‖f ‖Ḣ s (Td) ∼ 〈T 〉 d2
( ˆ

Td

ˆ
Q0

|f (x + y)− f (x)|2
|y|d+2s

dydx

) 1
2

∼
( ˆ

T
d
T

ˆ
Q0

|f (x + y)− f (x)|2
|y|d+2s dydx

) 1
2

≤
( ˆ

Rd

ˆ
Q0

|ηT (x + y)f (x + y)− ηT (x)f (x)|2
|y|d+2s dydx

) 1
2

≤
( ˆ

Rd

ˆ
Rd

|ηT (x + y)f (x + y)− ηT (x)f (x)|2
|y|d+2s dydx

) 1
2

∼ ‖η
T
f ‖Ḣ s (Rd)(3.11)

for 0 < s < 1. Hence, (3.7) follows from (3.9), (3.10), and (3.11). �

4. Probabilistic Strichartz estimates. In this section, we state and prove the cru-
cial probabilistic Strichartz estimates that build a bridge between the random linear solution
S(t)(uω0,T ,uω1,T ) on R

d and the deterministic initial data (u0, u1) on T
d . In [25, 23], we stud-

ied the probabilistic Strichartz estimates on R
d with random initial data of the form (1.7)

(Proposition 2.3 in [25] and Proposition 3.3 in [23]). The following propositions (Proposi-
tions 4.1 and 4.4) are suitable replacements for our problem at hand. In particular, we have
the Hs(Td )-norm of (u0, u1) on T

d on the right-hand side of (4.1) and (4.12).

PROPOSITION 4.1. Let T > 0. Given (u0, u1) ∈ Hs(Td ), let (uω0,T ,uω1,T ) be the

randomization on R
d defined in (1.10), satisfying (1.4). Then, given 1 ≤ q < ∞, 2 ≤ r ≤ ∞,

there exist C, c > 0 such that

P
(
‖S(t)(uω0,T ,uω1,T )‖Lqt (I ;Lrx(Rd)) > λ

)

≤ C exp

(
− c

λ2

max(1, b2)〈T 〉d |I | 2
q ‖(u0, u1)‖2

Hs (Td)

)
(4.1)

for any compact time interval I = [a, b] ⊂ [0, T ], provided (i) s = 0 if r < ∞ and (ii) s > 0
if r = ∞.

REMARK 4.2. Let (u0,T ,u1,T ) := (η
T
u0, ηT u1) as in (1.9). Then, in view of Lemma

3.3, we can rewrite (4.1) as

P
(
‖S(t)(uω0,T ,uω1,T )‖Lqt (I ;Lrx(Rd)) > λ

)
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≤ C exp

(
− c

λ2

max(1, b2)|I | 2
q ‖(u0,T ,u1,T )‖2

Hs (Rd)

)
.(4.2)

We point out that (4.2) is more in the spirit of the statement of Proposition 2.3 (ii) and (iii) in
[25].

Before presenting the proof of Proposition 4.1, we first recall the following probabilistic
estimate. See [8] for the proof.

LEMMA 4.3. Let {gn}n∈Zd be a sequence of mean zero complex-valued random vari-
ables such that g−n = gn for all n ∈ Z

d . With I as in (1.2), assume that g0, Re gn, and Im gn,
n ∈ I, are independent. Moreover, assume that (1.4) is satisfied. Then, there exists C > 0
such that the following holds:∥∥∥∥ ∑

n∈Zd
gn(ω)cn

∥∥∥∥
Lp(Ω)

≤ C
√
p‖cn‖�2

n(Z
d)

for any p ≥ 2 and any sequence {cn} ∈ �2(Zd ) satisfying c−n = cn for all n ∈ Z
d .

PROOF OF PROPOSITION 4.1. The proof is analogous to that of Proposition 2.3 in [25].
There are, however, important differences due to the fact that η̃ does not have a compact
support and that we use the Hs (Td)-norm of (u0, u1) on the right-hand side of (4.1).
• Case 1: We first consider the case r < ∞. Given 1 ≤ q < ∞ and 2 ≤ r < ∞, let
p ≥ max(q, r).

Let Tm be the Fourier multiplier operator with a bounded multiplierm. Let β = (r−2)
2r d+

ε ≤ d
2 for some small ε > 0. Then, by Hausdorff-Young’s inequality and Hölder’s inequality

with 1
r ′ = 1

2 + r−2
2r , we have

‖Tm(ηT einx)‖Lrx(Rd) ≤ ‖m(ξ )̃η
T
(ξ − n)‖

Lr
′
ξ (R

d)
� ‖〈ξ − n〉βm(ξ )̃η

T
(ξ − n)‖L2

ξ (R
d)

� ‖m‖L∞(Rd)‖ηT ‖
H
d
2 (Rd)

� 〈T 〉 d2 ‖m‖L∞(Rd)‖η‖
H
d
2 (Rd)

(4.3)

for each n ∈ Z
d . Note that we have

| cos(t|ξ |)| ≤ 1 and

∣∣∣∣ sin(t|ξ |)
|ξ |

∣∣∣∣ ≤ t(4.4)

for all ξ ∈ R
d \ {0} and all t ∈ R. Then, by Minkowski’s integral inequality, Lemma 4.3 with

(1.10), and (4.3) with (4.4), we have

(
E
∥∥ cos (t|∇|)uω0,T

∥∥p
L
q
t (I ;Lrx(Rd))

) 1
p ≤

∥∥∥‖ cos(t|∇|)uω0,T ‖Lp(Ω)
∥∥∥
L
q
I L

r
x

� √
p

∥∥∥∥∥û0(n) cos(t|∇|)(η
T
einx)

∥∥
�2
n

∥∥∥
L
q
I L

r
x

≤ √
p

∥∥∥∥∥ cos(t|∇|)(η
T
einx)

∥∥
Lrx

· û0(n)

∥∥∥
L
q
I �

2
n

� √
p〈T 〉 d2 |I | 1

q ‖η‖
H
d
2 (Rd)

