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Abstract. We obtain an asymptotic estimate of the Green function of a random walk
on Z2 having zero mean and killed when it exits from the upper half plane. A little more than
the second moment condition is assumed. The estimate obtained is used to derive an exact
asymptotic form of the hitting distribution of the lower half plane of the walk. The higher
dimensional walks are dealt with in the same way.

1. Introduction and results. This paper primarily concerns the Green function, de-
noted by GD , of a random walk of zero mean which moves on the two dimensional integer
lattice Z2 and is killed when it enters into the lower half of the lattice, which we denote by D.
In [14] an asymptotic form of GD is found in some special cases. In this paper we extend it to
a general case under a slightly higher than the second moment condition and apply the result
to compute the hitting distribution of D. The results obtained are new even if the one step
transition is confined in a bounded set; the estimates in them are quite exact, whereas except
for some very special case even crude estimates such as upper or lower bounds sharp apart
from constant factors are not found in the existing literature to the best of our knowledge.

For any one dimensional recurrent random walk the Green function on a half line has a
simple representation by means of a pair of regular and dual-regular functions associated with
it and this makes possible to compute its asymptotic form and thereby yields many significant
results for the walk [11]. For two dimensional walks we have an analogous representation of
GD (see Appendix (B)) but it seems hard to derive directly from it the estimates as obtained
in this paper. Tamura and Tanaka [12] find a representation of the Green operator of two
dimensional Lévy processes killed on the lower half plane and obtain an explicit form of it for
the rotation invariant stable processes. Certain asymptotic estimates of the Green function on
the first quadrant are obtained in [2], [9], [10] for the walks of ‘nearest neighbour’ jumps.

Let Sx
n = x + ξ1 +· · ·+ ξn be a random walk on Z2 (the two dimensional integer lattice)

starting at Sx
0 = x ∈ Z2. Here ξj are independent and identically distributed Z2-valued

random variables defined on a probability space (Ω,F , P ). It is supposed, throughout this
paper but except in the last section, that the walk is irreducible and has zero mean and finite
variances. We use complex notation, namely a point z = (z1, z2) ∈ R2 is denoted by z1 + iz2,
where i = √−1 , and write z1 = �z and z2 = �z. Let D = {z ∈ Z2; �z ≤ 0}, the lower half
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of Z2, and denote by GD the Green function of the walk killed on D:

GD(x, y) =
∞∑

n=0

Px [Sn = y and Sj /∈ D for j = 0, 1, . . . , n] ,

in particular GD(x, y) = 0 if either x ∈ D or y ∈ D. Here and throughout the paper Px

denotes the probability law of the process (Sx
n : n = 0, 1, . . . ) and x is suppressed from Sx

n

under Px . The expectation by P (resp. Px ) is denoted by E (resp. Ex ).
Let X and Y be the horizontal and vertical component of ξ1 = S0

1 , respectively, put σ11 =
EX2, σ12 = EXY, σ22 = EY 2, Q = (σij ) (the covariance matrix of S0

1 ) and σ = | det Q|1/4

and define the norm of z = z1 + iz2 (z1, z2 ∈ R) by

‖z‖ = σ−1(σ 2
2 z2

1 − 2σ12z1z2 + σ 2
1 z2

2)
1/2 .

Here (and in what follows) we write σ 2
1 and σ 2

2 for σ11 and σ22, respectively. It is noted
that ‖z‖2 is the quadratic form of the symmetric matrix σ 2Q−1 of determinant 1; hence ‖z‖
agrees with the Euclidean length of z if Q is isotropic. For a, b ∈ R, a ∨ b and a ∧ b denote
the maximum and minimum, respectively, of a and b. The function t log t is understood
continuously extended to t = 0.

