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Abstract. Let M be a symplectic manifold equipped with a Hamiltonian circle action
and let L be an invariant Lagrangian submanifold of M. We study the problem of counting
holomorphic disc sections of the trivial M-bundle over a disc with boundary in L through
degeneration. We obtain a conjectural relationship between the potential function of L and
the Seidel element associated to the circle action. When applied to a Lagrangian torus fibre
of a semi-positive toric manifold, this degeneration argument reproduces a conjecture (now a
theorem) of Chan-Lau-Leung-Tseng [8, 9] relating certain correction terms appearing in the
Seidel elements with the potential function.

1. Introduction. Let M be a symplectic manifold with a Hamiltonian circle action.
Seidel [27] constructed an invertible element of the quantum cohomology of M by counting
pseudo-holomorphic sections of the associated M-bundle E over S2:

E = (M × S3)/S1

where S1 acts by the diagonal action and S3 → S2 is the Hopf fibration. Seidel elements have
been used to detect essential loops in the group Ham(M,ω) of Hamiltonian diffeomorphisms.
McDuff-Tolman [26] used them to verify Batyrev’s presentation of quantum cohomology
rings for toric varieties.

In a previous paper [21], we computed Seidel elements of semi-positive toric manifolds
and found that they are closely related to Givental’s mirror transformation [19]. Chan-Lau-
Leung-Tseng [8] conjectured that certain correction terms appearing in our computation of
Seidel elements determine the potential function of a Lagrantian torus fibre. The potential
function here is given by counting holomorphic discs with boundary in a Lagrangian torus fi-
bre and is thought of as a mirror of the toric variety. The conjecture was proved by themselves
[9] in a recent preprint. In this paper, we propose an alternative approach which relates Sei-
del elements and potential functions via degeneration. Our method should apply to a general
symplectic manifoldM with a Hamiltonian S1-action and an invariant Lagrangian.

We assume that M is a smooth projective variety, equipped with a C×-action and an S1-
invariant Kähler form ω. Let L be an S1-invariant Lagrangian submanifold ofM . Let M1(β)

denote the moduli space of genus-zero bordered stable holomorphic maps from (Σ, ∂Σ) to
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(M,L) with one boundary marking and representing β ∈ H2(M,L). By the fundamental
work of Fukaya-Oh-Ohta-Ono [13, 16], M1(β) is compact and carries a Kuranishi structure
with boundary and corner. Let β be a class of Maslov index two. Under certain assumptions
(see §2.1), the virtual fundamental chain of M1(β) is a cycle of dimension dimR L and one
can define the open Gromov-Witten invariant nβ ∈ Q by

ev∗[M1(β)]vir = nβ [L]
where ev : M1(β) → L is the evaluation map. The potential functionW is

W =
∑

β∈H2(M,L):μ(β)=2

nβz
β .

The idea of degeneration is that instead of counting discs in (M,L), we consider the problem
of counting disc sections of the trivial bundle M × D → D with boundary in L × S1. Then
we degenerate the targetM × D to the union E ∪M (M × D). From this geometry we expect
the following degeneration formula (see §3.3 for details):

(1) ϕ∗ev∗[M1(β̂)]vir =
∑

r(β̂)=σ+α̂
ev∗[MS(σ )×M Mrel

1,1(α̂)]vir

if both-hand sides carry virtual fundamental cycles, instead of chains. Here β̂ ∈ H2(M ×
D, L × S1) denotes a disc section class corresponding to β ∈ H2(M,L) and M1(β̂) is the
corresponding moduli space of disc sections. The summation in the right-hand side is taken
over all possible decompositions σ + α̂ of the class β̂ into a section class σ of E and another
disc section class α̂ under the degeneration. Also MS(σ ) is a moduli space of holomorphic
sections of E in the class σ , which is relevant to the Seidel element. This formula relates disc
counts of different boundary types; the boundary classes ∂α and ∂β from the both-hand sides
differ exactly by the S1-action.

The degeneration formula predicts a relationship between the Seidel element of the S1-
action and the potential function W . We need the following conditions in order to extract
meaningful information from the formula (1):

(i) M1(β) is empty for all β ∈ H2(M,L) with μ(β) ≤ 0.
(ii) The maximal fixed componentFmax ⊂ M of the C×-action (see §2.2) is of complex

codimension one and the C×-weight on the normal bundle is −1.
(iii) c1(M) is semi-positive.
(iv) ev(MS(σ )) is disjoint from L for all σ ∈ H sec

2 (E) such that
〈
cvert

1 (E), σ
〉 = −1.

THEOREM 1.1 (Corollary 3.21). Assume that M is simply-connected and L is con-
nected. Assume that the degeneration formula (1) holds (see Conjecture 3.17 for a precise
formulation) and that the above conditions (i)–(iv) are satisfied. Then

zα0 = 〈Ŝ(2), dW 〉 + S̃(0)

holds in a certain “open” Novikov ring Λop (see §2.1), where
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• α0 ∈ H2(M,L) is the maximal disc class defined by rotating a path connectingL and
Fmax by the S1-action (see §3.2);

• dW =∑μ(β)=2 β ⊗ nβz
β is the logarithmic derivative of W ;

• S̃ = S̃(0)+ S̃(2) is the Seidel element associated to the S1-action and S̃(i) ∈ Hi(M)⊗
Λ (Λ is the “closed” Novikov ring in Remark 2.9);

• Ŝ(2) ∈ H 2(M,L)⊗Λ is a lift of S̃(2) (see Definition 3.19).
In particular,

KS(S̃) = [zα0]
holds in a certain Jacobi algebra ofW , where KS denotes the Kodaira-Spencer mapping (see
the end of §3.3.3).

In the second half of the paper, we apply these to a semi-positive toric manifold X and
calculate the potential function of a Lagrangian torus fibre L ⊂ X. In toric case, the potential
function can be regarded as a function on the moduli space Mopcl of Lagrangian torus fibres L
together with complexfied Kähler classes −ω+ iB and lifts h ∈ H 2(X,L;U(1)) of exp(iB)
(see §4.2.1, h defines a U(1)-local system on L when B = 0). The potential function is of the
form:

W = w1 + · · · +wm

with wi = fi(q)zi , where fi(q) ∈ Λ is the correction term defined by

fi(q) =
∑

d∈H2(X;Z):〈c1(X),d〉=0

nβi+dqd .

Each term wi corresponds to a prime toric divisor Di ⊂ X and arises from disc counting of
fixed boundary type bi ∈ H1(L). Applying the degeneration formula, we get:

THEOREM 1.2 (Theorem 4.13). Assume that the degeneration formula (1) (Conjec-
ture 3.17) holds for (X,L) equipped with the C×-action ρj rotating around the prime toric
divisorDj (see §4.3). Let S̃j ∈ H 2(X)⊗Λ be the Seidel element ρj and let Ŝj ∈ H 2(X,L)⊗
Λ be its lift. Then we have

〈Ŝj , dwk〉 = δjkzj .

In particular we have KS(S̃j ) = [zj ].
We observe in Theorem 4.14 that the degeneration formula reproduces the following

conjecture (now a theorem) of Chan-Lau-Leung-Tseng [8, 9].

THEOREM 1.3 ([8, Conjecture 4.12], [9, Theorem 1.1]). Let g(j)0 (y), j = 1, . . . ,m
be explicit hypergeometric functions in variables y1, . . . , yr (r = dimH 2(X)) given in equa-
tion (38). Then we have

fj (q) = exp
(
g
(j)

0 (y)
)

under an explicit change of variables (mirror transformation) of the form log qi = log yi +
gi (y), i = 1, . . . , r with gi (y) ∈ Q[[y1, . . . , yr ]] and gi (0) = 0.
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In [21], we introduced Batyrev elements D̃j as mirror analogues of the divisor classes
Dj . They satisfy the relations of Batyrev’s quantum ring [5] for toric varieties. The hyper-

geometric functions g
(j)

0 (y) originally appeared in our computation [21] as the difference
between the Seidel and the Batyrev elements:

D̃j = exp
(
g
(j)

0 (y)
)
S̃j .

Hence by Theorem 1.2, S̃j and D̃j correspond respectively to [zj ] and [wj ] under the Kodaira-
Spencer mapping (see also [9, Theorem 1.5]).

Finally we discuss briefly the method of Chan-Lau-Leung-Tseng [9]. Their approach is
different from ours but is closely related. They observed that a holomorphic disc in (X,L)
whose boundary class is bj ∈ H1(L) can be completed to a holomorphic sphere in the M-
bundle E′

j associated to the inverse C×-action ρ−1
j . Using this, they identified open Gromov-

Witten invariants of (X,L) with certain closed invariants of E′
j . The associated bundle E′ of

the inverse action also appears in our story as the central fibre E ∪M E′ of the degeneration
of the closed manifoldM × P1 (instead of M × D) in §3.1.

Acknowledgments. We are grateful to Kwokwai Chan, Siu-Cheong Lau, Naichung Conan Leung
and Hsian-Hua Tseng for their beautiful conjecture [8], stimulating discussions and their interests in our
work. We thank Kenji Fukaya and Kaoru Ono for many helpful comments. E.G. wants to thank the
mathematics departments at Kyoto University and MIT for their hospitality while working and revising
this project.

2. Preliminaries. In this section, we review a potential function of a Lagrangian sub-
manifold and a Seidel element associated to a Hamiltonian circle action.

2.1. Potential function of a Lagrangian submanifold. The potential of a Lagran-
gian submanifold arises as the 0-th operation m0 of the corresponding A∞-algebra in La-
grangian Floer theory of Fukaya-Oh-Ohta-Ono [13]. In this paper, we do not use the full
generality of A∞-formalism developed in [13]; instead we consider potential functions under
certain restrictive assumptions.

Let (M,ω) be a closed symplectic manifold and L be a Lagrangian submanifold. For
simplicity, we restrict ourselves to the case whereM is a smooth projective variety. We assume
that L is oriented, relatively-spin and fix a relative spin structure [13, Definition 8.1.2] of L so
that the moduli space of bordered stable maps to (M,L) has an oriented Kuranishi structure.
Let μ : H2(M,L) → Z denote the Maslov index. It takes values in 2Z since L is oriented.

Let M1(β) denote the moduli space of stable holomorphic maps from a genus-zero
bordered Riemann surface (Σ, ∂Σ) to (M,L) with one boundary marked point and in the
class β ∈ H2(M,L). This was denoted by Mmain

1 (β) in [13]. By [13, Proposition 7.1.1]
(see also [16, Theorem 15.3]), M1(β) is compact and equipped with an oriented Kuranishi
structure (with boundary and corner) and has virtual dimension n + μ(β) − 2, where n =
dimR L. Let ev : M1(β) → L denote the evaluation map. Define an open version of Novikov
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ring Λop to be the space of all formal power series∑
β∈H2(M,L)

cβz
β

with cβ ∈ Q such that

�

{
β : cβ 
= 0,

∫
β

ω < E

}
< ∞

holds for all E ∈ R.

DEFINITION 2.1. Assume that M1(β) is empty for all β ∈ H2(M,L) with μ(β) ≤ 0.
Then M1(β) with μ(β) = 2 has no boundary and carries a virtual fundamental cycle of
dimension n = dimR L [13, Lemma A.1.32]. We define open Gromov-Witten invariants
nβ ∈ Q by

ev∗[M1(β)]vir = nβ [L]
for β with μ(β) = 2, where [L] ∈ Hn(L) is the fundamental class of L. The potential
function of L is defined to be the formal sum:

W =
∑

β∈H2(M,L):μ(β)=2

nβz
β .

This is an element of Λop.

We can decomposeW according to boundary classes of discs.

DEFINITION 2.2. Under the same assumption as in Definition 2.1, we write

W =
∑

γ∈H1(L)

Wγ

with Wγ ∈ Λop given by

Wγ :=
∑

β∈H2(M,L):μ(β)=2,∂β=γ
nβz

β .

REMARK 2.3. The potential function does depend on the choice of a complex struc-
ture onM and this is a reason why we restricted to a smooth projective varietyM . For exam-
ple, the Hirzebruch surfaces F0 = P1 × P1 and F2 together with their Lagrangian torus fibres
are symplectomorphic to each other, but the potential functions are different. See Auroux [3]
for wall-crossing of disc counting.

2.2. Seidel elements. Seidel element is an invertible element of quantum cohomol-
ogy associated to a loop in the group Ham(M,ω) of Hamiltonian diffeomorphisms of a sym-
plectic manifold (M,ω). In this paper we restrict to the case where M is a smooth projective
variety equipped with an algebraic C×-action. In this case, the associated S1-action is Hamil-
tonian and yields a loop in Ham(M,ω). We refer the reader to [27, 24, 25] for the original
definitions and to [26, 20] for applications in symplectic topology.

Let M be a smooth projective variety, equipped with a C×-action.
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DEFINITION 2.4. The associated bundle of the C×-action onM is theM-bundle over
P1

E := M × (C2 \ {0})/C× → P1 ,

where C× acts with the diagonal action λ · (x, (z1, z2)) = (λx, (λz1, λz2)).

REMARK 2.5. In symplectic geometric terms, the associated bundle is in fact a
clutched bundle obtained by gluing two trivialM-bundles over the unit disc, along the bound-
ary, using the action. More precisely,

E = (M × D0) ∪g (M × D∞)

where D0 = {z ∈ C : |z| ≤ 1} and D∞ = {z ∈ C : |z| ≥ 1} ∪ {∞} and the gluing map
g : M × ∂D0 → M × ∂D∞ is given by

g(x, eiθ ) = (e−iθ · x, eiθ ) .
This construction can be generalized to a loop in the group of Hamiltonian diffeomorphims
and yields a Hamiltonian bundle E → P1 in general. One can equip a symplectic form ωE

on the total space E of the Hamiltonian bundle such that ωE restricts to the symplectic form
ωM on each fibre [27].

By Atiyah’s theorem [1], there exists a unique C×-fixed component Fmax ⊂ MC
×

such
that the normal bundle of Fmax has only negative C×-weights. For a Hamiltonian function H
generating the S1-action, Fmax is the locus where H takes the maximum value. Each fixed
point x ∈ MC

×
defines a section σx of E. We denote by σ0 the section associated to a fixed

point in Fmax. We call it a maximal section. This defines a splitting1

(2) H2(E;Z) ∼= Z[σ0] ⊕H2(M;Z) .
Let NE(M) ⊂ H2(M,R) denote the Mori cone, that is the cone generated by effective curves
and set NE(M)Z := {d ∈ H2(M;Z) : d ∈ NE(M)}. We introduce NE(E) and NE(E)Z
similarly.

LEMMA 2.6 ([21, Lemma 2.2]). NE(E)Z = Z≥0[σ0] + NE(M)Z.

LetH sec
2 (E;Z) denote the affine subspace ofH2(E;Z)which consists of section classes,

i.e. the classes that project to the positive generator of H2(P
1;Z). We set NE(E)sec

Z
:=

NE(E)Z ∩H sec
2 (E;Z). The above lemma shows that

(3) NE(E)sec
Z

= [σ0] + NE(M)Z .