‖u0‖L2(Td).(4.5)
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When |ξ | � 1, it follows from the triangle inequality: 〈n〉 ≤ 〈ξ〉〈ξ − n〉 that∣∣∣∣ sin(t|ξ |)
|ξ |

∣∣∣∣ � 1

〈ξ〉 ≤ 〈ξ − n〉
〈n〉(4.6)

for all n ∈ Z
d . On the other hand, when |ξ | � 1, it follows from (4.4) that∣∣∣∣ sin(t|ξ |)

|ξ |
∣∣∣∣ � t

〈ξ〉 ≤ t
〈ξ − n〉

〈n〉(4.7)

for all n ∈ Z
d . Hence, proceeding as before with (4.6) and (4.7), we have(

E

∥∥∥∥ sin(t|∇|)
|∇| uω1,T

∥∥∥∥
p

L
q
t (I ;Lrx(Rd))

) 1
p

� √
p

∥∥∥∥
∥∥∥∥ sin(t|∇|)

|∇|
(
η
T
einx)

∥∥∥∥
Lrx

· û1(n)

∥∥∥∥
L
q
I �

2
n

� √
pmax(1, b)

∥∥∥∥‖〈ξ − n〉̃ηT (ξ − n)‖Lr′x · û1(n)

〈n〉
∥∥∥∥
L
q
I �

2
n

� √
pmax(1, b)〈T 〉 d2 |I | 1

q ‖η‖
H
d
2 +1

(Rd)
‖u1‖H−1(Td) .(4.8)

Then, (4.1) follows from (4.5), (4.8), and a standard argument using Chebyshev’s inequality.
See [4, 25] for details.
• Case 2: Next, we consider the case r = ∞. In this case, given small s > 0, choose r̃ � 1
such that s̃r > d . Then, by Sobolev embedding theorem, we have∥∥S(t)(uω0,T ,uω1,T )

∥∥
L
q
t (I ;L∞

x )
�

∥∥〈∇〉sS(t)(uω0,T ,uω1,T )
∥∥
L
q
t (I ;Lr̃x) .

We now proceed as in Case 1 with r̃ instead of r . With the triangle inequality 〈ξ〉s � 〈ξ −
n〉s 〈n〉s , we have(

E
∥∥〈∇〉s cos( t|∇|)uω0,T

∥∥p
L
q
t (I ;Lr̃x)

) 1
p � √

p〈T 〉 d2 |I | 1
q ‖η‖

H
d
2 +s

(Rd)
‖u0‖Hs(Td)(4.9)

and (
E

∥∥∥∥〈∇〉s sin(t|∇|)
|∇| uω1,T

∥∥∥∥
p

L
q
t (I ;Lr̃x(Td))

) 1
p

� √
pmax(1, b2)〈T 〉 d2 |I | 1

q ‖η‖
H
d
2 +1+s

(Rd)
‖u0‖Hs−1(Td) .(4.10)

Once again, (4.1) follows from (4.9), (4.10), and a standard argument using Chebyshev’s
inequality. �

Next, we prove a probabilistic estimate involving the L∞
t -norm. This proposition re-

places Proposition 3.3 in [23] and plays an important role in treating the three-dimensional
case. Define an operator S̃(t) on a pair (f0, f1) of functions on R

d by

(4.11) S̃(t)(f0, f1) := − |∇|
〈∇〉 sin(t|∇|)f0 + cos(t|∇|)

〈∇〉 f1 .

Namely, we have ∂tS(t)(f0, f1) = 〈∇〉S̃(t)(f0, f1).
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PROPOSITION 4.4. Let T ≥ 1. Given a pair (u0, u1) of real-valued functions defined
on T

d , let (uω0,T ,uω1,T ) be the randomization on R
d defined in (1.10), satisfying (1.4). Let

S∗(t) = S(t) or S̃(t) defined in (2.2) and (4.11), respectively. Then, for 2 ≤ r ≤ ∞, we have

P
(
‖S∗(t)(uω0,T ,uω1,T )‖L∞

t ([0,T ];Lrx(Rd)) > λ
)

≤ C〈T 〉 exp

(
− c

λ2

〈T 〉d+2‖(u0, u1)‖2
Hε(Td)

)
(4.12)

for any ε > 0, where the constants C and c depend only on r and ε.

Proposition 4.4 follows as a corollary to the following lemma. Let S+(t) and S−(t) be
the linear propagators for the half wave equations on R

d defined by

S±(t)f := F−1
Rd

(
e±i|ξ |t f̃ (ξ)

)
.

Given φ ∈ Hs(Td ) and T ≥ 1, we define its randomization φφφωT on R
d by

φφφωT :=
∑
n∈Zd

η
T
(x)gn,0(ω)φ̂(n)e

inx ,

as in the first component of (1.10). Then, we have the following tail estimate on the size of
S±(t)φφφωT over a time interval of length 1.

LEMMA 4.5. Let T ≥ 1 and 2 ≤ r ≤ ∞. Given any ε > 0, there exist constants
C, c > 0, depending only on r and ε, such that

P
(
‖S±(t)φφφωT ‖L∞

t ([j,j+1];Lrx(Rd)) > λ
)

≤ C exp

(
− c

λ2

〈T 〉d‖φ‖2
Hε(Td)

)
,(4.13)

P
(
‖〈∇〉−1S±(t)φφφωT ‖L∞

t ([j,j+1];Lrx(Rd)) > λ
)

≤ C exp

(
− c

λ2

〈T 〉d‖φ‖2
Hε−1(Td)

)
,(4.14)

P

(∥∥∥∥ sin(t|∇|)
|∇| φφφωT

∥∥∥∥
L∞
t ([j,j+1];Lrx(Rd))

> λ

)

≤ C exp

(
− c

λ2

max(1, j2)〈T 〉d‖φ‖2
Hε−1(Td)

)
(4.15)

for any [j, j + 1] ⊂ [0, T ].
Assuming Lemma 4.5, we first present the proof of Proposition 4.4.