The vertical component process �Sn is a random walk on Z that is irreducible, recurrent
and of finite variance. Let f+(n) (resp. f−(n)) (n = 1, 2, . . . ) be the positive function on
{n > 0} that is asymptotic to n and regular with respect to �Sn (resp. −�Sn) killed on
{n ≤ 0}:

f±(n) = E[f±(n ± Y ); n ± Y > 0] (n ≥ 1) and lim
n→∞ f±(n)/n = 1 ,

which exist each uniquely (Spitzer [11, P19.5]) (Proposition 5 of Section 19) and [11, E27.3]).
(It is [0,∞) rather than [1,∞) that the regular functions are considered in [11], so that f+ =
A+f (· − 1) and f− = A−g(· − 1) with f, g in [11, P19.5] and certain positive constants A±;
see [11, P18.8] for the latter.) Put

X̃ = X − (σ12/σ
2
2 )Y .

THEOREM 1. Suppose that E[X̃2 log |X̃|] < ∞. Then for n > 0, k > 0,

GD(in, s + ik) = 2f+(n)f−(k)

πσ 2
2 ‖s + i(k − n)‖2

(1 + o(1)) as
nk

‖s + i(k − n)‖2 → 0 .

In the special case when the walk is mirror-symmetric relative to the real axis and the
vertical component is continuous (i.e., P [|Y | ≥ 2] = 0), the reflection principle is available
and the known asymptotic form of the potential function of the walk on the whole lattice
Z2 ([6], [11]) immediately gives the formula of Theorem 1 with f±(n) = n (at least under
the higher moment condition). When the vertical component is left or right continuous, the
formula above is obtained in [14] (see Remark 7 below for more details).

REMARK 1. In the case when kn/‖s + i(k − n)‖2 is bounded away from zero we can
obtain some estimates of GD from [14, Theorem 1.1]. It follows that for any ε > 0 there
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exists a number C such that if kn/‖s + i(k − n)‖2 > ε, then

(1) GD(in, s + ik) ≤ C log

(
1 + nk

‖s + i(k − n)‖2 ∨ 1

)
.

Under a little stronger moment condition we have a rather precise estimate: if the moment
condition E[|S0

1 |2 log |S0
1 |] < ∞ is vaild and GD is put in the form

(2) GD(in, s + ik) = 1

2πσ 2 log

(
1 + 4(σ/σ2)

2nk

‖s + i(k − n)‖2 ∨ 1

)
+ Bs,n,k

(n > 0, k > 0, s ∈ Z), then Bs,n,k converges to zero as both k ∧ n and ‖s + i(k − n)‖ tend to
infinity, and is uniformly bounded (see Lemma 7 in Section 3).

REMARK 2. The function h(z) = f+(�z) is regular on Z2 \D in the sense that h ≥ 0
and h(z) = Ez[h(S1); S1 /∈ D]. From Theorem 1 it follows that the positive multiples of it
are the only positive regular functions on Z2 \ D, thus determining the Martin boundary of
the killed walk, provided that E[X̃2 log |X̃|] < ∞ (cf. [11, P27.3]. This moment condition
should be relaxed, although the present author does not know how it could be done. It however
holds that if �Sn is recurrent (but no moment condition is required), then f+(�z) is minimal,
namely any regular function on Z2\D that is dominated by f+(�z) must be a positive multiple
of f+(�z). We shall prove this fact in the last section (Theorem 11) by using the method of
Choquet and Deny [4]. Martin boundary for the random walks on a half space or a quadrant
are recently investigated by several authors (see [7], [10] and the references contained in
them).

REMARK 3. The condition E[X̃2 log |X̃|] < ∞ cannot be removed for the estimate of
Theorem 1 (see [15, Theorem 3], also [13]), whereas it would be superfluous (under our basic
framework) for the asymptotic formula of

∑
t≥s GD(in, t + ik).

Let HD(x, y) denote the probability that the walk starting at x hits D for the first time
at y ∈ D: HD(x, y) = P [Sx

τ(D) = y ], where τ (D) = inf{j > 0; Sx
j ∈ D}. Then for

n > 0, k ≤ 0 (and s ∈ Z),

(3) HD(in, s + ik) = E[GD(in, s − X + i(k − Y )); Y < k] .