For d ∈ NE(X)Z and σ ∈ NE(E)Z, we denote by qd and qσ the corresponding elements in
the group ring Q[NE(X)Z] and Q[NE(E)Z] respectively. We write:

qσ = qk0q
d when σ = k[σ0] + d

1The section σ0 gives a splitting of the Serre spectral sequence. In general one has a non-canonical splitting
H ∗(E;Q) ∼= H ∗(M;Q)⊗H ∗(P1;Q) for any Hamiltonian bundle E → P1 [25].
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where q0 = qσ0 is the variable corresponding to the maximal section σ0. For σ ∈ NE(E)sec
Z

,
let MS(σ ) denote the moduli space of stable maps from genus-zero closed nodal Riemann
surfaces to E in the class σ with one marked point whose image lies in a fixed fibre ι : M ↪→
E. We can write

MS(σ ) = M1(σ )×E M

using the usual moduli space M1(σ ) of genus-zero one-pointed stable maps to E in the class
σ . Since M1(σ ) has a Kuranishi structure (without boundary) of virtual real dimension 2n+
2 〈c1(E), σ 〉− 2 (with n := dimCM) and we may assume that the evaluation map M1(σ ) →
E is weakly submersive (see [18, Theorem 7.11]), the fibre product MS(σ ) is equipped with
the induced Kuranishi structure of virtual dimension:

(4) vir.dimRMS(σ ) = 2n+ 2
〈
cvert

1 (E), σ
〉
.

Here cvert
1 (E) denotes the first Chern class of the vertical tangent bundle TvertE,

TvertE := Ker(dπ : T E → π∗T P1)

with π : E → P1 the natural projection. (Note that 〈c1(E), σ 〉 = 〈cvert
1 (E), σ

〉 + 2.) Let
ev : MS(σ ) → M be the evaluation map and let [MS(σ )]vir be the virtual fundamental cycle
of MS(σ ).

DEFINITION 2.7. The Seidel element associated to the C×-action on M is the class

(5) S :=
∑

σ∈NE(E)sec
Z

PD
(

ev∗[MS(σ )]vir
)
qσ

in H ∗(M;Q)⊗ Q[[NE(E)Z]]. Here PD stands for the Poincaré duality isomorphism. By (3),
we can factorize S as S = q0S̃ with S̃ in the small quantum cohomology ring

QH(M) := H(M;Q)⊗ Q[[NE(M)Z]]
and q0 := qσ0 as above. Then S̃ is an invertible element of QH(M)[q−d : d ∈ NE(M)Z]:
the Seidel element S̃′ associated with the reverse C×-action satisfies S̃′ � S̃ = qd0 for some
d0 ∈ H2(M,Z) [27, 24, 25].

REMARK 2.8. Using genus zero one-point Gromov-Witten invariants for E, we can
write

S =
∑

σ∈NE(E)sec
Z

∑
i

〈ι∗φi〉E0,1,σ φiqσ

where {φi} is a basis of H ∗(M;Q), {φi} is the dual basis with respect to the Poincaré pairing
and ι : M → E is the inclusion of a fibre. (We followed the standard notation of Gromov-
Witten invariants as in [11].)
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REMARK 2.9. For a general symplectic manifoldM , we use the Novikov ringΛ

Λ :=
{ ∑
d∈H2(M;Z)

cdq
d : cd ∈ Q, �{d : cd 
= 0, 〈ω, d〉 ≤ E} < ∞ for all E ∈ R

}
instead of Q[[NE(M)Z]]. The Seidel elements associated to loops in Ham(M,ω) define a
group homomorphism [27, 24, 25]:

π1(Ham(M,ω)) → QH(M)×Λ
/{
qd : d ∈ H2(M;Z)}

which is called the Seidel representation, where QH(M)Λ = H ∗(M;Q) ⊗ Λ denotes the
quantum cohomology ring overΛ.

3. Degeneration Formula. Let M be a smooth projective variety equipped with a
C×-action. We take an S1-invariant Kähler form ω on M . Let L be a Lagrangian subman-
ifold of M which is preserved by S1 ⊂ C×, i.e. λL ⊂ L for λ ∈ S1. Instead of counting
holomorphic discs in (M,L), we shall consider the problem of counting holomorphic disc
sections of the bundle M × D → D with boundary in L× S1. Then we degenerate the target
M × D into the union of the associated bundle E and M × D. From this we expect a certain
relationship between Seidel elements and disc counting invariants. We assume that M is a
smooth projective variety with a C×-action for simplicity, but the degeneration formula in
this section makes sense for a symplectic manifold with a Hamiltonian circle action (or a loop
in the group of Hamiltonian diffeomorphisms) in general.

3.1. Degeneration of M × D. Let D denote the unit disc {z ∈ C : |z| ≤ 1}. A
degeneration of the disc D into the union D ∪ P1 is given by the blowup Bl(0,0)(D × C) of
D × C at the origin. The projection π : Bl(0,0)(D × C) → C satisfies π−1(t) ∼= D for t 
= 0
and π−1(0) ∼= D ∪ P1. Explicitly:

Bl(0,0)(D × C) = {(z, t, [α, β]) ∈ D × C × P1 : zβ − tα = 0
}
.

An M-bundle E over Bl(0,0)(D × C) is defined as follows.

E := {(x, z, t, (α, β)) ∈ M × D × C × (C2 \ {0}) : zβ − tα = 0
}/

C×

where C× acts as (x, z, t, (α, β)) �→ (λx, z, t, (λα, λβ)). We have a natural projection
π : E → C. One can see that

(6) Et = π−1(t) =
{
M × D if t 
= 0 ;
E ∪M (M × D) if t = 0

where E is the associated bundle (Definition 2.4) of the C×-action on M . One can also
construct E as a symplectic quotient:

E = {(x, z, t, (α, β)) : zβ − tα = 0, H(x)+ |α|2 + |β|2 = c
}/
S1

where H : M → R is the moment map of the S1-action and c > maxx∈M H(x) is a real
number. We can equip E with a symplectic structure. The boundary ∂Et can be identified with
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M × S1 via the map:

(7) M × S1 � (x, z) �→ [x, z, t, (z, t)] ∈ ∂Et .
Via this identification, Et contains a Lagrangian submanifold L̂t := L × S1 in the boundary
M × S1 ∼= ∂Et .

We can close Et by attaching M × D to the boundary for each t and get a degenerating
family E of closed manifolds. More explicitly, we define:

E = {(x, (z,w), t, (α, β)) ∈ M × (C2 \ {0})× C × (C2 \ {0}) : tαw = zβ
}/

C× × C×

where C× × C× acts as

(x, (z,w), t, (α, β)) �→ (λ−1
1 λ2x, (λ1z, λ1w), t, (λ2α, λ2β)) .

This is an M-bundle over

Bl(0,0)(P
1 × C) = {([z,w], t, [α, β]) ∈ P1 × C × P1 : tαw = zβ

}
.

With respect to the projection π : E → C to the t-plane, we have

E t = π−1(t) =
{
M × P1 if t 
= 0 ;
E ∪M E′ if t = 0

where E′ is the associated bundle of the C×-action on M inverse to the original one. Note
that E is contained in E as the locus {w = 1, |z| ≤ 1} and E = E ∪M×S1×C (M × D2 × C).
We can also equip E with a symplectic structure by describing it as a symplectic quotient in a
similar manner.

A topological description is given as follows. We start from a trivial M-bundle M × P1

over P1. We cut P1 into 3 pieces: P1 = D0 ∪A ∪ D∞, where D0 = {|z| ≤ 1/2}, A = {1/2 ≤
|z| ≤ 2} and D∞ = {|z| ≥ 2} ∪ {∞}. One can twist the clutching function along ∂D0 and
∂D∞ by the given S1-action on M; namely

(8) M × P1 = (M × D0) ∪g1 (M ×A) ∪g2 (M × D∞)

where the clutching functions g1, g2 are given respectively by

g1 : M × ∂D0 � (x, 1
2e
iθ ) �−→ (e−iθ x, 1

2e
iθ ) ∈ M × ∂0A

g2 : M × ∂∞A � (x, 2eiθ ) �−→ (eiθx, 2eiθ ) ∈ M × ∂D∞

where we set ∂A = ∂0A∪∂∞A. CollapsingM×S1 ⊂ M×A down toM , we get the singular
central fibre E ∪M E′. In fact, for |t| < 1, one can decompose E t as

E t =
{[x, (tz, 1), t, (z, 1)] : |z| ≤ 1

}
∪{[x, (z, 1), t, (1, β)] : t = βz, |β| ≤ 1, |z| ≤ 1

}
∪{[x, (1, w), t, (1, wt)] : |w| ≤ 1

}
.

This corresponds to the decomposition (8) of M × P1 above.
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REMARK 3.1. We shall consider stable holomorphic discs in (E t , L̂t ) which project
onto the holomorphic disc (D2, S1) ⊂ (P1, S1). Such stable holomorphic discs are entirely
contained in the half-space Et of E t , so the choice of “closing" of Et is not relevant.

REMARK 3.2. We can perform a similar construction for a general symplectic mani-
fold (M,ω) equipped with a Lagrangian submanifold L and a loop {φθ }θ∈[0,2π] in the group
Ham(M,ω) of Hamiltonian diffeomorphisms such that φθ(L) = L for all θ . We can twist the
clutching function of the trivial M-bundle M × P1 as in (8) where g1, g2 there are replaced
with

g1(x,
1
2e
iθ ) = (φ−θ (x), 1

2e
iθ ) , g2(x, 2eiθ ) = (φθ (x), 2eiθ ) .

Then we can degenerate the annulus A into the union of two discs (in a one-parameter fam-
ily) in the middle part M × A. In the degeneration family, we have a family of Lagrangian
submanifolds L× S1 lying in the boundary of M × D0 ∪g1 M × A.

3.2. Relative homology classes of degenerating discs. We write L =⋃t∈C L̂t . The
total space (E,L) of the family has a deformation retraction to the central fibre (E0, L̂0). This
gives a retraction map for t 
= 0:

r : H2(Et , L̂t ) −→ H2(E,L) ∼= H2(E0, L̂0).

Let π : E → Bl(0,0)(D×C) denote the natural projection. We have the following commutative
diagram:

H2(Et , L̂t ) r−−−−→ H2(E0, L̂0)

π∗
⏐⏐� π∗

⏐⏐�
H2(D, S

1)
r−−−−→ H2(P

1 ∪ D, S1).

Under the natural identifications H2(D, S
1;Z) ∼= Z and H2(P

1 ∪ D, S1;Z) ∼= H2(P
1;Z) ⊕

H2(D, S
1;Z) ∼= Z2, the bottom arrow is given by n �→ (n, n). We are interested in section

classes lying in the following groups:

H sec
2 (Et , L̂t ) = π−1∗ (1) , for t 
= 0 , and H sec

2 (E0, L̂0) = π−1∗ (1, 1) .

There is an induced retraction map r : H sec
2 (Et , L̂t ) → H sec

2 (E0, L̂0) for t 
= 0.

LEMMA 3.3. Assume that M is simply connected and L is connected. Then we have

H sec
2 (Et , L̂t ) ∼= H2(M,L) for t 
= 0

H sec
2 (E0, L̂0) ∼= H sec

2 (E)×H2(M) H2(M,L) .
(9)

PROOF. Recall that (Et , L̂t ) ∼= (M ×D, L× S1) for t 
= 0. We show the isomorphism:

(p1∗, p2∗) : H2(M × D, L× S1) ∼= H2(M,L)×H2(D, S
1)

where p1, p2 are natural projections. Because we have sections i1, i2 : (M,L) → (M ×
D, L× S1) such that p1 ◦ i1 = id, p2 ◦ i2 = id, p2 ◦ i1 = const and p1 ◦ i2 = const, the map
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(p1∗, p2∗) is surjective. To show that it is injective, we use the commutative diagram:

0 −−−−→ 0 −−−−→ H2(D, S
1) −−−−→ H1(S

1)�⏐⏐ �⏐⏐ p2∗
�⏐⏐ �⏐⏐

H2(L× S1) −−−−→ H2(M × D) −−−−→ H2(M × D, L× S1) −−−−→ H1(L× S1)

epi

⏐⏐� ∼=
⏐⏐� p1∗

⏐⏐� ⏐⏐�
H2(L) −−−−→ H2(M) −−−−→ H2(M,L) −−−−→ H1(L).

Here all the horizontal sequences are exact. The injectivity of (p1∗, p2∗) follows from the
diagram chasing and H1(L × S1) ∼= H1(L) ⊕ H1(S

1) (here we use the condition that L is
connected). Then H sec

2 (Et , L̂t ) ∼= H2(M,L) for t 
= 0 follows.
The Mayer-Vietoris exact sequence for E0 = E ∪M (M × D) gives

H2(M) −−−−→ H2(E)⊕H2(M × D, L× S1) −−−−→ H2(E0, L̂0) −−−−→ 0 .

Here we used H1(M) = 0. The formula for H sec
2 (E0, L̂0) follows. �

Henceforth we assume that L is connected andM is simply-connected.

REMARK 3.4. The natural map H2(Et , L̂t ) → H2(E t , L̂t ) is injective because the
composition:

H2(M × D, L× S1) → H2(M × P1, L× S1)
(p1∗,p2∗)−−−−−→ H2(M,L)⊕H2(P

1, S1)

is injective.

NOTATION 3.5. We denote by

β̂ ∈ H sec
2 (Et , L̂t ) ∼= H sec

2 (M × D, L× S1) (t 
= 0)

σ + β̂ ∈ H sec
2 (E0, L̂0)

the homology classes corresponding to β ∈ H2(M,L) and to [σ, β] ∈ H sec
2 (E) ×H2(M)

H2(M,L) respectively, under the isomorphism (9) in Lemma 3.3.

Let u : D → M be a map such that u(eiθ ) = eiθ · u(1), namely, u is a disc contracting
an S1-orbit in M . This defines a section σ(u) of the associated bundle E → P1:

σ(u)|D0 : D0 → E|D0
∼= M × D0 , z �→ (u(1), z)

σ (u)|D∞ : D∞ → E|D∞ ∼= M × D∞ , z �→ (u(z−1), z)

where D0 = {z ∈ C : |z| ≤ 1} and D∞ = {z ∈ C : |z| ≥ 1} ∪ {∞}; here we used the gluing
construction of E in Remark 2.5.

Recall the maximal section class σ0 of E in §2.2. We introduce a similar maximal disc
class α0 ∈ H2(M,L) as follows. Take a path γ : [0, 1] → M such that γ (0) ∈ Fmax and
γ (1) ∈ L, where Fmax is the maximal fixed component. We define α0 to be the class repre-
sented by the disc D � reiθ �→ e−iθ · γ (r) ∈ M . The homotopy class here is independent of
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the choice of a path γ because M is simply-connected and L is connected. The boundary of
α0 is an inverse S1-orbit on L.

PROPOSITION 3.6. The retraction map r : H sec
2 (Et , L̂t ) → H sec

2 (E0, L̂0) (for t 
= 0)
of section classes is an isomorphism. It is given by (under Notation 3.5)

r(β̂) = σ(u)− û+ β̂ = σ0 + α̂0 + β̂ for β ∈ H2(M,L)

where u : D → M is an arbitrary disc whose boundary is an S1-orbit in L, σ0 is the maximal
section and α0 is the maximal disc. In particular we have the commutative diagram

H sec
2 (Et , L̂t )

∼=−−−−→
r

H sec
2 (E0, L̂0)

∂

⏐⏐� ∂

⏐⏐�
H1(L)

∼=−−−−→−λ H1(L)

where the bottom map is the subtraction of the class λ = [∂u] of an S1-orbit on L.