PROOF OF PROPOSITION 4.4. We first consider the case S∗(t) = S(t) and T ≥ 1. By
subadditivity, (4.13), and (4.15), we have

P
(
‖S(t)(uω0,T ,uω1,T )‖L∞

t ([0,T ];Lrx(Rd)) > λ
)

≤ P
(

max
j=0,...,[T ]

‖S(t)(uω0,T ,uω1,T )‖L∞
t ([j,j+1];Lrx(Rd)) > λ

)
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≤
[T ]∑
j=0

P
(
‖S(t)(uω0,T ,uω1,T )‖L∞

t ([j,j+1];Lrx(Rd)) > λ
)

≤
[T ]∑
j=0

P

(
‖ cos(t|∇|)uω0,T ‖L∞

t ([j,j+1];Lrx(Rd)) >
λ

2

)

+
[T ]∑
j=0

P

(∥∥∥∥ sin(t|∇|)
|∇| uω1,T

∥∥∥∥
L∞([j,j+1];Lrx(Rd))

>
λ

2

)

≤ C〈T 〉 exp

(
− c

λ2

〈T 〉d+2‖(u0, u1)‖2
Hε(Td)

)
.

When S∗(t) = S̃(t), (4.12) follows from (4.13) and (4.14). In this case, we obtain 〈T 〉d
instead of 〈T 〉d+2 on the right-hand side of (4.12). �

Finally, we present the proof of Lemma 4.5.

PROOF OF LEMMA 4.5. We first prove (4.13). In the following, we only consider the
case of S+(t). Set zω(t) = zωT (t) := S+(t)φφφωT .
Part 1 (a): We first consider the case r < ∞. The first half of the reduction (up to (4.18))
is exactly the same as that in the proof of Lemma 3.4 in [23]. We decided to include it for
reader’s convenience. Without loss of generality, assume j = 0. For k ∈ N ∪ {0}, let {t�,k :
� = 0, 1, . . . , 2k} be 2k+1 equally spaced points on [0, 1], i.e. t0,k = 0 and t�,k−t�−1,k = 2−k
for � = 1, . . . , 2k. Then, given t ∈ [0, 1], we have

zω(t) =
∞∑
k=1

(
zω(t�k,k)− zω(t�k−1,k−1)

) + zω(0)(4.16)

for some �k = �k(t) ∈ {0, . . . , 2k}.
By the square function estimate and Minkowski’s integral inequality with (4.16), we have

‖zω‖L∞
t ([0,1];Lrx(Rd))

�
( ∑
N≥1

dyadic

( ∞∑
k=1

max
0≤�k≤2k

∥∥PN
(
zω(t�k,k)− zω(t�′k−1,k−1)

)∥∥
Lrx(R

d)

)2
) 1

2 + ‖zω(0)‖Lrx(Rd) ,

where t�′k−1,k−1 is one of the 2(k−1)+1 equally spaced points such that

|t�k,k − t�′k−1,k−1| ≤ 2−k.(4.17)

Hence, for p ≥ 2, we have

(
E
[‖zω‖L∞

t ([0,1];Lrx(Rd))
]p) 1

p
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�
( ∑
N≥1

dyadic

( ∞∑
k=1

(
E

[
max

0≤�k≤2k

∥∥PN
(
zω(t�k,k)− zω±(t�′k−1,k−1)

)∥∥
Lrx(R

d)

]p) 1
p

)2) 1
2

+
(
E
[‖zω(0)‖Lrx(Rd)

]p) 1
p
.(4.18)

Proceeding as in (4.5) with Lemma 4.3 and (4.3), the second term on the right-hand side
of (4.18) can be bounded by(

E
[‖zω(0)‖Lrx(Rd)

]p) 1
p ≤

∥∥∥‖φφφωT ‖Lp(Ω)
∥∥∥
Lrx

� √
p

∥∥∥‖ηT (x)φ̂(n)einx‖�2
n

∥∥∥
Lrx

≤ √
p

∥∥∥‖η
T
(x)einx‖Lrx · φ̂(n)

∥∥∥
�2
n

�√
p〈T 〉 d2 ‖η‖

H
d
2 (Rd)

‖φ‖L2
x(T

d)(4.19)

for p ≥ r ≥ 2.
In the following, we first estimate

IN :=
∞∑
k=1

(
E

[
max

0≤�k≤2k

∥∥PN
(
zω(t�k,k)− zω(t�′k−1,k−1)

)∥∥
Lrx(R

d)

]p) 1
p

for each dyadic N ≥ 1. Let

qk := max(log 2k, p, r) ∼ log 2k + p + r .(4.20)

Then, we have

IN ≤
∞∑
k=1

( 2k∑
�k=0

E
∥∥PN

(
zω(t�k,k)− zω(t�′k−1,k−1)

)∥∥qk
Lrx

) 1
qk

.

Noting that (2k + 1)
1
qk � 1 and applying Lemma 4.3,

�
∞∑
k=1

max
0≤�k≤2k

(
E
∥∥PN

(
zω(t�k,k)− zω(t�′k−1,k−1)

)∥∥qk
Lrx

) 1
qk

�
∞∑
k=1

√
qk max

0≤�k≤2k

∥∥∥∥∥PN
(
S+(t�k,k)− S+(t�′k−1,k−1)

)
(ηT e

inx)
∥∥
Lrx

· φ̂(n)
∥∥∥
�2
n

.(4.21)

For |ξ | ∼ N , it follows from (4.17) that∣∣ei|ξ |t�k ,k − e
i|ξ |t�′

k−1,k−1
∣∣ � min(1, 2−kN) .(4.22)

We now proceed as in (4.3). With (4.22) and the triangle inequality, we have∥∥PN
(
S+(t�k,k)− S+( t�′k−1,k−1)

)
(ηT e

inx)
∥∥
Lrx(R

d)
� min(1, 2−kN)‖η̃T (ξ − n)‖

Lr
′

|ξ |∼N (Rd)