Put

(4) q(k) = 2

σ 2
2

E[f−(k − Y ); Y < k] (k ≤ 0) .

Using Theorem 1 we shall derive the following result.

THEOREM 2. Suppose that E[|S0
1 |2 log |S0

1 |] < ∞. Then for n > 0 and k ≤ 0, as
|s| ∨ (n − k) → ∞
(5) HD(in, s + ik) = 1

π

f+(n)q(k)

‖s + i(k − n)‖2 (1 + ob(1)) + r(n, s, k)

where ob(1) is bounded and approaches 0 as far as k remains in any bounded set,

(6) r(n, s, k) = O(log(n + 1)/M2 log M) with M = ‖s + i(k − n)‖ ,
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and as |s| ∨ n → ∞
(7)

∑
k≤0

r(n, s, k) = o

(
n

s2 + n2

)
.

Theorem 2 has the following corollary.

COROLLARY 3. Suppose that E[|S0
1 |2 log |S0

1 |] < ∞. Then for n > 0, as |s|∨n → ∞

(8)
∑
k≤0

HD(in, s + ik) = 1

π

f+(n)

‖s − in‖2 (1 + o(1)) .

REMARK 4. The function q given in (4) is a probability law on {0,−1,−2, . . . }. It is
the limit of the law of �Sin

τ(D) as n → ∞:

(9) q(k) = lim
n→∞ Pin[�Sτ(D) = k] (k ≤ 0)

(cf. [11, P19.4, P18.8]). The bound of r in (6), not enough to yield (7), is crude. Better bounds
are obtained from the estimates (34) and (37) given in its proof, especially when the existence
of higher moments are assumed. The error term ob(1) may remain away from zero along a
subsequence. To have lim ob(1) = 0 we need some regular behavior of the tail P [Y < k] as
k → −∞.

REMARK 5. The determinant of the quadratic form ‖ · ‖2 is unity as noted previously.
Hence

(10) lim
n→∞

∑
s∈Z

n

π‖s + i(k − n)‖2 =
∫

R

|u|
π‖t − iu‖2 dt = 1 (u ∈ R \ {0}) .

By the same token the invariance principle gives that
∑

s≤x

∑
k≤0 HD(in, s + ik) approaches

π−1
∫ ξ

−∞ ‖t − i‖−2dt as s/n → ξ for each ξ ∈ R. These of course conform to (8).

REMARK 6. Denote by S∗
n the h-process of the killed walk with the regular function

h(z) = f+(�z). Its n step transition law p∗
n is given by

p∗
n(x, y) = Px [Sn = y, τ (D) > n]f+(�y)/f+(�x) , x, y /∈ D ;

its Green function G∗
D(z0, z) satisfies

(11) G∗
D(in, s + ik) = 2f+(k)f−(k)

πσ 2
2 ‖s + i(k − n)‖2

(1 + o(1)) as
nk

‖s + i(k − n)‖2
→ 0

owing to Theorem 1. The functional limit theorem holds for the process X∗
n(t) := n−1/2S∗[tn],

t ≥ 0, the limit process is the h-transform with h(z) = �z of the Brownian motion of mean
zero and covariance matrix Q killed when it hits the real line; its Green function g(ζ0, ζ ) is
identified as 2(�ζ )2/πσ 2

2 ‖ζ − ζ0‖2 (ζ, ζ ∈ C \ D). (The proof can be readily reduced to
one dimensional problem of showing the convergence of the vertical component, which is
established in the classical paper by Pitman [8] if P [Y = ±1] = 1/2 and solved in [3] for
walks attracted to stable processes.) The formula (11) provides a close approximation for the
Green function especially in the interesting case when �X∗

n(0) → 0.
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Let L = {z ∈ Z2; �z = 0}, the real axis, and denote by GL the Green function on Z2\L:

GL(x, y) =
∞∑

n=0

Px [Sn = y, Sj /∈ L for j = 1, . . . , n] .