PROOF. Consider a constant section striv(z) = (x, z) of M × D ∼= Et with x ∈ L. By
the topological description of the degeneration given in §3.1, we see that striv can degenerate
to the union:

σ(u) ∪ ũ : P1 ∪ D → E ∪M (M × D)

where u : D → M is a disc contracting the S1-orbit eiθx on L and ũ : D → M × D is
given by z �→ (u(z), z). This shows that r([striv]) = σ(u) − û. Since the retraction map is a
homomorphism of H2(M,L)-modules, we have r(β̂) = σ(u)− û+ β̂ in general. When u is
a disc of the form: D � reiθ �→ eiθ · γ (r) ∈ M , where γ : [0, 1] → M is a path such that
γ (0) ∈ Fmax and γ (1) ∈ L, σ(u) is homotopic to the maximal section σ0 and [u] = −α0.
This shows the formula r(β̂) = σ0 + α̂0 + β̂. It is easy to check that r is an isomorphism
between section classes. �

REMARK 3.7. The latter statement in Proposition 3.6 is a consequence of the differ-
ence of trivializations of ∂Et (t 
= 0) and ∂E0. Recall that we have a trivialization ∂Et ∼=
M ×S1 in (7) depending smoothly on t ∈ C. For t 
= 0, this trivialization is induced from the
isomorphism Et ∼= M×D in (6); however for t = 0, this trivialization differs by the S1-action
from the one induced by the isomorphism E0 ∼= E ∪M (M × D) in (6).

LEMMA 3.8 (Maslov index and vertical Chern number). Let u : D → M be a disc
with boundary an S1-orbit on L, i.e. u(eiθ ) = eiθ · u(1) and u(1) ∈ L. Then u defines a
class in π2(M,L) and we have μ(u) = 2

〈
cvert

1 (E), [σ(u)]〉.
PROOF. We recall the definition of Maslov index of a disc u : (D, S1) → (M,L).

We set γ = u|∂D. Note that u∗TM|S1 is a complexfication of the subbundle γ ∗TL. Thus
det(u∗TM)|S1 is a complexification of the real line bundle detR(γ ∗T L). On the other hand
detR(γ ∗TL)⊗2 has a canonical orientation. Take a positive (nowhere vanishing) section s0 of
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detR(γ ∗TL)⊗2. The Maslov index of u is the signed count of zeros of a transverse section s
of det(u∗TM)⊗2 such that s|∂D = s0.

When u|∂D is an S1-orbit of L, we can take s0 above to be S1-equivariant. A transverse
section s of det(u∗TM)⊗2 with s|∂D = s0 defines a section t ∈ det(σ (u)∗TvertE)

⊗2 by

t|D0(z) = s0(1) , t|D∞(z) = s(z−1) .

Then the numbers of zeros of t and s coincide. The lemma follows. �

Proposition 3.6 and Lemma 3.8 show the following corollary:

COROLLARY 3.9. Let r : H sec
2 (Et , L̂t ) → H sec

2 (E0, L̂0) be the retraction map for t 
=
0. Suppose that r(β̂) = σ + α̂ with α, β ∈ H2(M,L). Then μ(β) = 2

〈
cvert

1 (E), σ
〉+ μ(α).

REMARK 3.10. We have μ(β̂) = μ(β)+ 2 for β ∈ H2(M,L).

3.2.1. Example. We give an example of degenerating holomorphic discs. Consider a
family of (constant) holomorphic disc sections ut : (D, S1) → (Et , L̂t ) given by

ut (z) = [x0, z, t, (z, t)]
for some x0 ∈ L. For a fixed non-zero z ∈ D, we have

ϕ(z) := lim
t→0

ut (z) = [x0, z, 0, (z, 0)] .
This can be completed to a holomorphic disc section ϕ : D → M × D ⊂ E0. Note that the
limit

lim
z→0

ϕ(z) = [x1, 0, 0, (1, 0)] where x1 := lim
z→0

z−1x0 ∈ M ,

exists by the completeness of M , and it is fixed by the C× action. On the other hand, we can
see a bubbling off holomorphic sphere at z = 0 by the usual rescaling:

ψ(z) := lim
t→0

ut (tz) = lim
t→0

[t−1x0, tz, t, (z, 1)] = [x1, 0, 0, (z, 1)] .

This defines a holomorphic section ψ : P1 → E ⊂ E0 associated to the C×-fixed point
x1 ∈ M . Note that ψ(∞) = ϕ(0) and ∂ϕ is an inverse S1-orbit on L.

3.3. Degeneration formula. In what follows, we propose a conjectural degeneration
formula and discuss its consequences. As before, M denotes a smooth projective variety
equipped with a C×-action and an S1-invariant Kähler form ω; L is a Lagrangian subman-
ifold which is preserved by the S1-action. We assume that M is simply-connected and L is
connected. Moreover we assume that L is oriented and relatively spin and we fix a relative
spin structure [13, Definition 8.1.2].

Take β ∈ H2(M,L). We consider the moduli space M1(β̂) of stable holomorphic maps
from genus zero bordered Riemann surface (Σ, ∂Σ) to (E t , L̂t ) ∼= (M×P1, L×S1)with one
boundary marked point and in the class β̂ ∈ H sec

2 (Et , L̂t ) (where t 
= 0; see Notation 3.5).
Such stable maps project onto the disc (D, S1) ⊂ (P1, S1) on the base and so are contained
in Et (see Remarks 3.1 and 3.4). The virtual dimension of M1(β̂) is n + 1 + μ(β̂) − 2 =
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n + 1 + μ(β) with n := dimCM . The corresponding moduli space at t = 0 should be
described as the fibre product: ⋃

r(β̂)=σ+α̂
MS(σ )×M Mrel

1,1(α̂)

where MS(σ ) is the moduli space of holomorphic sections of E appearing in §2.2 and
Mrel

1,1(α̂) is the moduli space of stable holomorphic maps from genus zero bordered Rie-

mann surfaces to (M×P1, L×S1) in the class α̂ ∈ H sec
2 (M×D, L×S1) with one boundary

marked point and one interior marked point such that the image of the interior marked point
lies in M × {0}. The superscript “rel" (which means “relative") signifies the last condition.
The fibre product above is taken with respect to the interior evaluation maps. One can write:

(10) Mrel
1,1(α̂) = M1,1(α̂)×M×P1 (M × {0})

using the moduli space M1,1(α̂) of bordered stable maps to (M×P1, L×S1) of class α̂ with
one boundary marking and one interior marking. Then a Kuranishi structure on Mrel

1,1(α̂) is
induced from the Kuranishi structure on M1,1(α̂) (as defined in [13, §7.1]) via this presenta-
tion. The virtual dimension is

vir.dimMrel
1,1(α̂) = n+ 1 + μ(α) .

We write ev(i) : Mrel
1,1(α̂) → M for the interior evaluation map and ev(b) : Mrel

1,1(α̂) → L×S1

for the boundary evaluation map.
When the virtual fundamental chains on the moduli spaces M1(β̂) and MS(σ ) ×M

Mrel
1,1(α̂) happen to be cycles, we expect the following degeneration formula:

(11) ϕ∗ev∗[M1(β̂)]vir =
∑

r(β̂)=σ+α̂
ev∗[MS(σ )×M Mrel

1,1(α̂)]vir

in H∗(L × S1). Here ev on the both-hand sides denotes the evaluation map at the boundary
markings taking values in L̂t ∼= L × S1 and ϕ : L × S1 → L × S1 is the map (x, eiθ ) �→
(e−iθ · x, eiθ ) which corresponds to the difference of boundary trivializations (see Remark
3.7). We will study below when the both-hand sides of (11) make sense as cycles; then will
calculate them in terms of Seidel elements and open Gromov-Witten invariants.

3.3.1. The left-hand side of (11). When β = 0, M1(β̂) consists of constant disc
sections and ev : M1(β̂) → L × S1 is a homeomorphism. All constant disc sections are
Fredholm regular. When β 
= 0, we have a natural map

M1(β̂) → M1(β)

induced by the projection Et → M , where M1(β) is the moduli space of one-pointed bor-
dered stable maps to (M,L) in the class β. By taking the graph of a disc component, we
can see that this map is surjective. Therefore, for β 
= 0, M1(β̂) is non-empty if and only
if M1(β) is non-empty. Moreover, if M1(β) is non-empty, M1(β̂) has boundary (see [13,
§7.1.1] for the boundary description) since a bordered stable map of class β̂ can be con-
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structed as the union of a constant disc section and a disc of class β (which is constant in the
D-direction). Therefore, we have

LEMMA 3.11. The virtual cycle ev∗[M1(β̂)]vir is well-defined if M1(β) = ∅. We
have

ϕ∗ev∗[M1(β̂)]vir =
{

[L× S1] if β = 0 ;
0 if β 
= 0 and M1(β) = ∅ .

3.3.2. The right-hand side of (11). Take (σ, α) ∈ H sec
2 (E) × H2(M,L) such that

σ + α̂ = r(β̂). By Corollary 3.9 and Proposition 3.6, we have

μ(β) = 2
〈
cvert

1 (E), σ
〉+ μ(α)(12)

∂β = ∂α + λ(13)

where λ ∈ H1(L) is the class of an S1-orbit.
Suppose α = 0. This can happen only when ∂β = λ by (13). Since α = 0, Mrel

1,1(α̂)

consists of constant disc sections and ev(b) : Mrel
1,1(α̂)

∼= L × S1. The interior evaluation

ev(i) : Mrel
1,1(α̂) → M is given by the projection L× S1 → L ⊂ M . Thus

ev∗[MS(σ )×M Mrel
1,1(α̂)]vir = ev∗[MS(σ )×M (L× S1)]vir

= (Sσ ∩ [L])× [S1](14)

where

(15) Sσ := PD
(

ev∗[MS(σ )]vir
)

∈ H−μ(β)(M) .

Here we used the virtual dimension formula (4) and (12).
Suppose α 
= 0. By the same argument as in §3.3.1, Mrel

1,1(α̂) is non-empty if and only

if M1(α) is non-empty; also Mrel
1,1(α̂) has boundary if M1(α) is non-empty. Assume that

M1(α) has no boundary. This means that every stable map in M1(α) has only one disc
component2 (but possibly with sphere bubbles). Let us study the moduli space Mrel

1,1(α̂) and
its boundary. Since α 
= 0, we have a map

(16) f = (f1, f2) : Mrel
1,1(α̂) → M1(α)× S1 .

The first factor f1 is given by projecting bordered stable maps to M , forgetting the interior
marking and collapsing unstable components; the second factor f2 is the boundary evaluation
ev(b) : Mrel

1,1(α̂) → L×S1 followed by the projectionL×S1 → S1. The map f can be viewed

as a tautological family of stable discs over M1(α)×S1. In fact we have the following result.

LEMMA 3.12. Let u : (Σ, ∂Σ) → (M,L) be a one-pointed bordered stable map of
class α and x ∈ ∂Σ be the boundary marking. Suppose thatΣ has only one disc component.
Then the fibre f−1([u,Σ, x], z) at ([u,Σ, x], z) ∈ M1(α) × S1 can be identified with the
oriented real blow-up Σ̂ of Σ at x (see the proof below for the definition of Σ̂) and the
interior evaluation ev(i) on f−1([u,Σ, x], z) can be identified with the map Σ̂ → Σ

u−→ M .
2See [13, §7.1.1] for the boundary description of the moduli spaces.
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PROOF. The assumption thatΣ has only one disc component was made for simplicity’s
sake (and this is the case we are interested in). In general, the fibre of f can be identified
with a smoothing of Σ̂ at the boundary singularities. See [13, Lemma 7.1.45] for a similar
statement.

We identify a neighbourhood of x ∈ Σ with the upper-half disc D+ = {w ∈ D :
Im(w) ≥ 0} where x corresponds to 0 ∈ D+. The oriented real blow-up Σ̂ is defined by
replacing this neighbourhood with [0, π] × [0, 1]:

Σ̂ = (Σ \ {x}) ∪D+\{0} ([0, π] × [0, 1])
where D+ \ {0} is identified with [0, π] × (0, 1] by the map w �→ (arg(w), |w|). Note that
Σ̂ is a real analytic manifold (with boundary and corner) equipped with a natural projection
Σ̂ → Σ .

For a pointp ∈ Σ̂ , we shall construct a bordered stable map in the fibre f−1((u,Σ, x), z).
Suppose p ∈ Σ̂ \ ∂Σ̂ ∼= Σ \ ∂Σ . Note that Σ is a union of one disc componentΣ0 and trees
of sphere bubbles. If p is in a tree of spheres bubbles, let q be the intersection point of the
tree (on which p lies) and the disc Σ0. If p is in the interior of Σ0, set q := p. Take a unique
holomorphic map v : Σ0 → D which sends q to 0 ∈ D and x ∈ ∂Σ0 to z ∈ S1. Extend v
to the whole Σ so that it is constant on each sphere component. Then we obtain a bordered
stable map û = (u, v) : Σ → M ×D of class α̂ with p a new interior marked point. (If p is a
node, we insert at the node a trivial sphere with an interior marking.)

Next consider the case p ∈ ∂Σ̂ . In this case, the corresponding bordered stable map is
in the boundary of Mrel

1,1(α̂). See Figure 1 below. If p is not in the exceptional locus [0, π]
of Σ̂ → Σ , we attach a disc D to Σ by identifying 1 ∈ ∂D with p ∈ ∂Σ and define a map
û : D 1∪p Σ → M × D by

û|D(w) = (u(p), zw) , û|Σ(y) = (u(y), z) .

A new interior marking is taken to be 0 ∈ D. If p corresponds to an interior point θ ∈ (0, π)
of the exceptional locus [0, π] of Σ̂ → Σ , we attach a disc D to Σ by identifying 1 ∈ ∂D

with x ∈ ∂Σ and define a map û : D 1∪x Σ → M × D by

û|D(w) = (u(x), e−2iθ zw) , û|Σ(y) = (u(y), e−2iθ z) .

We put a new boundary marking at e2iθ ∈ D and a new interior marking at 0 ∈ D. If p is
a boundary point of the exceptional locus [0, π], say, 0 ∈ [0, π], we consider the domain
D(1) 1∪−1 D(2) 1∪x Σ (subscripts signify how to identify boundary points) with a boundary
marking i ∈ D(2) and an interior marking 0 ∈ D(1) and define a map û : D(1) ∪ D(2) ∪Σ →
M × D by:

û|D(1)(w) = (u(x), zw) , û|D(2)(w) = (u(x), z) , û|Σ(y) = (u(y), z) .