� 〈n〉εN−ε min(1, 2−kN)‖〈ξ − n〉β+εη̃
T
(ξ − n)‖L2

ξ (R
d)
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� 〈n〉εN−ε min(1, 2−kN)‖η
T
‖
H
d
2 (Rd)

� 〈T 〉 d2 〈n〉εN−ε min(1, 2−kN)‖η‖
H
d
2 (Rd)

(4.23)

as long as ε > 0 is sufficiently small such that β + ε = (r−2)
2r d + 2ε ≤ d

2 . Hence, from (4.21)
and (4.23), we obtain

IN � 〈T 〉 d2 ‖η‖
H
d
2 (Rd)

∞∑
k=1

√
qkN

−ε min(1, 2−kN)‖φ‖Hε(Td ) .(4.24)

Separating the summation (in k) into 2−kN ≥ 1 and 2−kN < 1 and applying (4.20), we
have

∞∑
k=1

√
qkN

−ε min(1, 2−kN) ≤ Cr,ε
√
pN− ε

2 .(4.25)

See [23] for details. Finally, putting (4.18), (4.19), (4.24), and (4.25), together, we obtain(
E
[‖zω‖L∞

t ([0,1];Lrx(Rd))
]p) 1

p ≤ Cr,ε
√
p〈T 〉 d2 ‖η‖

H
d
2 (Rd)

‖φ‖Hε(Td)

for all p ≥ r and sufficiently small ε > 0. The rest follows from a standard argument using
Chebyshev’s inequality.
Part 1 (b): Next, we consider the case r = ∞. It follows from Sobolev embedding that, given
any small ε > 0, there exists large r̃ � 1 with ε̃r > d such that

P
(
‖S±(t)φφφωT ‖L∞

t ([j,j+1];L∞
x (R

d)) > λ
)

≤ P
(
‖〈∇〉εS±(t)φφφωT ‖L∞

t ([j,j+1];Lr̃x(Rd)) > Cλ
)
.

Then, the rest follows from the triangle inequality 〈ξ〉ε � 〈n〉ε〈ξ − n〉ε and the argument in
Part 1 (a).
Part 2: Next, we consider (4.14). By proceeding as in Part 1 (a), the only essential modi-
fications appear only in (4.19) and (4.23). With (4.22) and the triangle inequality: 〈ξ〉−1 ≤
〈n〉−1〈ξ − n〉, we have∥∥PN 〈∇〉−1(S+(t�k,k)− S+(t�′k−1,k−1)

)
(ηT e

inx)
∥∥
Lrx(R

d)

� 〈n〉−1 min(1, 2−kN)‖〈ξ − n〉̃η
T
(ξ − n)‖

Lr
′

|ξ |∼N (Rd)

� 〈n〉ε−1N−ε min(1, 2−kN)‖〈ξ − n〉β+ε+1η̃
T
(ξ − n)‖L2

ξ (R
d)

� 〈T 〉 d2 〈n〉ε−1N−ε min(1, 2−kN)‖η‖
H
d
2 +1

(Rd)
.

This shows how one modifies (4.23), while (4.19) can be modified similarly. Then, the rest
follows as in Part 1 (a), yielding (4.14).
Part 3: Finally, we prove (4.15) when r < ∞. The modification needed for the case r = ∞
is straightforward as in Part 1 (b). Define Zω(t) by

Zω(t) := sin(t|∇|)
|∇| φφφωT .
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Repeating the argument in Part 1 (a) (but on [j, j + 1] instead of [0, 1]), we have

(
E
[‖Zω‖L∞

t ([j,j+1];Lrx(Rd))
]p) 1

p

�
( ∑
N≥1

dyadic

( ∞∑
k=1

(
E

[
max

0≤�k≤2k

∥∥PN
(
Zω(t�k,k)− Zω(t�′k−1,k−1)

)∥∥
Lrx(R

d)

]p) 1
p

)2) 1
2

+
(
E
[‖Zω(j)‖Lrx(Rd)

]p) 1
p =: I + II .

When j = 0, then we have II = 0. When j ≥ 1, proceeding as in (4.8), we have

II � √
p · j 〈T 〉 d2 ‖η‖

H
d
2 +1

(Rd)
‖φ‖H−1(Td)(4.26)

for p ≥ r . As for I , we simply repeat the computations in Part 1 (a) with a modification
in (4.23). For non-zero |ξ | ∼ N , it follows from Mean Value Theorem with (4.17) and the
triangle inequality that∣∣∣∣ sin(t�k,k|ξ |)− sin(t�′k−1,k−1|ξ |)

|ξ |
∣∣∣∣ � min(1, 2−kN) 〈ξ − n〉

〈n〉 .(4.27)

Proceeding as in Part 1 with (4.27), we obtain

I ≤ Cr,ε
√
p〈T 〉 d2 ‖η‖

H
d
2 +1

(Rd)
‖φ‖Hε−1(Td) .(4.28)

Then, the desired estimate (4.15) follows from (4.26) and (4.28). �

5. Proof of Proposition 3.2. In this section, we present the proof of Proposition 3.2.
In Subsection 5.1, we treat the higher dimensional case d = 4, 5. Then, we briefly discuss
some components of the proof for the d = 3 case in Subsection 5.2.

5.1. Higher dimensional case. In this subsection, we consider the case d = 4, 5. In
this case, the following probabilistic a priori energy bound plays an essential role, replacing
Proposition 5.2 in [25].