Let a(n), n ∈ Z, denote the potential function of the one dimensional walk �Sn:

a(n) =
∞∑

j=0

(
P0[�Sj = 0] − P0[�Sj = −n]) .

It holds that a(n) = σ−2
2 |n| + o(n) as |n| → ∞. (cf. [11, T28.1, P29.2].) The proof of

Theorem 1 depends on the next theorem established in [14].

THEOREM A. Suppose that E[X̃2 log |X̃|] < ∞. Then it holds that for n > 0, k ∈ Z,
as n(k ∨ 1)/‖s + i(k − n)‖2 → 0,

GL(in, s + ik) = 1

π

σ 4
2 a(n)a(−k) + nk

σ 2
2 ‖s + i(k − n)‖2

+ o

(
nk

‖s + i(k − n)‖2

)
.

We have a nice trigonometric representation of GL and the proof of Theorem A is carried
out by direct computation based on it. Although no such one is available for GD , by writing
down the difference GL − GD by means of GL and HD we can deduce from Theorem A an
intermediate estimate of GD , which is eventually sharpened by some probabilistic argument
to the estimate of Theorem 1. We have a similar (but much simpler) situation for the transition
probability of one dimensional walk killed on a negative half line (cf.[17]). For the present
problem we need to control the deviation of the walk Sn not only in the vertical but also in the
horizontal direction and to this end we shall verify Lemma 6 of the next section.

REMARK 7. Suppose the one-dimensional walk �Sn to be right-continuous, namely
P [Y ≥ 2] = 0. Then (i) GD agrees with GL restricted on the upper half plane and (ii) for
n > 0,

σ 2
2 a(−n) = n, f+(n) = (σ 2

2 a(n) + n)/2 and f−(n) = n ,

(cf. [11, P30.3]), hence the formula of Theorem 1 follows from that of Theorem A, which is
of course also the case if �Sn is left continuous.

Theorem 1 in turn is used to improve the estimate of GL in the case nk < 0 under a
stronger moment condition. If E|Y |3 < ∞, put

λ3 = 1

3σ 2
2

E[Y 3] and C∗ = 1

2π

∫ π

−π

[
σ 2

2

1 − E[eitY ] − 1

1 − cos t

]
dt .

THEOREM 4. Suppose that E[|S0
1 |3 log(|Y | ∨ 2)] < ∞. Then, uniformly in s, as |n| ∧

|k| → ∞ under the constraint nk < 0,

GL(in, s + ik) = (C∗ − λ3 sgn n)
|k − n|

πσ 2
2 ‖s + i(k − n)‖2

(1 + o(1)) ,

where sgn n = n/|n| (n �= 0).
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REMARK 8. Suppose E|Y |3 < ∞. Then it holds ([17, Appendix A]) that
(i) σ 2

2 a(n) − |n| = C∗ − λ3 sgn n + o(1) as |n| → ∞;
(ii) C∗ − λ3 = ∑

k<0 q(k)(σ 2
2 a(k) + |k|) and C∗ + λ3 = ∑

k>0 q−(k)(σ 2
2 a(k) + k),

where q−(k) = 2
σ 2

2
E[f+(Y − k); Y > k] for k ≥ 0; in particular

(iii) C∗ − λ3 > 0 (resp. C∗ + λ3 > 0) unless the walk is left continuous (resp. right
continuous).

Theorem 4 says, in view of (i) above, that in the formula of Theorem A the numerator kn

of the error term can be replaced by |n| ∨ |k| for nk < 0, provided that the moment condition
is suitably strengthened.

All the results are readily extended to the dimensions d ≥ 3 without any essential change
in the derivation. We state only the extention of Theorem 1 which may read as in the next
theorem. Let Sx

n = x + ξ1 + · · · + ξn on Zd be a random walk on Zd . Denote by Y the
projection of ξ1 to the d-th axis and by X that to the hyperplane perpendicular to it so that ξ1 =
(X, Y ). Let GD the Green function analogously defined with D = {s + ik; s ∈ Zd−1, k =
0,−1,−2, . . . }, where s + ik stands for the d-dimensional point (s1, . . . , sd−1, k) ∈ Zd .