When p corresponds to π ∈ [0, π], we take −i ∈ D(2) in place of i ∈ D(2) as a boundary
marking. One can see that the above construction defines a homeomorphism Σ̂ ∼=
f−1([u,Σ, x], z). The last statement is obvious. �



SEIDEL ELEMENTS AND POTENTIAL FUNCTIONS 343

FIGURE 1. Three types of boundary points of Mrel
1,1(α̂). The horizontal direc-

tion is M and the vertical direction is D. The boundary/interior markings are
denoted by b and i respectively. The shaded disc is a component where the map
is constant.

From the previous lemma and its proof, we have:

COROLLARY 3.13. Suppose ∂M1(α) = ∅. The boundary ∂Mrel
1,1(α̂)maps to L under

the interior evaluation map ev(i) : Mrel
1,1(α̂) → M .

COROLLARY 3.14. Suppose ∂M1(α) = ∅ and ev(MS(σ )) ∩ L = ∅. Then the fibre
product MS(σ ) ×M Mrel

1,1(α̂) has no boundary. In particular, the virtual fundamental cycle

ev∗[MS(σ )×M Mrel
1,1(α̂)]vir is well-defined (see [13, Lemma A.1.32]).

We proceed to calculate the cycle ev∗[MS(σ )×M Mrel
1,1(α̂)]vir under the assumption of

Corollary 3.14. By Corollary 3.13, taking a sufficiently small perturbation, we get a virtual
fundamental chain

Pα := (ev(i) × ev(b))∗[Mrel
1,1(α̂)]vir

whose boundary lies in ν(L) × L × S1, where ν(L) ⊂ M is an arbitrarily small tubular
neighbourhood of L. In other words, Pα defines a relative homology class of the pair (M ×
L×S1, ν(L)×L×S1) whose dimension is n+1+μ(α) (where n = dimCM). On the other
hand, since ev(MS(σ )) ∩ L = ∅, taking a sufficiently small perturbation again, we obtain a
virtual cycle ev∗[MS(σ )]vir in M \ ν(L). By Poincaré-Lefschetz duality this defines a class

(17) Ŝσ := PD
(

ev∗[MS(σ )]vir
)

∈ Hμ(α)−μ(β)(M,L) .

Here we used the virtual dimension formula (4) and (12). (Note that we put “hat" to distin-
guish Ŝσ ∈ H ∗(M,L) from the element Sσ ∈ H ∗(M) appearing in (15).) The virtual cycle
of the fibre product can be evaluated as the pairing of the two classes:

(18) ev∗[MS(σ )×M Mrel
1,1(α̂)]vir = 〈Ŝσ ,Pα〉

where 〈·, ·〉 is the canonical pairing between relative cohomology and homology (with Kün-
neth decomposition):

Hμ(α)−μ(β)(M, ν(L))⊗Hn+1+μ(α)(M × L× S1, ν(L) × L× S1)

−→ Hμ(α)−μ(β)(M, ν(L))⊗Hμ(α)−μ(β)(M, ν(L))⊗Hn+1+μ(β)(L× S1)

−→ Hn+1+μ(β)(L× S1) .
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We now compute the class Pα in terms of the class [M1(α)
vir]. For this, consider the diagram

(19)

Mrel
1,1(α̂)

f−−−−→ M1(α) × S1 ev×id−−−−→ L× S1

ev(i)
⏐⏐�
M

where f is given in (16). The composition of the horizontal arrows is the boundary evalua-
tion map ev(b). As we saw in Lemma 3.12, (f, ev(i)) can be viewed as a universal family of
bordered stable maps of class α.

LEMMA 3.15. Suppose ∂M1(α) = ∅ and α 
= 0. Then the relative homology class
Pα is given by

(20) Pα = α ⊗ (ev∗[M1(α)]vir × [S1])
in H∗(M × L× S1, ν(L) × L× S1) ∼= H∗(M,L)⊗H∗(L× S1).

Notice that if one ignores the technical details on the construction of virtual chains, as
well as the expected functoriality relating the respective chains on these spaces, the lemma
follows directly from Diagram (19).

PROOF. We briefly overview the steps towards the proof of this result. We first recall
the definition of Kuranishi structure and the construction of Kuranishi neighbourhoods for
M1(α). Roughly speaking, a Kuranishi neighbourhood V of r0 ∈ M1(α) consists of smooth
maps from stable discs to (M,L) which are sufficiently “close” to r0. It is equipped with an
obstruction bundle E → V satisfying a transversality condition with respect to the Cauchy-
Riemann operator, together with a section s ofE such that a neighbourhood of r0 in M1(α) is
homeomorphic to s−1(0) ⊂ V . As a next step, we describe how a Kuranishi neighbourhood
V for M1(α) induces a Kuranishi neighbourhood V̂ for Mrel

1,1(α̂). Following exactly the
method of Lemma 3.12, for a given smooth map u : Σ → M in the Kuranishi neighbourhood
V and a point of Σ̂ × S1, we can canonically construct a smooth map û : Σ̃ → M × P1

which is holomorphic in the P1-direction, where Σ̃ is obtained from Σ by possibly adding
disc or sphere bubbles. This constructs a Kuranishi neighbourhood V̂ for Mrel

1,1(α̂) which is a

fibration over V ×S1 with fibres stable discs. The key point is that we can take an obstruction
bundle over V̂ to be the pull-back of the obstruction bundle E over V . This allows us to
choose the virtual chain of Mrel

1,1(α̂) to be “fiber bundle” over a virtual cycle of M1(α) × S1

with fibre the corresponding stable discs, and the conclusion of the lemma follows.
Kuranishi structure on M1(α). We refer the reader to [13, §7.1], [16, Part 3, 4] for a

detailed description. Recall [13, Definition A1.1] that a Kuranishi neighbourhood of a point
r0 ∈ M1(α) is a tuple (V ,E, Γ,ψ, s) where

• V is a finite dimensional manifold (possibly with boundary and corner);
• E is a finite dimensional real vector space;
• Γ is a finite group; it acts on V smoothly and effectively and on E linearly;
• s is a smooth Γ -equivariant map V → E;
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• ψ is a homeomorphism between s−1(0)/Γ and an open neighbourhood of r0 in
M1(α).

Every point of M1(α) is equipped with a certain Kuranishi neighbourhood, and these Ku-
ranishi neighbourhoods are related by certain co-ordinate changes [13, Definition A.1.3] and
M1(α) becomes a Kuranishi space (a space endowed with a Kuranishi structure) [13, Defini-
tion A.1.5, Proposition 7.1.1]. The Kuranishi neighbourhoods are cut-off from maps satisfy-
ing the Cauchy-Riemann equation modulus a finite dimensional obstruction. Such construc-
tion depends on several parameters, as we now describe in the case at hand.

Let (u0 : Σ0 → M,x0 ∈ ∂Σ0) be a marked bordered stable map representing r0 ∈
M1(α). The finite group Γ is given by the set of holomorphic automorphisms ϕ : Σ0 →
Σ0 such that u0 ◦ ϕ = u0 and ϕ(x0) = x0. Since (Σ0, x0) has only one marking, it is
unstable if we forget the map u0. We add interior markings w0,1, . . . , w0,l in Σ0 so that
(Σ0, x0, {w0,1, . . . , w0,l}) is now stable. We require that the set {w0,1, . . . , w0,l} is preserved
by the Γ -action [16, Definition 17.5], so that Γ permutes the indices. We can therefore re-
gard Γ as a subgroup of the symmetric group Sl . We take real codimension 2 submani-
folds Q1, . . . ,Ql of M such that u0 intersects Qi transversely at w0,i (so u0 is necessar-
ily an immersion at w0,i); moreover we require that Qi = Qσ(i) for every permutation
σ ∈ Γ ⊂ Sl . Let M1,l denote the moduli space of genus-zero stable bordered Riemann sur-
faces with one boundary and l interior markings and let a0 ∈ M1,l be the point represented
by (Σ0, x0, {w0,1, . . . , w0,l}). The group Γ acts on M1,l by permutation of the l interior
markings and a0 is fixed by Γ . Let N ⊂ M1,l be a Γ -invariant small open neighbourhood of
a0. Fukaya-Oh-Ohta-Ono [16, Section 16] constructed N in two steps. First they considered
a subset V ⊂ M1,l consisting of deformations of a0 having the same combinatorial type, i.e.
the same associated dual graph as a0. Then, they introduced smoothing (or gluing) near the
nodes with parameters T ∈ R and θ ∈ S1. This constructs the neighbourhoodN of V. This
construction yields a Γ -equivariant tautological family R → N [16, Lemma 16.9] of stable
bordered Riemann surfaces, where the fibre at b ∈ N corresponds to its underlying surface.
Note that when γ ·b = b′ for b, b′ ∈ N and γ ∈ Γ , there is a canonical isomorphism between
the underlying surfaces of b and b′ which induces the permutation γ of the interior markings;
this defines the Γ -action on R. We take a Γ -invariant closed subset K ⊂ R such that the
fibre K0 = Σ0 ∩ K at a0 is the complement in Σ0 of small neighbourhoods of the nodes in
Σ0, and that the family K → N is C∞-trivial. We choose a Γ -equivariant C∞-trivialization
K ∼= K0 × N which preserves the markings, i.e. the section of the ith interior marking in K
corresponds to {w0,i} × N ⊂ K0 × N . K is called the core and its complement is called the
neck region (for further details see [16, Definitions 16.2, 16.4, 16.6, 16.7].)

For a bordered Riemann surface Σ appearing as a fibre of R → N , the core K =
Σ ∩ K is identified with K0 by the given trivialization K ∼= K0 × N , and thus u0 in-
duces a map u0 : K → M . We consider an infinite dimensional space U consisting of tuples
(u,Σ, x, {w1, . . . , wl}), where (Σ, x, {w1, . . . , wl}) represents a point of N and
u : (Σ, ∂Σ) → (M,L) is a smooth map of degree α which is “sufficiently close” to u0 in
the sense that (see [16, Definitions 17.12, 18.10]) for an ε > 0
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• u is ε-close to u0 in the C10-topology on the coreK = Σ ∩ K;
• u is holomorphic on the neck regionΣ \K;
• the diameter of the image of each connected component of the neck region under u is

smaller than ε.

The group Γ acts on U by permutation of interior marked points. Next we choose an ob-
struction bundle E over U as follows (see [16, Definitions 17.7, 17.15]). Take a Γ -equivariant
smooth family of finite dimensional subspaces Ea

Ea ⊂ C∞
c (Int(K), u∗

0TM ⊗Λ0,1)

parametrized by a = (Σ, x, {w1, . . . , wl}) ∈ N , where K = Σ ∩ K is the core of Σ
and Λ0,1 is the bundle of (0, 1)-forms on Σ . Then we extend this family to the whole
U via parallel transport, i.e. for each point r = (u,Σ, x, {w1, . . . , wl}) ∈ U over a =
(Σ, x, {w1, . . . , wl}) ∈ N , we define

Er ⊂ C∞
c (Int(K), u∗TM ⊗Λ0,1)

as the parallel transport of Ea along geodesics joining u(y) and u0(y), for y ∈ Int(K). Here
we use a connection on TM such that T L is preserved by parallel translation [16, §11]. By
construction, the bundle E → U is Γ -equivariant. The Kuranishi neighbourhood V ⊂ U is
cut out by the equations:

∂u ≡ 0 mod Er

u(wi) ∈ Qi i = 1, . . . , l
(21)

for r = (u,Σ, x, {w1, . . . , wl}) ∈ U . We need to choose E so that the equations (21) are
transversal (see below). The Γ -action on U preserves V and thus the obstruction bundle
restricts to a Γ -equivariant vector bundle E = E|V over V . The Cauchy-Riemann operator ∂
induces a section s of E → V and s−1(0)/Γ gives a neighbourhood of r0 ∈ M1(α).

The required transversality for (21) is stated as follows (see [16, Lemmata 18.16, 20.7]).
For a smooth map u : (Σ, ∂Σ) → (M,L), letL2

m,δ(Σ, ∂Σ; u∗TM, u∗T L) denote a weighted

Sobolev space, form sufficiently large and δ > 0, and consisting of L2
m, loc-sections of u∗TM

which take values in u∗T L along the boundary ∂Σ , see [16, Definitions 10.1, 19.8]. Let
L2
m,δ(Σ, u

∗TM⊗Λ0,1) denote a similar weighted Sobolev space of sections of u∗TM⊗Λ0,1

(see [16, Definition 19.9]). Let

Dr∂ : L2
m+1,δ(Σ, ∂Σ; u∗TM, u∗TL) → L2

m,δ(Σ, u
∗TM ⊗Λ0,1)

denote the linearization of ∂ at r = (u,Σ, x, {w1, . . . , wl}) ∈ U . We require that Im(Dr∂)

and Er span L2
m,δ(Σ, u

∗TM ⊗Λ0,1) for each r ∈ U . (This is called “Fredholm regularity".)

Let M ⊂ U denote the subspace cut out only by the first equation of (21). Let evad : M → Ml

be the evaluation map at the l additional markings. We also require evad to be transversal to∏l
i=1Qi ⊂ Ml . Then V = ev−1

ad (
∏l
i=1Qi) is the desired neighbourhood.

Induced Kuranishi structure on Mrel
1,1(α̂). Recall that f is the forgetful morphism

Mrel
1,1(α̂) → M1(α) × S1 as in (16). We now construct a Kuranishi neighbourhood of
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f−1(r0 × S1) ⊂ Mrel
1,1(α̂) from the Kuranishi neighbourhood (V ,E, Γ,ψ, s) of r0 ∈ M1(α)

above. We have f−1(r0 × S1) ∼= Σ̂0 × S1 by Lemma 3.12, where Σ̂0 is the oriented real
blow-up of Σ0 at x0. We perform this oriented real blow-up in families. The family R → N

is equipped with a section x : N → R corresponding to the boundary marked point. Let R̂
denote the oriented real-blow up along x. The proof of Lemma 3.12 shows that a point p ∈ R̂
parametrizes a marked stable bordered Riemann surface3 (Σ̃, x, p, {w1, . . . , wl}) with a new
interior marking p (see also [13, Lemma 7.1.45]). More precisely, letting p ∈ R̂ be on the
blow-up of a fibre Σ ⊂ R: if p is neither a node nor a boundary point, Σ̃ = Σ; if p is an
interior node, Σ̃ is obtained fromΣ by adding a sphere bubble at the node; if p is a boundary
point, Σ̃ is obtained fromΣ by adding at most two disc bubbles (see Figure 1). It is possible
that a new interior marking p on Σ̃ coincides with one of the wi ’s. Let R → R̂ denote the
corresponding family of marked stable bordered Riemann surfaces. The Γ -action on R̂ nat-
urally lifts to that on the tautological family R → R̂. Let p ∈ R̂ be a point on the blow-up
Σ̂ of a fiber Σ ⊂ R of R → N and let Σ̃ be the fibre of R → R̂ at p ∈ R̂ as above. Then
the core K = K ∩ Σ of Σ induces a compact subset K̃ of Σ̃ which maps isomorphically
onto K under the natural map Σ̃ → Σ . (The set K̃ is like the strict transform of K .) The
union of these subsets K̃ gives a Γ -invariant subset K ⊂ R equipped with a Γ -equivariant
C∞-trivialization K ∼= K0 × R̂. Notice that Int(K) is disjoint from the components contracted
under Σ̃ → Σ .