LEMMA 5.1 (Probabilistic energy bound). Let d = 4 or 5 and s < 1 satisfy the con-
dition in Theorem 1.1. Given (u0, u1) ∈ Hs(Td ) and T ≥ 1, let (uω0,T ,uω1,T ) be the ran-

domization on R
d defined in (1.10), satisfying (1.4). Suppose that vω is a solution to the

Cauchy problem (3.5) on [0, T ]. Then, given small ε > 0, there exists a set Ω̃T ,ε ⊂ Ω with
P(Ω̃c

T ,ε) <
ε
2 , such that for all ω ∈ Ω̃T ,ε, we have

sup
t∈[0,T ]

E(vω(t)) ≤ C
(
T , ε, ‖(u0, u1)‖Hs (Td)

)
,(5.1)

and thus also ∥∥(vω, ∂tvω)∥∥L∞
t ([0,T ];H1(Rd))

≤ C0

(
T , ε, ‖(u0, u1)‖Hs (Td)

)
.
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PROOF. The proof of this lemma follows closely the proof of Proposition 5.2 in [25]
and thus we only sketch the proof of (5.1) when d = 4.

Taking the time derivative of the energyE(vω(t)) with (3.5) and integrating by parts, we
have

d

dt
E(vω(t))=

ˆ
R4
∂tvω

(
∂2
t vω −�vω + (vω)3

)
dx =

ˆ
R4
∂tvω

(
(vω)3 − (vω + zω)3

)
dx .

By Hölder’s inequality, we have∣∣∣∣ ddt E(vω(t))
∣∣∣∣ ≤ C

(
E(vω(t))

) 1
2
(
‖zω‖3

L6
x(R

4)
+ ‖zω‖L∞

x (R
4)‖vω‖2

L4
x(R

4)

)
.

Noting that E(vω(0)) = 0, integration in time then yields(
E(vω(t))

) 1
2 ≤ C‖zω‖3

L3
T L

6
x

+ C

ˆ t

0
‖zω(t ′)‖L∞

x

(
E(vω(t ′))

) 1
2
dt ′.

By Gronwall’s inequality, we obtain

sup
t∈[0,T ]

(
E(vω(t))

) 1
2 ≤ C‖zω‖3

L3
T L

6
x

e
C‖zω‖

L1
T
L∞
x .(5.2)

Then, by choosing λ = K〈T 〉4‖(u0, u1)‖Hs (T4) and K = K(ε) � 1, it follows from Propo-
sition 4.1 that there exists Ω̃T ,ε ⊂ Ω with P(Ω̃c

T ,ε) <
ε
2 such that for all ω ∈ Ω̃T ,ε, we

have

‖zω‖L3
T L

6
x
+ ‖zω‖L1

T L
∞
x

≤ K〈T 〉4‖(u0, u1)‖Hs (Td) .(5.3)

Combining this with (5.2) yields (5.1). �

The key deterministic ingredient in the proof of Proposition 3.2 is the following “good”
local well-posedness result of the perturbed NLW (3.6). In particular, the time of local exis-
tence is characterized only in terms of the Ḣ1-norm of the initial data (v0, v1) and the size of
the perturbation f .

LEMMA 5.2 (Proposition 4.3 in [25]). Let d = 4 or 5 and (v0, v1) ∈ Ḣ1(Rd). Then,
there exists a function τ : [0,∞)×R+×R+ → R+, non-increasing in the first two arguments,
such that if f satisfies the condition

(5.4) ‖f ‖
L

d+2
d−2
t L

2(d+2)
d−2

x ([t0,t0+τ∗]×Rd )

≤ Kτθ∗

for some K, θ > 0 and τ∗ ≤ τ = τ
(‖(v0, v1)‖Ḣ1(Rd),K, θ

) � 1, then there exists a unique

solution (v, ∂tv) ∈ C([t0, t0 + τ∗]; Ḣ1(Rd)) to (3.6). Moreover,

(5.5) ‖v‖Lqt ([t0,t0+t∗];Lrx(Rd)) ≤ C(‖(v0, v1)‖Ḣ1(Rd)) ,

for all 1-admissible pairs (q, r).

Now, we are ready to present the proof of Proposition 3.2 for d = 4, 5.
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PROOF OF PROPOSITION 3.2. Let T ≥ 1 and ε > 0. Given (uω0,T ,uω1,T ), let zω and vω

be as in (3.4). By Lemma 5.1, there exists a set Ω1 with

P(Ωc
1 ) <

ε

2
(5.6)

such that

sup
t∈[0,T ]

‖(vω(t), ∂tvω(t))‖H1(Rd) ≤ C0 := C0(T , ε, ‖(u0, u1)‖Hs (Td )) < ∞ ,(5.7)

for each ω ∈ Ω1.
Let τ = τ

(
C0,K, θ) be as in Lemma 5.2, whereK = ‖(u0, u1)‖H0(Td ) and θ = d−2

2(d+2) .

Fix τ∗ ≤ τ to be chosen later. By writing [0, T ] = ⋃[T/τ∗]
j=0 Ij with Ij = [jτ∗, (j + 1)τ∗] ∩

[0, T ], defineΩ2 by

Ω2 :=
{
ω ∈ Ω : ‖zω‖

L

d+2
d−2
Ij

L

2(d+2)
d−2

x

≤ K|Ij |θ , j = 0, . . . ,
[
T
τ∗

]}
.(5.8)

Then, by Proposition 4.1 with |Ij | ≤ τ∗, we have

P(Ωc
2 ) ≤

[ Tτ∗ ]∑
j=0

P
(
‖zω‖

L

d+2
d−2
Ij

L

2(d+2)
d−2

x

> K|Ij |θ
)
� T

τ∗
exp

(
− c

〈T 〉d+2τ 2θ∗

)
.

By making τ∗ smaller if necessary,

� T

τ∗
τ∗ exp

(
− c

2〈T 〉d+2τ 2θ∗

)
= T exp

(
− c

2〈T 〉d+2τ 2θ∗

)
.