THEOREM 5. Suppose that the walk Sx
n on Zd is irreducible and E[ξ1] = 0 and that

E[|X|d ] < ∞ (d ≥ 3) ; E[|Y |2 log |Y |] < ∞ (d = 3) , E[|Y |d−1] < ∞ (d ≥ 4) .

Then for n > 0, k > 0 and s ∈ Zd−1, as nk/‖s + i(k − n)‖2 → 0,

GD(in, s + ik) = 
(d/2)

πd/2 · 2f+(n)f−(k)

σ 2
d ‖s + i(k − n)‖d

(1 + o(1)) .

Here σ 2
d denotes the variance of the d-th component of S0

1 and the norm ‖ · ‖ is defined
analogously to the two dimensional case.

In Section 2 we prove Lemma 6 as previously mentioned. The proofs of Theorems 1, 2
and 4 are given in Sections 3, 4 and 5, respectively.

2. A preliminary lemma. Here we prove the next lemma that plays a crucial role in
the proof of Theorem 1; for it we need only our basic moment conditions E0|S1|2 < ∞ and
E0S1 = 0. For A ⊂ Z2 let τ (A) = inf{n ≥ 1; Sn ∈ A} as in the definition of HD(x, y).
Sometimes τA is written for τ (A).

LEMMA 6. For N,M > 1, let A = A(N,M) = {x+iy ∈ Z2; x ≥ −M, 1 ≤ y ≤ N}.
Then as M/N → ∞

sup
1≤n≤N

Pin[�Sτ(Z2\A(N,M)) < −M] = o((N/M)2) .

PROOF. It suffices to consider

B(N) = A(2N,M) + M − iN = {z ∈ Z2; x ≥ 0,−N ≤ y ≤ N}
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instead of A(N,M) and prove

(12) sup
|n|≤N

PM+in[�Sτ(Z2\B(N)) < 0] = o((N/M)2) .

The proof rests on the maximum principle that is described below. Put

hN(z) = Pz[�Sσ(B(N)) < 0] where σ(B(N)) = inf{n ≥ 0; Sn /∈ B(N)} .

Then if a function ϕN(z), z ∈ Z2 is bounded below and superharmonic on B(N), namely

PϕN(z) := E[ϕN(z + X + iY )] ≤ ϕN(z) for z ∈ B(N) ,

and satisfies the boundary condition

(13) ϕN(x + iy) ≥ 1 if x < 0 and ϕN(x + iy) ≥ 0 if |y| ≥ N,

we can conclude that ϕN ≥ hN on B(N). In fact, hN is harmonic on B(N) and taking values 1
or 0 according as x < 0 or x ≥ 0 on the boundary Z2 \B(N), and from the condition imposed
on ϕN it therefore follows that fN := ϕN − hN is superharmonic on B(N) and non-negative
on Z2 \ B(N), so that fN(z) ≥ Ez[fN(Sτ(Z2\B(N)))] ≥ 0.

In the rest of this proof we construct ϕN which satisfies for every sufficiently large N not
only the properties described above but also the condition

(14) sup
|y|≤N

ϕN(x + iy) = o((N/x)2) as x/N → ∞ ,

which is enough to conclude (12). The construction is carried out in three steps.
Step 1. From our moment condition on X it follows that there exists a smooth positive

function u(s), s ≥ 0 such that

(15) u(0) = 0 , u′ ≥ 0 , sup |u(2s) − u(s)| < ∞
and as s → ∞
(16) s2eu(s)P [X < −s] → 0

and

(17) u(s) → ∞ , u′(s) → 0 , u′′(s) → 0 .