Let U be the space of tuples (û, Σ̃, x, p, {w1, . . . , wl}) where (Σ̃, x, p, {w1, . . . , wl})
is a marked bordered Riemann surface corresponding to a point of R̂ (i.e. arises as a fibre of
R → R̂) and û : (Σ̃, ∂Σ̃) → (M × P1, L × S1) is a smooth map of class α̂ which satisfies
the following conditions:

• πM ◦ û is C10-close to u0 on K̃ = Σ̃ ∩K, where πM : M ×P1 → M is the projection
(since K̃ is identified with K0 via the given trivialization K ∼= K0 × R̂, u0 defines a
map u0 : K̃ → M);

• û is holomorphic on Σ̃ \ K̃;
• the diameter of the image of each connected component of Σ̃ \ K̃ under πM ◦ û is

small.

The obstruction bundle E → U induces an obstruction bundle E → U as follows. Take an
element s = (û, Σ̃, x, p, {w1, . . . , wl}) ∈ U and let a = (Σ, x, {w1, . . . , wl}) ∈ N denote
the marked Riemann surface given by forgetting p and collapsing unstable components of the
source. Define the obstruction space at s ∈ U

Es ⊂ C∞
c (Int(K̃), (πM ◦ û)∗TM ⊗Λ0,1) ⊂ C∞

c (Int(K̃), û∗T (M × P1)⊗Λ0,1)

(with K̃ = Σ̃ ∩ K) to be the parallel transport of Ea ⊂ C∞
c (Int(K̃), u∗

0TM ⊗ Λ0,1) along
geodesics joining u0(y) and (πM ◦ û)(y). Let C ⊂ Σ̃ be the union of the contracted compo-
nents of Σ̃ → Σ . Because πM ◦ û|K̃ is sufficiently close to u0, πM ◦ û|Σ̃\K̃ is holomorphic

and C ⊂ Σ̃ \ Int(K̃), by choosing a smaller neck region from the beginning if necessary (see

3By abuse of notation, we denote by p a point of R̂ and at the same time a new interior marking on Σ̃ .



348 E. GONZÁLEZ AND H. IRITANI

“extending the core" [16, Definition 17.21]), we may assume that πM ◦ û is constant on C
(since the symplectic area of (πM ◦ û)(Σ̃ \ K̃) has to be small). Hence πM ◦ û induces a map
u : (Σ, ∂Σ) → (M,L) belonging to U . Therefore we have a projection U → U and E is
identified with the pull-back of E. The group Γ acts on U and E and E → U is Γ -equivariant.
The Kuranishi neighbourhood V̂ for Mrel

1,1(α̂) is cut out from U by the equations:

∂û ≡ 0 mod Es

û(p) ∈ M × {0}
û(wi) ∈ Qi × P1 i = 1, . . . , l

(22)

for s = (û, Σ̃, x, p, {w1, . . . , wl}) ∈ U. The second equation of (22) corresponds to the fibre
product presentation (10) of Mrel

1,1(α̂).

Let M̂ ⊂ U denote the subspace cut out by the first and the second equations of (22).
Consider the map U → U × S1, where the first factor is the projection we discussed and the
second factor is the evaluation map at the boundary marking x followed by the projection
L × S1 → S1. We claim that M̂ is a tautological family of (blown-up) Riemann surfaces
over M × S1 under the map M̂ ⊂ U → U × S1. (Recall that M ⊂ U is cut out by
the first equation of (21).) More precisely, it is identified with the restriction to M × S1

of the family pr∗R̂ → U × S1 where pr : U × S1 → N is the natural projection. By the
choice of E, each element (û, Σ̃, x, p, {w1, . . . , wl}) of M̂ is holomorphic in the P1-factor
and its image (u,Σ, x, {w1, . . . , wl}) in U belongs to M. By the same argument as in the
proof of Lemma 3.12, it follows that û is uniquely reconstructed from u : Σ → M , p ∈ Σ̂

and (πP1 ◦ û)(x) ∈ S1. This proves the claim. Cutting down the moduli space M̂ by the
third equation of (22), we obtain V̂ as a tautological family of (blown-up) Riemann surfaces
over V × S1, with V the Kuranishi neighbourhood of r0 ∈ M1(α). The obstruction bundle
Ê = E|V̂ and its section ŝ := ∂ are the pull-backs of E → V and s = ∂ respectively.
These data (V̂ , Ê, ŝ) are Γ -equivariant and give a Kuranishi neighbourhood (V̂ , Ê, Γ, ψ̂, ŝ)
of f−1(r0 × S1) ⊂ Mrel

1,1(α̂).

We need to check the transversality of (22). We first show the transversality of the ∂-
equation. Let û : Σ̃ → M be a map in U satisfying the first equation of (22). Let v :=
πP1 ◦ û : (Σ̃, ∂Σ̃) → (P1, S1) be the vertical component of û, which is a holomorphic map
of degree one. Let ũ = πM ◦ û : (Σ̃, ∂Σ̃) → (M,L) be the horizontal component of û. The
image u : (Σ, ∂Σ) → (M,L) of û in U is obtained from ũ by collapsing some components
of Σ̃ on which ũ is constant. It suffices to show that

• v is Fredholm regular, i.e. Dv∂ is surjective; and
• ũ is Fredholm regular for Eu, i.e. Im(Dũ∂)+ Eu = L2

m,δ(Σ̃, ũ
∗(TM)⊗Λ0,1).

The Fredholm regularity for v can be rephrased as the vanishing of the sheaf cohomology (see
[23, §3.4], [10, §6]):

H 1(Σ̃, (v∗T P1, v∗T S1)) = 0
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where (v∗TP1, v∗T S1) denotes the sheaf of holomorphic sections of v∗T P1 which take values
in v∗T S1 on ∂Σ̃ . Let Σ̃ =⋃i Σi be the decomposition into irreducible components and write
vi = v|Σi . Then we have the following standard normalization sequence for sheaves on Σ̃:

0 → (v∗T P1, v∗T S1) →
⊕
i

(v∗
i TP

1, v∗
i T S

1) →
⊕
x

Tv(x)P
1 ⊕
⊕
y

Tv(y)S
1 → 0

where x ranges over interior nodes of Σ̃ and y ranges over boundary nodes of Σ̃ . Since we
haveH 1(v∗

i TP
1, v∗

i T S
1) = 0 for each componentΣi by [10, Lemma 6.4], it suffices to show

that the map
⊕

i H
0(v∗

i T P
1, v∗

i T S
1) →⊕x Tv(x)P

1 ⊕⊕y Tv(x)S
1 is surjective: this follows

easily by induction on the number of components (removing degree-zero tails one by one).
The Fredholm regularity of ũ with respect to E follows from the assumed regularity for u with
respect to E. For example, consider the case where Σ̃ = Σ ∪ D. The obstruction space Eu is
supported on the core K ⊂ Σ and ũ is constant on D. Write x = ũ(D) ∈ M . Let (ξ1, ξ2) be
an element of

L2
m,δ(Σ̃, ũ

∗TM ⊗Λ0,1) = L2
m,δ(Σ, u

∗TM ⊗Λ0,1)⊕ L2
m,δ(D, TxM ⊗Λ0,1) .

The assumed regularity implies that there exists ε ∈ Eu and ν1 ∈ L2
m+1,δ(Σ, ∂Σ; u∗TM,

u∗T L) such that ξ1 = (Du∂)ν1 + ε. The vanishing H 1(TxM, TxL) = 0 of the sheaf coho-
mology on D implies that there exists ν2 ∈ L2

m+1,δ(D, ∂D; TxM, TxL) such that ∂ν2 = ξ2. By
adding a constant element in TxL to ν2, we may assume that ν1 and ν2 agree on the boundary
node D ∩Σ , and then we have (ξ1, ξ2) = (Dũ∂)(ν1, ν2)+ ε. This shows the regularity of ũ.
The other cases are similar.

Let N ⊂ U denote the moduli space cut out only by the first equation of (22). The
holomorphic automorphism group Autt(D) acts on the target (M × P1, L × S1) and also on
the moduli space N . The transversality for the second equation of (22) follows from the fact
that the Autt(D)-action on Int(D) is transitive. The first and the second equations of (22)
define the modui space M̂. The evaluation map evad : M̂ → (M × P1)l at the markings
w1, . . . , wl is transversal to

∏l
i=1(Qi × P1) by the transversality assumption for the second

equation of (21). The transversality for (22) is now proved.
Comparison of virtual cycles. A virtual chain is defined by multi-valued perturbations

(multisections) of s on Kuranishi neighbourhoods which are compatible under co-ordinate
changes, and it is independent of the choice of the obstruction bundle (see [13, §A1.1],
[16, Part 2]). By the above construction of Kuranishi neighbourhoods, and the hypothesis
∂M1(α) = ∅, we can define a virtual cycle [Mrel

1,1(α̂)]vir by pulling back multisections used

to define a virtual cycle [M1(α)]vir, and this is independent of choices. Then [Mrel
1,1(α̂)]vir

becomes a fibre bundle over [M1(α)]vir × S1 with fibre the corresponding stable bordered
Riemann surfaces. Each fibre is of class α under the interior evaluation map. The lemma
follows. �

Summarizing the discussion, we obtain (see (14), (18), (20)):
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LEMMA 3.16. The virtual cycle ev∗[MS(σ )×M Mrel
1,1(α̂)]vir is well-defined if one of

the following holds:

(a) MS(σ ) = ∅ or;
(b) M1(α) = ∅ or;
(c) ∂M1(α) = ∅ and ev(MS(σ )) ∩ L = ∅.

When one of the above conditions holds, we have:

ev∗[MS(σ )×MMrel
1,1(α̂)]vir =

⎧⎪⎪⎨⎪⎪⎩
(Sσ ∩ [L])×[S1] if α = 0 (then (b) holds);
〈Ŝσ , α〉ev∗[M1(α)]vir×[S1] if (c) holds;
0 if α 
=0 and (a) or (b) holds.

3.3.3. Conjecture and expected results. We now state our conjecture:

CONJECTURE 3.17 (Degeneration Formula). Let β ∈ H2(M,L) be such that
M1(β) = ∅. Assume that every pair (σ, α) ∈ H sec

2 (E) × H2(M,L) with r(β̂) = σ + α̂

satisfies one of the three conditions (a), (b), (c) in Lemma 3.16. Then the degeneration for-
mula (11)

ϕ∗ev∗[M1(β̂)]vir =
∑

r(β̂)=σ+α̂
ev∗[MS(σ )×M Mrel

1,1(α̂)]vir

holds. This implies, by Lemmata 3.11 and 3.16, that

(23) δβ,0[L] =
∑

(σ,α): r(β̂)=σ+α̂, α 
=0
satisfying (c) of Lemma 3.16

〈Ŝσ , α〉ev∗[M1(α)]vir + δ∂β,λ
∑

σ :r(β̂)=σ+0̂

Sσ ∩ [L]

holds in Hn+μ(β)(L;Q). Here Sσ , Ŝσ are defined in (15), (17) and λ ∈ H1(L) is the class of
an S1-orbit.

Note that the second term in the right-hand side of (23) arises from the case α = 0 (recall
the discussion around (14)).

In practice it is not easy to make all the assumptions here to be satisfied and to ob-
tain a non-trivial result from (23). Notice that the both-hand sides of (23) are zero unless
μ(β) ≤ 0 for dimensional reason. Also the term 〈Ŝσ , α〉 is zero unless Ŝσ ∈ H 2(M,L), i.e.〈
cvert

1 (E), σ
〉 = −1. Hence by (12), the first term of the right-hand side is the sum over classes

α satisfying μ(α) = μ(β)+ 2. This motivates the following (rather restrictive) assumption:

ASSUMPTION 3.18. (i) M1(β) is empty for all β ∈ H2(M,L) with μ(β) ≤ 0.
(ii) The maximal fixed component Fmax ⊂ M of the C×-action (see §2.2) is of complex

codimension one and the C×-weight on the normal bundle is −1.
(iii) c1(M) is semi-positive.
(iv) ev(MS(σ )) is disjoint from L for all σ ∈ H sec

2 (E) such that
〈
cvert

1 (E), σ
〉 = −1.

We assume Assumption 3.18 in the rest of this section. Recall from Definition 2.1 that
open Gromov-Witten invariants nα are defined when μ(α) = 2 by the assumption (i) and
so the potential function W of L is also defined. The role of the assumptions (ii) and (iii) is
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as follows. The assumption (ii) implies that
〈
cvert

1 (E), σ0
〉 = −1 for a maximal section σ0.

Note that by (3) MS(σ ) is empty unless σ = σ0 + d for some d ∈ NE(M)Z. Therefore by
(iii), MS(σ ) is empty unless

〈
cvert

1 (E), σ
〉 ≥ −1. This implies that the Seidel element S in

Definition 2.7 is in H≤2(M;Q)⊗ Q[[NE(E)Z]].
DEFINITION 3.19. Under Assumption 3.18, we can decompose the Seidel element as

S = q0S̃ = q0(S̃
(0) + S̃(2))

with S̃(i) ∈ Hi(M;Q)⊗ Q[[NE(M)Z]] and q0 = qσ0 . Furthermore, we can define a lift Ŝ(2)

of S̃(2) as follows:

Ŝ(2) :=
∑

σ : 〈cvert
1 (E),σ 〉=−1

Ŝσ qσ−σ0

where Ŝσ ∈ H 2(M,L;Q) (see (17)) is well-defined by Assumption 3.18 (iv). The lift Ŝ(2)

is an element of H 2(M,L;Q) ⊗ Q[[NE(M)Z]] which maps to S̃(2) under the natural map
H 2(M,L) → H 2(M).

Under Assumption 3.18, the conditions in Conjecture 3.17 are satisfied for all β with
μ(β) = 0. In fact, if r(β̂) = σ + α̂, then μ(α)+ 2

〈
cvert

1 (E), σ
〉 = 0 by (12), and thus

• if μ(α) ≤ 0 and
〈
cvert

1 (E), σ
〉 ≥ 0, then M1(α) = ∅ by the assumption (i);

• if μ(α) ≥ 4 and
〈
cvert

1 (E), σ
〉 ≤ −2, then MS(σ ) = ∅ by the assumptions (ii), (iii);

• if μ(α) = 2 and
〈
cvert

1 (E), σ
〉 = −1, then M1(α) has no boundary by the assumption

(i) and ev(MS(σ )) ∩ L = ∅ by the assumption (iv).

Fix a class γ ∈ H1(L). We now apply the formula (23) for β with μ(β) = 0 and ∂β = γ +λ.
In this case, (23) yields the following equality in Hn(L;Q) ∼= Q:

(24) δβ,0 =
∑

(σ,α): r(β̂)=σ+α̂
μ(α)=2, 〈cvert

1 (E),σ 〉=−1

〈Ŝσ , α〉nα + δ∂β,λ
∑

σ : r(β̂)=σ+0̂

Sσ

where nα is the open Gromov-Witten invariant defined in Definition 2.1. Note that Sσ in the
second term of the right-hand side lies in H 0(L;Q) ∼= Q. We consider a generating function
in the “open" Novikov ring Λop which was introduced before Definition 2.1. We have a (not
necessarily injective) homomorphism from the “closed" Novikov ring Λ (see Remark 2.9) to
the “open" Novikov ring Λop

Λ → Λop , qd �→ zd .