Hence, by choosing τ∗ = τ∗(T , ε) sufficiently small, we conclude that

P(Ωc
2) <

ε

2
.(5.9)

Let Ω̃T ,ε := Ω1 ∩ Ω2. Then, from (5.6) and (5.9), we have P(Ω̃c
T ,ε) < ε. Moreover,

it follows from Lemma 5.2 applied iteratively with (5.7) and (5.8) on the intervals Ij , j =
0, . . . , [ T

τ∗ ], that for each ω ∈ Ω̃T ,ε, there exists a unique solution vω to (3.5) on [0, T ]. Hence,

for ω ∈ Ω̃T ,ε, there exists a unique solution uω = zω + vω to (3.2) on [0, T ]. Moreover, (3.3)
follows from (5.5). �

5.2. Three-dimensional case. In the following, we briefly sketch the idea of the
proof of Proposition 3.2 when d = 3. In this case, the additional difficulty comes from
the lack of a probabilistic a priori energy bound (Lemma 5.1). Therefore, as in [23], we need
to establish a uniform probabilistic energy bound for approximating random solutions.

Let (u0, u1) ∈ Hs (T3) with 1
2 < s < 1 and T ≥ 1. Given N ≥ 1 dyadic, define uωj,T ,N ,

j = 0, 1, by

(5.10) uωj,T ,N := P≤Nuωj,T .

Let uN be the smooth global solution to (3.2) on R
3 with initial data (uN, ∂tuN)|t=0 =

(uω0,T ,N ,uω1,T ,N ) ∈ H∞(R3). Denote the linear and nonlinear parts of uN by zN = zωN and
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vN = vωN , respectively. In particular, vN is the smooth global solution to the following per-
turbed NLW on R

3: {
∂2
t vN −�vN + (vN + zN)5 = 0 ,

(vN, ∂tvN)|t=0 = (0, 0) .
(5.11)

While we have ‖(vωN, ∂tvωN)‖L∞
t (R;Ḣ1(R3)) ≤ C(N,ω) < ∞ for each N ∈ N, there is no

uniform (in N) control on the H 1-norm of vN . The following lemma establishes a uniform
(in N) bound on the H 1-norm of vN in a probabilistic manner.

LEMMA 5.3. Let s ∈ ( 1
2 , 1) andN ≥ 1 dyadic. Given T , ε > 0, there exists Ω̃N,T ,ε ⊂

Ω such that

(i) P(Ω̃c
N,T ,ε) < ε.

(ii) There exists a finite constant C(T , ε, ‖(u0, u1)‖Hs (T3)) > 0 such that the following
energy bound holds:

sup
t∈[0,T ]

‖(vωN(t), ∂tvωN(t))‖H1(R3) ≤ C(T , ε, ‖(u0, u1)‖Hs (T3)) ,(5.12)

for all solutions vωN to (5.11) on [0, T ] with ω ∈ Ω̃N,T ,ε.
Note that the constant C(T , ε, ‖(u0, u1)‖Hs (R3)) is independent of dyadic N ≥ 1.

Lemma 5.3 plays the role of Proposition 4.1 in [23] and is a suitable substitute of the
probabilistic a priori energy estimate (Lemma 5.1) when d = 3. One can prove Lemma 5.3
exactly in the same manner as Proposition 4.1 in [23], by simply replacing the probabilistic
Strichartz estimates on R

d (Lemma 3.2 and Proposition 3.3 in [23]) with the appropriate
probabilistic Strichartz estimates for our problem (Propositions 4.1 and 4.4 above). Therefore,
we omit details.

The following lemma is the key deterministic ingredient in this case. Given f ∈
L5
t,locL

10
x , let fN = P≤Nf for dyadic N ≥ 1. Consider the following perturbed NLW:{

∂2
t vN −�vN + (vN + fN)

5 = 0

(vN, ∂tvN)|t=0 = (0, 0) .
(5.13)

LEMMA 5.4 (Proposition 5.2 in [23]). Let f, fN , and vN be as above. Given finite
T > 0, assume that the following conditions hold:

(i) There exist K, θ > 0 such that

‖f ‖L5
t L

10
x (I×R3) ≤ K|I |θ

for any compact interval I ⊂ [0, T ].
(ii) For each dyadic N ≥ 1, a solution vN to (5.13) exists on [0, T ] and satisfies the

following uniform a priori energy bound:

sup
N

sup
t∈[0,T ]

‖(vN(t), ∂tvN(t))‖H1(R3) < C0(T ) < ∞ .
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(iii) There exists α > 0 such that

‖f − fN‖L5
T L

10
x
< C1(T )N

−α

for all dyadic N ≥ 1.

Then, there exists a unique solution (v, ∂tv) ∈ C([0, T ];H1(R3)) to (3.6) with (v, ∂tv)|t=0 =
(0, 0), satisfying

sup
t∈[0,T ]

‖(v(t), ∂tv(t))‖H1(R3) < 2C0(T ) < ∞ .

Finally, with Proposition 4.1, Lemmas 5.3 and 5.4, one can prove Proposition 3.2, fol-
lowing the proof of Proposition 6.1 in [23]. Since the argument is identical, we omit details.

Appendix A. On the finite speed of propagation. In this appendix, we discuss the
issues related to the finite speed of propagation. In particular, we provide details of the reduc-
tion from Proposition 3.2 on R

d to Proposition 3.1 on T
d . For simplicity of the presentation,

we only consider the case d = 4.
In the following, fix (u0, u1) ∈ Hs (T4) with 0 < s < 1, T ≥ 1, and ε > 0. By

Proposition 3.2, there exists Ω̃
T , 1

2 ε
with P(Ω̃c

T , 1
2 ε
) < 1

2ε and, for each ω ∈ Ω̃
T , 1

2 ε
, there

exists a unique solution vω to (3.5) on [0, T ], satisfying the energy bound (5.7).
Given N ∈ N, define periodic functions uωj,N on T

d , j = 0, 1, by

uωj,N := P≤Nuωj =
∑

|n|≤N
gn,j (ω)̂uj (n)e

inx

and set (uω0,N,T ,uω1,N,T ) = (η
T
uω0,N , ηT u

ω
1,N ). Note that uωj,N,T is different from uωj,T ,N de-

fined in (5.10). It follows from an analogue of Lemma 3.3 that (uω0,N,T ,uω1,N,T ) ∈ H∞(R4)

almost surely. Therefore, there exists a unique (smooth) global solution uωN to the following
Cauchy problem on R

4: {
∂2
t uωN −�uωN + (uωN)

3 = 0

(uωN, ∂tu
ω
N)

∣∣
t=0 = (uω0,N,T ,uω1,N,T ) .