ThusΛop is a Λ-algebra. Note that r(β̂) = σ + α̂ means

zα0+β = qσ−σ0zα in Λop

by Proposition 3.6 where σ0, α0 are maximal section/disc classes. We multiply the both-hand
sides of (24) by zα0+β = qσ−σ0zα and sum over all β with μ(β) = 2 and ∂β = γ + λ. About
the first term of the right-hand side, this summation boils down to the sum over all (σ, α) with〈
cvert

1 (E), σ
〉 = −1, μ(α) = 2, ∂α = γ (see (13)); about the second term of the right-hand
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side (which occurs when and only when γ = 0), this boils down to the sum over all σ with〈
cvert

1 (E), σ
〉 = 0. Therefore we have:

THEOREM 3.20. Assume that the degeneration formula (Conjecture 3.17) and As-
sumption 3.18 hold for (M,L). For any γ ∈ H1(L), we have

(25) δγ+λ,0zα0 = 〈Ŝ(2), dWγ 〉 + δγ,0S̃
(0)

in Λop, where S̃(0) and Ŝ(2) are in Definition 3.19, Wγ is in Definition 2.2 and dWγ is its
logarithmic derivative:

dWγ :=
∑

α∈H2(M,L):μ(α)=2, ∂α=γ
α ⊗ nαz

α ∈ H2(M,L)⊗Λop .

Recall that α0 is the maximal disc class introduced before Proposition 3.6 and λ ∈ H1(L) is
the class of an S1-orbit on L.

Summing over all γ ∈ H1(L) in (25), we obtain:

COROLLARY 3.21. Assume that the degeneration formula (Conjecture 3.17) and As-
sumption 3.18 hold for (M,L). Then we have

(26) zα0 = 〈Ŝ(2), dW 〉 + S̃(0) in Λop .

Via the natural map H 1(L) → H 2(M,L), an element of H 1(L) can be regarded as a
vector field tangent to the fibre of the map SpecΛop → SpecΛ. We define the (relative) Jacobi
algebra of the potential W as

Jac(W) := Λop/Λop〈H 1(L), dW 〉
where Λop〈H 1(L), dW 〉 denotes the ideal of Λop generated by 〈ϕ, dW 〉, ϕ ∈ Im(H 1(L) →
H 2(M,L)). As a class in the Jacobi algebra, the right-hand side of (26) depends only on
the Seidel element S̃ itself, not on the lift Ŝ(2). We can interpret it as the derivative of the
bulk-deformed potentialW + t0 with respect to S̃, where t0 is a co-ordinate on H 0(M). The
derivative of W + t0 defines the so-called Kodaira-Spencer mapping:

KS : H≤2(M)⊗Λ → Jac(W) .

Then the equation (26) implies

KS(S̃) = [zα0] in Jac(W).

REMARK 3.22. Assumption 3.18 (i)–(iii) ensures that the conditions in Conjecture
3.17 hold for all β with μ(β) ≤ −2. Using the formula (23) for β with μ(β) ≤ −2 and
∂β = λ, we find: ∑

d∈i∗H2(L)

Sσ+d ∩ [L] = 0 if
〈
cvert

1 (E), σ
〉 ≤ −1 .

This supports the validity of Assumption 3.18 (iv).
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REMARK 3.23. A more intuitive explanation for the formula (26) is as follows. One
can think of the moduli space M1,1(β) of stable holomorphic discs with boundaries in L and
with one interior and one boundary marked points as giving a correspondence betweenM and
the free loop space LL = Map(S1, L) of L. This correspondence should give rise to a map
(bulk-boundary map)

C∗(M) → C∗(LL)
of chain complexes. One can view this as an analogue of the Kodaira-Spencer map. One can
speculate that this map is an intertwiner between the Seidel homomorphism S : C∗(M) →
C∗(M) and the map LL → LL induced by the S1-action.

4. Potential function of a semi-positive toric manifold. Using the degeneration for-
mula (Conjecture 3.17), we compute the potential function of a Lagrangian torus fibre of a
semi-positive toric manifoldX. This confirms a conjecture (now a theorem [9]) of Chan-Lau-
Leung-Tseng [8].

4.1. Toric manifolds. We fix notation on toric geometry. For more details we refer
the reader to [2, 11, 12]. For this paper a toric manifold X is a smooth projective toric variety,
as constructed from the following data.

(a) An integral lattice N ∼= Zn and its dual M = Hom(N,Z). We denote by 〈·, ·〉 the
natural pairing between N andM .

(b) A fan Σ in NR := N ⊗ R consisting of a collection of strongly convex rational
polyhedral cones σ ⊂ NR, which is closed under intersections and taking faces.

In order for X to be smooth and projective, we need to assume that Σ is complete, regular
and admits a strongly convex piecewise-linear function. Let Σ(1) denote the set of 1-cones
(rays) in Σ , and we let b1, . . . , bm denote integral primitive generators of the 1-cones. The
fan sequence of X is the exact sequence

(27) 0 −−−−→ L −−−−→ Zm −−−−→ N −−−−→ 0 ,

where the third arrow takes the canonical basis to the primitive generators b1, . . . , bm ∈ N

and L is defined to be the kernel of the third arrow. The dual of the sequence (27) is the divisor
sequence

(28) 0 −−−−→ M −−−−→ Zm
κ−−−−→ L∨ −−−−→ 0 .

The second arrow takes v ∈ M into the tuple (〈bi, v〉)mi=1. The third arrow is denoted by
κ : Zm → L∨.

The fan sequence tensored with C× gives the exact sequence of tori:

1 −−−−→ G −−−−→ (C×)m −−−−→ T −−−−→ 1

with G := L ⊗ C× and T := N ⊗ C×. Let the torus G act on Cm by the second arrow
G → (C×)m. The combinatorics of the fan defines a stability condition of this action as



354 E. GONZÁLEZ AND H. IRITANI

follows. Let Z(Σ) denote the union

(29) Z(Σ) :=
⋃
I /∈A

CI , CI = {(x1, . . . , xm) : xi = 0 for i /∈ I } ,

where A is the collection of anti-cones, that is the complements of the subsets of indices that
yields a cone in the fan

A :=
{
I :

∑
i∈{1,...,m}\I

R≥0bi ∈ Σ
}
.

The toric variety X is defined as the quotient

X := UΣ/G ; UΣ := Cm \ Z(Σ) .
The torus T = (C×)m/G acts naturally on X. The toric manifold X contains T as an open
free orbit; X is a compactification of T along the rays in Σ(1).

Each character ξ : G → C× defines a line bundle

Lξ := C ×ξ,G UΣ → X .

The correspondence ξ �→ Lξ yields an identification of the Picard group with the character
group of G. Thus, we have

L∨ = Hom(G,C×) ∼= Pic(X)
c1∼= H 2(X;Z) .

The i-th toric divisor is given by

Di := {[x1, . . . , xm] : xi = 0} ⊂ X .

The Poincaré dual of Di is the image κ(ei) ∈ L∨ ∼= H 2(X;Z) of the standard basis ei ∈ Zm

under the map κ in (28). By abuse of notation, Di sometimes also denotes the corresponding
cohomology class κ(ei) in H 2(X;Z). We note that L = H2(X;Z). The first Chern class
c1(X) of X is given byD1 + · · · +Dm.

The Kähler cone CX of X, the cone consisting of Kähler classes, is given by

CX :=
⋂
I∈A

∑
i∈I

R>0κ(ei) ⊂ L∨ ⊗ R = H 2(X;R) .

The cone CX is nonempty if and only if X is projective. Set r := m − n. We choose a nef
integral basis p1, . . . , pr of H 2(X;Z), that is an integral basis such that pa ∈ CX for all
a = 1, . . . , r . Then we write the toric divisor classes as

(30) Dj = κ(ej ) =
r∑
a=1

majpa ,

for some integer matrix (maj ). The Mori cone NE(X) ⊂ H2(X,R) is the dual of the cone
CX. We set NE(X)Z := NE(X) ∩H2(X;Z).
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The toric manifold X can be alternatively defined as a symplectic quotient. Let GR
∼=

(S1)r be the maximal compact subgroup in G. The GR-action on Cm is generated by the
moment map

φ : Cm → g∨
R
, φ(x1, . . . , xm) = κ(|x1|2, . . . , |xm|2)

where κ : Rm → L∨ ⊗ R is the map in the divisor sequence (28) tensored with R. For any
Kähler class ω ∈ CX, we have a diffeomorphism ([2, 22])

φ−1(ω)/GR
∼= X .

The left-hand side is a symplectic quotient and is equipped with a reduced symplectic form.
The cohomology class of the reduced symplectic form coincides with ω; by abuse of notation
we let ω also denote the reduced symplectic form.

Let TR
∼= (S1)n be the maximal compact subgroup of T. The TR-action on the symplec-

tic toric manifold (X,ω) admits a moment map:

Φω : X −→ κ−1(ω) ,

Φω([x1, . . . , xm]) = (|x1|2, . . . , |xm|2) with (x1, . . . , xm) ∈ φ−1(ω) ,

where the affine subspace κ−1(ω) ⊂ Rm can be identified with MR = M ⊗ R ∼= t∨
R

up to
translation. The image of the moment map Φω is the convex polytope:

P(ω)= {(t1, . . . , tm) ∈ Rm : ti ≥ 0, κ(t1, . . . , tm) = ω
}

∼= {v ∈ MR : 〈bi, v〉 ≤ −ci, i = 1, . . . ,m} .
In the second line, we took a lift (c1, . . . , cm) of ω (such that ω = κ(c1, . . . , cm)) to identify
κ−1(ω) with MR. This is called momentum polytope. The facet Fi ⊂ P of P(ω) normal to
bi ∈ N corresponds to the toric divisor Di = Φ−1

ω (Fi) ⊂ X.
4.2. Potential function of a Lagrangian torus fibre. Cho-Oh [10] calculated poten-

tials of Lagrangian torus fibres for Fano toric manifolds and matched them up with mirror
Landau-Ginzburg potentials of Givental and Hori-Vafa. Fukaya-Oh-Ohta-Ono [15] studied
potentials for general symplectic toric manifolds. Chan [6], Chan-Lau [7] and Chan-Lau-
Leung-Tseng [8, 9] have studied the potential functions for semi-positive toric manifolds by
establishing an equality between open and closed Gromov-Witten invariants.

Let X be a toric manifold in the previous section. Every free TR-orbit in X is a fibre
of the moment map Φω : X → P(ω) of an interior point in P(ω), and vice versa. We call
it a Lagrangian torus fibre of X. For a Lagrangian torus fibre L, we have a homotopy exact
sequence:

(31) 0 −−−−→ π2(X) −−−−→ π2(X,L)
∂−−−−→ π1(L) −−−−→ 0 .

Let βi ∈ π2(X,L) denote the class represented by the holomorphic disc ui : D → X:

(32) ui(z) = [c1, . . . , ci−1, ciz, ci+1, . . . , cm] , |z| ≤ 1



356 E. GONZÁLEZ AND H. IRITANI

where [c1, . . . , cm] ∈ X is a point on the Lagrangian L (thus ci 
= 0 for all i). The class βi
intersects with toric divisors as

βi ·Dj = δij .

The relative homotopy group π2(X,L) is an abelian group freely generated by the classes
β1, . . . , βm and the toric divisors D1, . . . ,Dm define a dual basis of H 2(X,L). Under the
identification:

π2(X) ∼= H2(X;Z) ∼= L , π2(X,L) ∼= H2(X,L;Z) ∼= Zm , π1(L) ∼= N

the exact sequence (31) above can be identified with the fan sequence (27), i.e. ∂βi = bi . The
Maslov index

μ : π2(X,L) −→ Z

is given by the intersection with 2(D1 + · · · +Dm) ∈ H 2(X,L) [10, Theorem 5.1].
We consider the potential function (Definition 2.1) of a Lagrangian torus fibre L ⊂ X.

As before, let M1(β) denote the moduli space of bordered stable maps to (X,L) in the class
β ∈ π2(X,L) with one boundary marked point.

PROPOSITION 4.1. Suppose that c1(X) is semi-positive. Then M1(β) is empty for all
β with μ(β) ≤ 0. If M1(β) is non-empty for β with μ(β) = 2, then β = βi + d for some i
and d ∈ NE(X)Z such that 〈c1(X), d〉 = 0.

PROOF. Let β be a class of a bordered stable map to (X,L). By the classification of
holomorphic discs by Cho-Oh [10], we find that β is of the form:

(33) β =
m∑
i=1

kiβi + d

for some ki ≥ 0 and d ∈ NE(X)Z. Here
∑m
i=1 kiβi is the degree of disc components and

d is the degree of sphere bubbles. Hence μ(β) = 2
∑m
i=1 ki + 2 〈c1(X), d〉 ≥ 0. We claim

that (k1, . . . , km) = 0 implies μ(β) ≥ 4. If (k1, . . . , km) = 0, a bordered stable map of class
β is the union of a constant disc and sphere bubbles. In this case, at least one non-trivial
sphere component has to touch L. Let d1 be the degree of a non-trivial sphere component
touching L and let d2 be the degree of the remaining sphere bubbles. Then d = d1 + d2 with
d1, d2 ∈ NE(X)Z. Since Di is disjoint from L, we have 〈Di, d1〉 ≥ 0. Since d1 
= 0, we have∑m
i=1 〈Di, d1〉 ≥ 1. Also it is impossible that

∑m
i=1 〈Di, d1〉 = 1 since d1 gives the relation∑m

i=1 〈Di, d1〉 bi = 0 in N . Thus

μ(β) = 2 〈c1(X), d〉 ≥ 2
m∑
i=1

〈Di, d1〉 ≥ 4 .

The claim follows. Consequently, μ(β) ≤ 2 implies (k1, . . . , km) 
= 0. The proposition
follows easily. �
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In particular, the potential function of a Lagrangian torus fibre (Definition 2.1) is well-
defined for a semi-positive toric manifold.

REMARK 4.2. Fukaya-Oh-Ohta-Ono [15] defined the potential function of a Lagran-
gian torus fibre even without semi-positivity assumption. They defined virtual cycles and open
Gromov-Witten invariants nβ ∈ Q for all β with μ(β) = 2 using TR-equivariant perturba-
tions, see [15, Lemmata 11.2, 11.5, 11.6, 11.7]. In general, since every effective stable disc
class β is of the form (33), the potentialW lies in the completed group ring:

Q[[(Z≥0)
m + NE(X)Z]] ⊂ Λop

where NE(X)Z is regarded as a subset of Zm via the second arrow in the fan sequence (27).
Notice that (R≥0)

m + NE(X) is a strictly convex cone.

EXAMPLE 4.3 ([10]). When β = βi , the moduli space M1(βi) consists of holomor-
phic discs of the form (32) and ev : M1(βi) ∼= L; moreover all such discs are Fredholm
regular [10, Theorem 6.1]. Therefore we have nβi = 1.

We write

zβ = z
k1
1 z

k2
2 · · · zkmm ∈ Q[H2(X,L;Z)]

for β = k1β1 + · · · + kmβm. Also we write

qd = q
〈p1,d〉
1 q

〈p2,d〉
2 · · · q〈pr ,d〉

r ∈ Q[H2(X;Z)]
for d ∈ H2(X;Z), where p1, . . . , pr is the nef integral basis of H 2(X;Z) ∼= L∨ we chose in
§4.1. Note that we have a natural inclusion of the group rings:

Q[H2(X;Z)] ↪→ Q[H2(X,L;Z)].
By this we identify qd with zd ; in co-ordinates:

(34) qd = zd = z
〈D1,d〉
1 z

〈D1,d〉
2 · · · z〈Dm,d〉m or qa =

m∏
i=1

z
mai
i

where (mai) is the divisor matrix in (30). Using these notations and Proposition 4.1, we can
write the potential function of (X,L) in the following form when c1(X) is semi-positive.

DEFINITION 4.4. Let X be a semi-positive toric manifold. We present the potential
functionW of a Lagrangian torus fibre in the form:

W = w1 + · · · +wm

where wi = fi(q)zi and

fi(q) =
∑

d∈NE(X)Z : 〈c1(X),d〉=0

nβi+dqd .

We call fi(q) the correction term. This decomposition of W is parallel to Definition 2.2.
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Note that we have fi(q) = 1 + O(q) by Example 4.3. The correction term fi(q) was
denoted by 1 + δi(q) in [8]. When X is Fano, all the correction terms are 1 and

W = z1 + · · · + zm .

This is the result of Cho-Oh [10]. By the fan polytope, we mean the convex hull of the ray
vectors b1, . . . , bm ∈ NR. In the proof of [8, Corollary 4.12], Chan-Lau-Leung-Tseng showed
the following:

PROPOSITION 4.5 (Chan-Lau-Leung-Tseng [8]). Let fi(q) be the correction terms of
the potential of a semi-positive toric manifoldX. If the vector bi is a vertex of the fan polytope
of X, then fi(q) = 1.

4.2.1. Open-closed moduli space. We explain that the potential W of a Lagrangian
torus fibre can be interpreted as a formal function on the open-closed moduli space introduced
below.

The closed moduli space Mcl of X is defined to be:

Mcl = {exp(−ω + iB) ∈ L∨ ⊗ C× : ω,B ∈ L∨ ⊗ R, ω ∈ CX} .
This is also called the complexified Kähler moduli space. The nef basis p1, . . . , pr of L∨ ∼=
H 2(X;Z) in §4.1 defines C×-valued co-ordinates (q1, . . . , qr) on Mcl ⊂ L∨ ⊗ C×.

The open-closed moduli space Mopcl is defined to be the set of triples (q, L, h) such that

• a closed moduli q = exp(−ω + iB) ∈ Mcl;
• a Lagrangian torus fibre L = Lη = Φ−1

ω (η) at η ∈ P(ω)◦;
• a class h ∈ H 2(X,L;U(1)) which maps to exp(iB) ∈ H 2(X;U(1)).

When the B-field vanishes B = 0, the class h defines a U(1)-local system on L via the exact
sequence:

0 −−−−→ H 1(L;U(1)) −−−−→ H 2(X,L;U(1)) −−−−→ H 2(X;U(1)) −−−−→ 0 .

Let η = (η1, . . . , ηm) ∈ Rm be the co-ordinates of η and write h = (h1, . . . , hm) using the
identification H 2(X,L;U(1)) ∼= (S1)m; and set

(35) zi := exp(−ηi)hi .
The parameter z = (z1, . . . , zm) here determines ηi ∈ R, hi ∈ S1 by polar decomposition;
then η determines ω by the condition η ∈ P(ω)◦ (as ω = κ(η)) and h determines exp(iB).
Thus z determines a point of Mopcl. We have:

Mopcl ∼= {z = (z1, . . . , zm) ∈ (C×)m : |zi | < 1 for all i, κC×(z) ∈ Mcl
}

where κC× : (C×)m → L∨ ⊗C× is the third arrow of the divisor sequence (28) tensored with
C×. A point z = (z1, . . . , zm) of the right-hand side parametrizes

• a closed moduli q = exp(−ω + iB) = κC×(z);
• a Lagrangian torus fibre L = Lη at η = (− log |z1|, . . . ,− log |zm|) ∈ P(ω)◦;
• a class h = (z1/|z1|, . . . , zm/|zm|) ∈ H 2(X,Lη) which is a lift of exp(iB).
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We regard W as a formal function on Mopcl via these co-ordinates (z1, . . . , zm). The open-
closed moduli is fibred over Mcl:

π : Mopcl → Mcl , z �→ κC×(z) .

By pulling-back the co-ordinates q1, . . . , qr by π , we obtain the same relation between zi and
qa as in (34). The fibre Mopcl,q = π−1(q) has the structure of an (MR/M) ∼= (S1)n-bundle
over P(ω)◦ via the map:

Mopcl,q → P(ω)◦ , (z1, . . . , zm) �→ η = (− log |z1|, . . . ,− log |zm|) .
This is a torus fibration dual to the moment map Φω : X → P(ω); we can view it as a mirror
of (X, q).

PROPOSITION 4.6. Via the co-ordinates (z1, . . . , zm) on Mopcl, the potential function
of a Lagrangian torus fibre is identified with the following formal sum of functions on Mopcl:

W(q,L, h) =
∑

β∈π2(X,L) :μ(β)=2

nβh(β)e
− ∫β ω

where q = exp(−ω + iB).

PROOF. For β = βi , we have (see [10, Theorem 8.1])

h(βi) = zi

|zi | ,
∫
βi

ω = ηi = − log |zi |

and thus h(βi)e
− ∫βi ω = zi (cf. (35)). Therefore h(β)e−

∫
β ω = zβ for every β. �

REMARK 4.7. When B = 0, the term h(β) is the holonomy along the loop ∂β ∈
π1(L) of the U(1)-local system associated to h. This matches with the usual interpretation.
In general, this term cannot be interpreted just as holonomy.

Fukaya-Oh-Ohta-Ono [14, Theorem 2.32] showed that the Jacobi algebra of the potential
function restricted to the fibre Mopcl,q = π−1(q) is isomorphic to the quantum cohomology
ring of (X, q) in a certain q-adic sense.

4.3. Seidel elements for toric varieties and Givental’s mirror transformation. We
review our previous computation [21] relating Seidel elements for toric varieties to Givental’s
mirror transformation [19]. Let X be a toric manifold from §4.1 with c1(X) semi-positive.

4.3.1. Seidel elements associated to the C×-actions fixing toric divisors. For each
toric divisor Dj of X, we can associate a C×-action ρj on X rotating around Dj . It is given
by:

ρj (λ) : [x1, . . . , xm] �−→ [x1, . . . , λ
−1xj , . . . , xm] , λ ∈ C× .

The toric divisorDj = {xj = 0} is the maximal fixed component of this action. LetEj denote
the associated bundle of this C×-action and let Sj denote the corresponding Seidel element.
We also write Sj = q0S̃j with S̃j ∈ QH ∗(X) following Definition 2.7. Using the Seidel
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representation (see Remark 2.9), McDuff-Tolman [26] showed the following multiplicative
relations in QH(X)[q−d : d ∈ NE(X)Z]:

(36)
m∏
j=1

S̃
〈Dj ,d〉
j = qd for d ∈ H2(X;Z) .

4.3.2. Givental’s mirror theorem. Givental [19] introduced the two cohomology-
valued functions

I (y, z)= e
∑r
i=1 pi logyi/z

∑
d∈NE(X)Z

m∏
i=1

(∏0
k=−∞(Di + kz)∏〈Di,d〉
k=−∞(Di + kz)

)
yd

J (q, z)= e
∑r
i=1 pi logqi/z

⎛⎝1 +
∑
j

∑
d∈NE(X)Z\{0}

〈
φj

z(z− ψ)

〉X
0,1,d

φjqd

⎞⎠
called the I -function and the J -function respectively. Here we used a nef basis {p1, . . . , pr } ⊂
H 2(X) in §4.1 and write

qd = q
〈p1,d〉
1 · · · q〈pr ,d〉

r , yd = y
〈p1,d〉
1 · · · y〈pr ,d〉

r ,

and {φj } and {φj } are mutually dual basis of H ∗(X). The variables y = (y1, . . . , yr) are
called mirror co-ordinates, i.e. co-ordinates of the complex moduli of the mirror Landau-
Ginzburg model. Givental [19] showed the following mirror theorem:

THEOREM 4.8 ([19]). We have I (y, z) = J (q, z) under a change of coordinates of
the form log qi = log yi + gi (y), i = 1, . . . , r , gi (y) ∈ Q[[y1, . . . , yr ]] with gi (0) = 0. The
functions gi (y) here are uniquely determined by the asymptotics:

I (y, z) = e
∑r
i=1 pi logyi/z

(
1 +

r∑
i=1

gi (y)
pi

z
+ o(z−1)

)
.

The change of co-ordinates is called mirror transformation (or mirror map).
4.3.3. Batyrev elements and Seidel elements. In [21], we introduced Batyrev ele-

ments D̃j , j = 1, . . . ,m. They are defined by

D̃j :=
r∑
a=1

maj p̃a , p̃a :=
r∑
b=1

∂ log qb
∂ log ya

pb .

Note that D̃j is an element corresponding to the vector field
∑r
a=1majya∂/∂ya whereas

the genuine divisor class Dj corresponds to the vector field
∑r
a=1majqa∂/∂qa (see (30)).

Batyrev elements are determined by, and determine the Jacobi matrix (∂ log qb/∂ log ya) of
the mirror transformation. Using Givental’s mirror theorem, we find that the Batyrev elements
satisfy the multiplicative relations (see [21, Proposition 3.8])

m∏
j=1

D̃
〈Dj ,d〉
j = yd d ∈ H2(X;Z)



SEIDEL ELEMENTS AND POTENTIAL FUNCTIONS 361

in the quantum cohomology ring. These are very similar to the multiplicative relations (36) of
Seidel elements, but note that co-ordinates q are replaced with mirror co-ordinates y. More-
over, the Batyrev elements satisfy the following linear relations:

(37)
m∑
i=1

cj D̃j = 0 whenever
m∑
i=1

cjDj = 0 .

The linear relations are obvious from the definition. These multiplicative and linear relations
show that D̃j satisfy the relations of Batyrev’s quantum ring [5]. It turns out that the Seidel
elements are multiples of the Batyrev elements.

THEOREM 4.9 ([21, Theorem 1.1]). Let g(j)0 (y) be the following hypergeometric se-
ries in mirror co-ordinates:

(38) g
(j)

0 (y1, . . . , yr) =
∑

〈c1(X),d〉=0,〈Dj ,d〉<0
〈Di,d〉≥0 for all i 
=j

(−1)〈Dj ,d〉 (− 〈Dj , d〉− 1
)!∏

i 
=j 〈Di, d〉! yd.

Then under the mirror transformation we have

S̃j = exp
(− g

(j)
0 (y)
)
D̃j .

Conversely, one can recover the Batyrev elements from the Seidel elements in the fol-
lowing way.

THEOREM 4.10 ([21, Theorem 1.2]). Given the Seidel elements S̃1, . . . , S̃m, the
Batyrev elements D̃j ∈ H ∗(X) ⊗ Q[[q1, . . . , qr ]], j = 1, . . . ,m are uniquely characterized
by the following conditions:

(a) D̃j = Hj S̃j for some Hj ∈ Q[[q1, . . . , qr ]];
(b) D̃j = S̃j if bj is a vertex of the fan polytope;
(c) D̃j satisfy the linear relations (37).

In particular, the Seidel elements determine the mirror transformation q �→ y and the func-
tions g(j)0 (y).

4.4. Correction terms of potential functions and Seidel elements. Chan-Lau-
Leung-Tseng [8] gave a conjecture relating the correction terms of the potential function and
the Seidel elements for a semi-positive toric manifold.

CONJECTURE 4.11 ([8, Conjecture 5.2]). For a semi-positive toric manifold, the cor-
rection term fj (q) of the potential function (Definition 4.4) coincides with exp(g(j)0 (y)) in
Theorem 4.9 under mirror transformation.

Originally Chan-Lau-Leung-Tseng [8] proved this conjecture under the convergence as-
sumption forW using an isomorphism [14] of Jacobi ring and quantum cohomology. Recently
they gave an alternative proof [9] which does not require the convergence assumption. They
identified open Gromov-Witten invariants with certain closed Gromov-Witten invariants of
the associated bundle E′

i given by the inverse C×-action ρ−1
i . They used the fact that a bor-
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dered stable map to (M,L) with boundary class bi ∈ N ∼= H1(L) can be completed to a
holomorphic sphere in the associated bundle E′

i . This is closely related to the fact that the
central fibre E0 of the closing in §3.1 is the union of the two associated bundles E and E′
which correspond to mutually inverse C×-actions.

4.5. Degeneration formula for toric manifolds.

PROPOSITION 4.12. Assumption 3.18 holds for a pair (X,L) equipped with the C×-
action ρj around the prime toric divisorDj we considered in §4.3.

PROOF. The statement (i) is shown in Proposition 4.1 and (ii), (iii) are obvious. To
verify the statement (iv), it is enough to show that every stable map u : C → Ej representing
a class σ ∈ H sec

2 (Ej ) with
〈
cvert

1 (Ej ), σ
〉 = −1 is contained in

⋃m
i=1 D̂i , where

D̂i = Di × (C2 \ {0})/C×

is a toric divisor of Ej . Let C = ⋃Cα be an irreducible decomposition of C. If u∗[Cα] is
a section class, we have

〈
cvert

1 (Ej ), u∗[Cα]
〉 ≥ −1 by (3) and the semi-positivity of c1(X). If

u∗[Cα] is not a section class, u(Cα) is contained in a fibreX and we have
〈
cvert

1 (Ej ), u∗[Cα]
〉 =

〈c1(X), u∗[Cα]〉 ≥ 0 again by the semi-positivity. Since
〈
cvert

1 (Ej ), σ
〉 = −1, we have

〈
cvert

1 (Ej ), u∗[Cα]
〉 = {−1 if u(Cα) is a section ;

0 otherwise .

Suppose that u(C) 
⊂ ⋃mi=1 D̂i . Then we can find a component Cα such that u(Cα) is not
a point and u(Cα) 
⊂ ⋃mi=1 D̂i . Then 〈D̂i , u∗[Cα]〉 ≥ 0 for all i. Note that

∑m
i=1 D̂i is the

Poincaré dual of cvert
1 (Ej ). By the above calculation we see that 〈D̂i , u∗[Cα]〉 = 0 for all i

and u(Cα) is contained in a certain fibre X. Then 〈Di, u∗[Cα]〉 = 0 for all i. A homology
class d ∈ H2(X) satisfying 〈Di, d〉 = 0 for all i is zero. This is a contradiction. �

Recall from Remark 4.2 that the potential functionW = W(z1, . . . , zm) of a toric mani-
fold X is an element of

R := Q[[NE(X)Z + (Z≥0)
m]] ⊂ Λop .

We also set

K := Q[[NE(X)Z]] ⊂ Λ .

Then R is a K-algebra (cf. (34)). For f ∈ R, we write (following notation in Theorem 3.20):

df =
(
z1
∂f

∂z1
, . . . , zm

∂f

∂zm

)
∈ Zm ⊗ R ∼= H2(X,L)⊗ R .