By the finite speed of propagation (for smooth solutions), uωN := uωN |[0,T ]×T4 is a solution to
the periodic NLW (1.1) on the time interval [0, T ] with initial data (uω0,N , u

ω
1,N ).

Denote the linear and nonlinear parts of uN by

zN = zωN := S(t)(uω0,N,T ,uω1,N,T ) and vN := uωN − zωN .

Then, vN is the smooth global solution to the following perturbed NLW on R
4:{

∂2
t vN −�vN + (vN + zN)3 = 0

(vN, ∂tvN)|t=0 = (0, 0) .

Also, define zωper,N and zωper by

zωper,N := Sper(t)(u
ω
0,N , u

ω
1,N ) and zωper := Sper(t)(u

ω
0 , u

ω
1 ) .
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Note that, by the finite speed of propagation for the linear solutions, we have

zωN |[0,T ]×T4 = zωper,N and zω|[0,T ]×T4 = zωper ,(A.1)

where zω is as in (3.4). In particular, vN := vN |[0,T ]×T4 is the smooth global solution to the
following perturbed NLW on T

4:{
∂2
t vN −�vN + (vN + zper,N )

3 = 0 ,

(vN , ∂t vN)|t=0 = (0, 0) .
(A.2)

By Proposition 4.1, we have the following probabilistic estimate on zω − zωN .

LEMMA A.1. Let T > 0 and N ∈ N. Given 1 ≤ q < ∞, 2 ≤ r ≤ ∞, there exist
C, c > 0 such that

P
(
‖zω − zωN ‖Lqt ([0,T ];Lrx(Rd)) > λ

)
≤ C exp

(
− c λ2

〈T 〉d+2+ 2
q ‖P>N(u0,u1)‖2

Hs (Td )

)
,

provided (i) s = 0 if r < ∞ and (i) s > 0 if r = ∞.

Noting that ‖P>N(u0, u1)‖Hs (T4) → 0 as N → ∞, given k ∈ N, there exists Nk ∈ N

and Ω̃k ⊂ Ω with P(Ω̃c
k ) <

ε

2k+1 such that for all ω ∈ Ω̃k, we have

sup
(q,r)∈A

‖zω − zωNk‖LqT Lrx ≤ 1

k
,(A.3)

where A = {(3, 6), (1,∞)}. Now, defineΩT,ε by

ΩT,ε = Ω̃
T , 1

2 ε
∩

( ∞⋂
k=1

Ω̃k

)
.

Then, we have P(Ωc
T ,ε) < ε. Recall that ΩT,ε ⊂ Ω̃T , ε2

⊂ Ω1, where Ω1 was defined in the
proof of Proposition 3.2 in Subsection 5.1 such that (5.3) and (5.7) hold for all ω ∈ Ω1. Then,
by repeating the proof of Lemma 5.1 with (A.3), there exists k0 ∈ N such that

sup
t∈[0,T ]

‖(vωNk (t), ∂tvωNk (t))‖H1(R4) ≤ 2C0(T , ε, ‖(u0, u1)‖Hs (T4)) < ∞ ,

for all ω ∈ ΩT,ε and all k ≥ k0. Moreover, it follows from (3.3), (A.1), and the fact that
ΩT,ε ⊂ Ω̃T , ε2

⊂ Ω2 with Ω2 defined in (5.8) that there exists k1 ∈ N such that

‖vω‖L3
T L

6
x(R

4), ‖vωNk‖L3
T L

6
x(R

4) ≤ C1(T , ε, ‖(u0, u1)‖Hs (T4)) < ∞ ,(A.4)

for all ω ∈ ΩT,ε and all k ≥ k1.
In the following, we fix ω ∈ ΩT,ε. Given an interval I , let X(I) = {(w, ∂tw) :

(w, ∂tw) ∈ CI Ḣ1
x(R

4), w ∈ L3
IL

6
x(R

4)}. By Monotone Convergence Theorem with (A.4),
we can further subdivide the intervals Ij in (5.8) and relabel them such that

‖vω‖L3
Ij
L6
x

≤ γ(A.5)
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for some sufficiently small γ > 0, where [0, T ] = ⋃J
j=0 Ij with Ij = [tj , tj+1], t0 = 0 <

t1 < · · · < tJ = T , and J < ∞. Moreover, it follows from (5.8) and (A.3) that there exists
k2 ∈ N such that

‖zω‖L3
Ij
L6
x
, ‖zωNk‖L3

Ij
L6
x

≤ γ � 1 ,(A.6)

for all k ≥ k2.
Let k ≥ max(k0, k1, k2). By Monotone Convergence Theorem with (A.4), we have

‖vωNk‖L3
t ([0,δ];L6

x)
≤ 4γ � 1(A.7)

for some small δ = δ(k, ω) > 0 with [0, δ] ⊂ I0. Then, by Lemma 2.1 with (A.5), (A.6), and
(A.7), we have

‖vω − vωNk‖X([0,δ]) ≤ 1

2
‖vω − vωNk‖L3

t ([0,δ];L6
x)

+ 1

2
‖zω − zωNk‖L3

t ([0,δ];L6
x)
.(A.8)

It follows from (A.3), (A.5), and (A.8) that there existsK0 ≥ max(k0, k1, k2) such that

‖vωNk‖L3
t ([0,δ];L6

x)
≤ 2γ

for all k ≥ K0. Then, a continuity argument with (A.3), (A.5), (A.6), and (A.8) yields