In other words,

dzβ = β ⊗ zβ

for β ∈ H2(X,L).
We apply Theorem 3.20 to the C×-action ρj rotating aroundDj . Note that the k-th term

wk of the potential W in Definition 4.4 corresponds to the boundary class bk ∈ N ∼= H1(L)
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and wk = Wbk in the notation of Definition 2.2. Since the Seidel element S̃j in §4.3 belongs

to H 2(X)⊗K , we have S̃(0)j = 0 and S̃j = S̃
(2)
j . By Proposition 4.12, we can define the lift

Ŝj ∈ H 2(X,L)⊗K

of S̃j = S̃
(2)
j as in Definition 3.19. The class λ of an S1-orbit on L is −bj ∈ H1(L) and the

maximal disc class α0 is βj . Hence we obtain:

THEOREM 4.13. Assume that the degeneration formula (Conjecture 3.17) holds for
(X,L) equipped with the C×-action ρj around the toric divisorDj (see §4.3). Then we have

(39) 〈Ŝj , dwk〉 = δjkzj .

In particular, we have 〈Ŝj , dW 〉 = zj .

4.5.1. Example. Consider the second Hirzebruch surface F2 = P(OP1(−2)⊕ OP1),
a compactification of OP1(−2). The divisor matrix (30) is:

(mai) =
[

0 −2 1 1
1 1 0 0

]
.

The column vectors give toric divisors classes D1,D2,D3,D4. Here D1 is the ∞-section,
D2 is the zero-section (−2 curve) and D3, D4 are fibres. The potential function has been
calculated by Auroux [4], Fukaya-Oh-Ohta-Ono [17] and Chan-Lau [7]:

W = z1 + (1 + q1)z2 + z3 + z4 .

Therefore we have ⎡⎢⎢⎣
dw1

dw2

dw3

dw4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
z1 0 0 0
0 (1 − q1)z2 q1z2 q1z2

0 0 z3 0
0 0 0 z4

⎤⎥⎥⎦
where we used q1 = z−2

2 z3z4 (see (34)) and d(q1z2) = [0,−q1z2, q1z2, q1z2]. Assuming the
degeneration formula (39), we obtain

[
Ŝ1, Ŝ2, Ŝ3, Ŝ4

] = [D1,D2,D3,D4]

⎡⎢⎢⎢⎣
1 0 0 0
0 1

1−q1
− q1

1−q1
− q1

1−q1

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ .
This is compatible with the calculations of S̃j by McDuff-Tolman [26] and González-Iritani
[21].
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4.6. Kodaira-Spencer map. Recall from Definition 4.4 that wi = fi(q)zi for some
fi(q) ∈ K . We have (using (34))

zi
∂wj

∂zi
=
(
δij + zi

∂fj (q)

∂zi

)
zj =
(
δij +

r∑
a=1

maiqa
∂fj

∂qa
(q)

)
zj ∈ Kzj .

Therefore we have an isomorphism of K-modules:

ks : H 2(X,L)⊗K
∼=−−→

m⊕
j=1

Kzj , Di �−→
(
zi
∂w1

∂zi
, . . . , zi

∂wm

∂zi

)
.

The degeneration formula (39) says that ks(Ŝi ) = zi . For ϕ ∈ H 1(L) = M , we have

ks(δϕ)=
m⊕
j=1

m∑
i=1

〈ϕ, bi〉zi ∂wj
∂zi

=
m⊕
j=1

m∑
i=1

〈ϕ, bi〉
(
ziδij fj (q)+ zizj

∂fj (q)

∂zi

)

=
m⊕
j=1

〈
ϕ, bj
〉
wj ∈

m⊕
j=1

Kzj ,

where δ : H 1(L) ∼= M → H 2(X,L) ∼= Zm is a coboundary map. Hence ks induces an
isomorphism

ks : H 2(X)⊗K
∼=−→

m⊕
j=1

Kzj

/〈⊕m
j=1

〈
ϕ, bj
〉
wj : ϕ ∈ M

〉
K
.

This satisfies ks(S̃i ) = [zi]. Set Bj := fj (q)S̃j , j = 1, . . . ,m. Then ks(Bj ) = fj (q)[zj ] =
[wj ], j = 1, . . . ,m satisfy the linear relations

m∑
j=1

〈
ϕ, bj
〉 [wj ] = 0

for all ϕ ∈ M . Consequently,

• Bj = fj (q)S̃j ;
• fj (q) = 1 if bj is a vertex of the fan polytope (Proposition 4.5);
• Bj , j = 1, . . . ,m satisfy the linear relations (by the injectivity of ks).

By the characterization of the Batyrev elements (see Theorem 4.10), we know that Bj = D̃j ,

i.e. fj (q) = exp(g(j)0 (y)). This shows the conjecture of Chan-Lau-Leung-Tseng:

THEOREM 4.14. Assume that the degeneration formula (Conjecture 3.17) holds for
(X,L) equipped with the C×-actions ρj , j = 1, . . . ,m in §4.3. Then Conjecture 4.11 holds.

REMARK 4.15. Via the natural map
⊕m

j=1Kzj → R, the map ks induces the so-
called Kodaira-Spencer map (cf. the discussion at the end of §3.3.3):

KS : H 2(X)⊗K → Jac(W)
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where the Jacobi algebra Jac(W) is defined to be

Jac(W) := R/R〈H 1(L), dW 〉 .
Then we have KS(S̃i ) = [zi] and KS(D̃i ) = [wi]. In other words, the Seidel elements are the
inverses of [zi] and the Batyrev elements are the inverses of [wi].

4.7. Consistency check: computing equivariant Seidel elements. Here we give a
consistency check concerning Chan-Lau-Leung-Tseng Conjecture 4.11 and our degeneration
formula (39). We calculate the lifts Ŝj of Seidel elements assuming Conjecture 4.11 and (39)
and see that the result is compatible with our previous calculation [21]. The lifts Ŝj here
should be viewed as the T-equivariant Seidel elements since H 2

T
(X) ∼= H 2(X,L).

LEMMA 4.16. Suppose that Conjecture 4.11 holds. Then wi = fi(q)zi , i = 1, . . . ,m
satisfy the multiplicative relation

m∏
j=1

w
〈Dj ,d〉
j = yd for all d ∈ H2(X;Z) .

In other words, ya =∏mj=1 w
maj
j , a = 1, . . . , r .

PROOF. Recall that the Seidel and the Batyrev elements satisfy the multiplicative rela-
tions with respect to the quantum product (§4.3):

m∏
j=1

D̃
〈Dj ,d〉
j = yd ,

m∏
j=1

S̃
〈Dj ,d〉
j = qd .

Hence we have
m∏
j=1

fj (q)
〈Dj ,d〉 = yd/qd .

Therefore
m∏
j=1

w
〈Dj ,d〉
j =

m∏
j=1

(
fj (q)

〈Dj ,d〉z〈Dj ,d〉j

)
= (yd/qd) · qd = yd .

�

THEOREM 4.17. Assume Conjecture 4.11 and the degeneration formula (39). The lifts
Ŝj of the Seidel elements are given by

Ŝj = e−g (j)0 (y)

(
Dj −

m∑
i=1

Di
∑

c1(X)·d=0,Di ·d<0,
Dk ·d≥0 for all k 
=i.

(−1)〈Di,d〉
〈
Dj , d
〉 (− 〈Di, d〉 − 1)!∏

k 
=i 〈Dk, d〉!
yd
)

under the mirror transformation.
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PROOF. Note that (dw1, . . . , dwm)
T can be viewed as the Jacobi matrix between the

two co-ordinate systems (w1, . . . , wm) and (log z1, . . . , log zm) on the open-closed moduli
space. The degeneration formula (39) implies that (z−1

1 Ŝ1, . . . , z
−1
m Ŝm) is the inverse Jacobi

matrix, i.e.

z−1
j Ŝj =

m∑
i=1

∂ log zi
∂wj

Di = w−1
j

m∑
i=1

∂ log zi
∂ logwj

Di

in H 2(X,L). Assuming Conjecture 4.11, we have log zi = logwi − g
(i)
0 (y). Hence

Ŝj = zj

wj

m∑
i=1

(
δij −wj

∂g(i)0

∂wj

)
Di

= exp
(− g

(j)

0 (y)
)(
Dj −

m∑
i=1

r∑
a=1

majya
∂g(i)0

∂ya
Di

)
.

In the second line, we used Lemma 4.16. The conclusion follows. �

Note that we did not use the lifts Ŝj of the Seidel elements (but used only the original
Seidel elements S̃j ) in the proof of Theorem 4.14.

REMARK 4.18. This result is compatible with the calculation of S̃j in our previous
paper [21]. Note however that the formula in [21, Lemma 3.17] contains a mistake. It occurred
from an erroneous cancellation between the factors

〈
Dj , d
〉

in the numerator and
〈
Dj, d
〉! in

the denominator.

REMARK 4.19. It is not difficult to generalize the computation in [21] to the T-equiva-
riant setting and to check the above computation of Ŝj without using Conjecture 4.11 and the
degeneration formula (39). Since Chan-Lau-Leung-Tseng’s conjecture 4.11 was proved by
themselves [9], it follows that the degeneration formula (39) holds true in toric case.

REFERENCES

[ 1 ] M. F. ATIYAH, Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc. 14 (1982), 1–15.
[ 2 ] M. AUDIN, Torus actions on symplectic manifolds, Second revised edition, Progress in Mathematics, 93.

Birkhäuser Verlag, Basel, 2004.
[ 3 ] D. AUROUX, Mirror symmetry and T -duality in the complement of an anticanonical divisor, J. Gökova Geom.

Topol. GGT 1 (2007), 51–91.
[ 4 ] D. AUROUX, Special Lagrangian fibrations, wall-crossing, and mirror symmetry, In Surveys in differential

geometry. Vol. XIII. Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential
Geometry, 1–47, Surv. Differ. Geom., 13, Int. Press, Somerville, MA, 2009.

[ 5 ] V. V. BATYREV, Quantum cohomology rings of toric manifolds, Journées de Géométrie Algébrique d’Orsay
(Orsay, 1992). Astérisque, no. 218 (1993), 9–34.

[ 6 ] K. CHAN, A formula equating open and closed Gromov-Witten invariants and its applications to mirror sym-
metry, Pacific J. Math. 254 (2011), no. 2, 275–293.

[ 7 ] K. CHAN AND S-C. LAU, Open Gromov-Witten invariants and superpotentials for semi-Fano toric surfaces,
Int. Math. Res. Not. IMRN (2014), no. 14, 3759–3789.



SEIDEL ELEMENTS AND POTENTIAL FUNCTIONS 367

[ 8 ] K. CHAN, S-C. LAU, N.C. LEUNG AND H-H. TSENG, Open Gromov-Witten invariants and mirror maps for
semi-Fano toric manifolds. arXiv:1112.0388.

[ 9 ] K. CHAN, S-C. LAU, N. C. LEUNG AND H-H. TSENG, Open Gromov-Witten invariants and Seidel repre-
sentations for toric manifolds. arXiv:1209.6119.

[10] C-H. CHO AND Y-G. OH, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric
manifolds, Asian J. Math. 10 (2006), no. 4, 773–814.

[11] D. A. COX AND S. KATZ, Mirror symmetry and algebraic geometry, volume 68 of Mathematical Surveys and
Monographs, American Mathematical Society, Providence, RI, 1999.

[12] D. A. COX, J. LITTLE AND H. SCHENCK, Toric Varieties, American Mathematical Society, 2010.
[13] K. FUKAYA, Y-G. OH, H. OHTA AND K. ONO, Lagrangian intersection Floer theory: anomaly and ob-

struction. Part I, Part II., volume 46 of AMS/IP Studies in Advanced Mathematics, American Mathematical
Society, Providence, RI, 2009.

[14] K. FUKAYA, Y-G. OH, H. OHTA AND K. ONO, Lagrangian Floer theory and mirror symmetry on compact
toric manifolds, 2010, arXiv:1009.1648.

[15] K. FUKAYA, Y-G. OH, H. OHTA AND K. ONO, Lagrangian Floer theory on compact toric manifolds. I, Duke
Math. J. 151 (2010), no. 1, 23–174.

[16] K. FUKAYA, Y-G. OH, H. OHTA AND K. ONO, Technical details on Kuranishi structure and virtual funda-
mental chain, 2012. arXiv:1209.4410.

[17] K. FUKAYA, Y.-G. OH, H. OHTA AND K. ONO, Toric degeneration and non-displaceable Lagrangian tori in
S2 × S2. arXiv:1002.1660.

[18] K. FUKAYA AND K. ONO, Arnold conjecture and Gromov-Witten invariant, Topology 38 (1999), no. 5, 933–
1048.

[19] A. GIVENTAL, A mirror theorem for toric complete intersections. In Topological field theory, primitive forms
and related topics (Kyoto, 1996), volume 160 of Progr. Math., pages 141–175. Birkhäuser Boston, Boston,
MA, 1998.

[20] E. GONZÁLEZ, Quantum cohomology and S1-actions with isolated fixed points, Trans. Amer. Math. Soc. 358
(2006), no. 7, 2927–2948 (electronic).

[21] E. GONZÁLEZ AND H. IRITANI, Seidel elements and mirror transformations, Selecta Math. (N.S.) 18 (2012),
no. 3, 557–590.

[22] V. GUILLEMIN, Moment Maps and Combinatorial Invariants of Hamiltonian T n-Spaces, volume 122 of
Progress in Mathematics, Birkhäuser, Boston, 1994.

[23] S. KATZ AND C-C. M. LIU, Enumerative geometry of stable maps with Lagrangian boundary conditions and
multiple covers of the disc. In The interaction of finite-type and Gromov-Witten invariants (BIRS 2003),
volume 8 of Geom. Topol. Monogr., pages 1–47. Geom. Topol. Publ., Coventry, 2006.

[24] F. LALONDE, D. MCDUFF AND L. POLTEROVICH, Topological rigidity of Hamiltonian loops and quantum
homology. Invent. Math. 135 (1999), no. 2, 69–385.

[25] D. MCDUFF, Quantum homology of fibrations over S2, Internat. J. Math. 11 (2000), no. 5, 665–721.
[26] D. MCDUFF AND S. TOLMAN, Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res.

Pap. (2006), 72826, 1–77.
[27] P. SEIDEL, π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct.

Anal. 7 (1997), no. 6, 1046–1095.



368 E. GONZÁLEZ AND H. IRITANI

DEPARTMENT OF MATHEMATICS

UMASS BOSTON

100 MORRISEY BLVD

BOSTON, MA 02125
USA

E-mail address: eduardo@math.umb.edu

DEPARTMENT OF MATHEMATICS

GRADUATE SCHOOL OF SCIENCE

KYOTO UNIVERSITY

OIWAKE-CHO, KITASHIRAKAWA, SAKYO-KU

KYOTO, 606–8502
JAPAN

E-mail address: iritani@math.kyoto-u.ac.jp



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Japan Color 2001 Coated)
  /PDFXOutputConditionIdentifier (JC200103)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Japan Color 2001 Coated)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