‖vωNk‖L3
I0
L6
x

≤ 2γ and ‖vω − vωNk‖X(I0) ≤ ‖zω − zωNk‖L3
I0
L6
x

(A.9)

for all k ≥ K0.
Once again, by Monotone Convergence Theorem with (A.4), we have

‖vωNk‖L3
t ([t1,t1+δ];L6

x)
≤ 4γ � 1(A.10)

for some small δ = δ(k, ω) > 0 with [t1, t1 + δ] ⊂ I1. By Lemma 2.1 with (A.5), (A.6), and
(A.10), we have

‖vω − vωNk‖X([t1,t1+δ]) ≤C‖vω(t1)− vωNk (t1)‖Ḣ1 + 1

2
‖vω − vωNk‖L3

t ([t1,t1+δ];L6
x)

+1

2
‖zω − zωNk‖L3

t ([t1,t1+δ];L6
x)
.(A.11)

Hence, by (A.9) and (A.11), we have

‖vω − vωNk‖X([t1,t1+δ]) ≤ 2C‖zω − zωNk‖L3
I0
L6
x
+ ‖zω − zωNk‖L3

t ([t1,t1+δ];L6
x)
.(A.12)

Applying the continuity argument again with (A.3), (A.5), (A.6), and (A.12), it follows that
there exists K1 ≥ K0 such that

‖vωNk‖L3
I1
L6
x

≤ 2γ and ‖vω − vωNk‖X(I1) ≤ (2C + 1)‖zω − zωNk‖L3
T L

6
x

for all k ≥ K1.
By arguing inductively, we conclude that there exists KJ ∈ N such that

‖vω − vωNk‖X([0,T ]) ≤ CT ‖zω − zωNk‖L3
T L

6
x
<
CT

k



478 T. OH AND O. POCOVNICU

for all k ≥ KJ . In particular, vωNk = vωNk |[0,T ]×T4 converges to vω := vω|[0,T ]×T4 in

L3
t ([0, T ];L6

x(T
4)) ∩ C([0, T ]; Ḣ 1

x (T
4)) .(A.13)

Moreover, ∂tvωNk converges to ∂tvω in C([0, T ];L2
x(T

4)). It follows from (A.1), (A.13), and

the fact that vω satisfies (3.5) on [0, T ]×R
4 that vω is a distributional solution to the following

perturbed NLW on T
4:{

∂2
t v
ω −�vω + (vω + zωper)

3 = 0

(vω, ∂t v
ω)|t=0 = (0, 0) ,

(t, x) ∈ [0, T ] × T
4 .

Moreover, vω satisfies the following Duhamel formulation:

vω(t) = −
ˆ t

0
Sper(t − t ′)(vω(t ′)+ zωper(t

′))3dt ′

for t ∈ [0, T ]. This can be seen from the fact that vωNk satisfies the corresponding Duhamel
formulation for (A.2), the convergence of vωNk to vω in (A.13), and the convergence of zper,Nk

to zper given by (A.1) and (A.3). Therefore, uω := zωper+vω is a solution to (1.1) on [0, T ]×T
4

in the class (3.1). This shows how Proposition 3.1 follows from Proposition 3.2.

REMARK A.2. In the above argument, we only controlled the homogeneous Ḣ 1-norm
of vω for simplicity. One can easily control the nonhomogeneous H 1-norm of vω by esti-
mating the L2-norm of vω from the control on the L2-norm of ∂t vω and Cauchy-Schwarz
inequality (in time). Since this is standard, we omit details.

Appendix B. On uniqueness. We briefly discuss the issue on uniqueness mentioned
in Remark 1.3. It follows from the proof of Theorem 1.1 that the setΩ(u0,u1) can be written as
Ω(u0,u1) = ⋃

ε>0Ωε with P(Ωc
ε ) < ε such that (i) there exists a global solution uω to (1.1)

and (ii) given any T > 0, we have

‖f ω‖
L
d+2
d−2 ([0,T ];L

2(d+2)
d−2 (Td))

≤ C1(T ) < ∞ ,(B.1)

for all ω ∈ Ωε , where f ω := Sper(·)(uω0 , uω1 ). Now, we fix such ω ∈ Ωε and suppress the
dependence on ω in the following. Letting v = u−f , we see that v is a global solution to the
perturbed NLW on T

d : {
∂2
t v −�v + F(v + f ) = 0

(v, ∂t v)|t=0 = (0, 0) .
(B.2)

Suppose that v1, v2 ∈ X(R) are two global solutions to (B.2), whereX(R) is as in (1.13).
Then, for each T > 0, we have

(B.3) ‖vj‖
L
d+2
d−2 ([0,T ];L

2(d+2)
d−2 (Td ))

≤ C2(T ) < ∞ , j = 1, 2 .
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In view of (B.1) and (B.3), we can write [0, T ] = ⋃J
j=0 Ij with Ij = [tj , tj+1], t0 = 0 <

t1 < · · · < tJ = T , and J < ∞ such that

‖f ω‖
L

d+2
d−2
Ij

L

2(d+2)
d−2

x

+
2∑
j=1

‖vj‖
L

d+2
d−2
Ij

L

2(d+2)
d−2

x

≤ γ � 1.(B.4)

Given a finite interval I , let X(I) = {(w, ∂tw) : (w, ∂tw) ∈ CI Ḣ1
x(T

d ), w ∈
L
d+2
d−2
I L

2(d+2)
d−2
x (Td )}. Then, by a standard deterministic local-in-time analysis with Lemma 2.1

and (B.4), we obtain

‖v1 − v2‖X(I0) ≤ C(γ )‖v1 − v2‖
L

d+2
d−2
I0

L

2(d+2)
d−2

x

≤ 1

2
‖v1 − v2‖

L

d+2
d−2
I0

L

2(d+2)
d−2

x

.

Therefore, we conclude that v1 = v2 on I0. In particular, we have v1(t1) = v2(t1). Thus, we
can iterate the above argument and conclude that v1 = v2 on Ij , j = 1, 2, . . . , J . Namely,
v1 = v2 on [0, T ]. Since the choice of T was arbitrary, we conclude that v1 = v2 on [0,∞).
Clearly, the same argument works for negative times.
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