Let h(s) be a smooth function on R such that

h(s) = (1 + s)−2e−u(s) if s > 0;
1 = h(0) ≤ h(s) < 2 and h′(s) ≤ 0 if s ≤ 0 .

From (17) it follows that

h′(s)/h(s) → 0 and h′′(s)/h(s) → 0 as s → ∞ .

We further bring in a function ϕ(s, t) on R2 given by

ϕ(s, t) =
{

C0h(s + s0) cos(πt/4) if |t| ≤ 4/3 ,

C0h(s + s0)λ(|t|) if |t| > 4/3 .
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Here λ(t), t > 0 is a smooth function with λ′ ≤ 0, inf λ(t) > 0 and chosen so that the partial
derivatives ∂tϕ and ∂2

t ϕ exist and continuous; the constants s0 > 0 and C0 > 0 are chosen, in
turn, so that

(18)
sup
|t |<1

σ 2
1 |ϕss(s, t)| + 2σ12|ϕst(s, t)|

ϕ(s, t)
= σ 2

1 |h′′(s + s0)|
h(s + s0)

+ 2πσ12|h′(s + s0)|√
3 h(s + s0)

≤ σ 2
2 [(π/4)2 − 1/4] for s > −1 ,

where ϕt = ∂tϕ, ϕts = ∂s∂tϕ etc. and σ12 = E[|XY |], and then that C0h(s0) inf λ(t) ≥ 1.
(The constant appearing as the upper bound in (18) may be an arbitrary positive constant,
so that the supremum above can be made arbitrarily small, which fact though not applied
connotes that ϕst and ϕss are intrinsically negligible in comparison to ϕtt ; one given in this
form is only for convenience sake.) It then follows that

ΔQϕ ≤ − 1
4σ 2

2 ϕ (s ≥ 0, |t| ≤ 1) ,

ϕ ≥ 1 (s ≤ 0) , ϕ ≥ 0 and sup
t

ϕ(s, t) = o(s−2) (s → ∞) ,

where ΔQ = σ 2
1 ∂2

s + 2σ12∂t ∂s + σ 2
2 ∂2

t .
Step 2. Now define

ϕN(z) = ϕ(x/N, y/N) (z = x + iy ∈ Z2) .

Clearly the conditions (13) and (14) are satisfied. It is easy to see that as (x/N, y/N) → (s, t)

lim
N→∞

N2(P − 1)ϕN(z)

ϕN(z)
=

1
2ΔQϕ(s, t)

ϕ(s, t)
< −σ 2

2

8
for s ≥ 0, |t| ≤ 1 .

In order to conclude from this relation that the inequality PϕN ≤ ϕN holds on B(N) (for
all sufficiently large N) we need some uniformity in (s, t) of this convergence or something
alternative for it. Here we simply claim that for all N large enough the ratio under the limit is
less than −σ 2

2 /16 on B(N), which certainly assures the desired inequality, hence (12).
Looking at

(19) N2(P − 1)ϕN(z) = N2E

[
ϕ

(
x + X

N
,
y + Y

N

)
− ϕ

(
x

N
,

y

N

)]
,

we simultaneously add and subtract the term ϕ( x
N

,
y+Y
N

) inside the expectation symbol and
accordingly break the right side into two parts of which the second one divided by ϕN(z) is
convergent:

(20)
N2E[ϕ( x

N
,

y+Y
N

) − ϕ( x
N

,
y
N

)]
ϕN(z)

→ σ 2
2

2
· ϕtt (s, t)

ϕ(s, t)
= −1

2
[π/4]2σ 2

2 .

Here the convergence is certainly uniform in (s, t). The other one, which we call KN , is KN =
N2E[ϕ(x+X

N
,

y+Y
N

) − ϕ( x
N

,
y+Y
N

)]. As for this expectation, evaluation of the contribution of



GREEN’S FUNCTIONS OF RANDOM WALKS ON THE UPPER HALF PLANE 297

large negative values of X is somewhat troublesome. To dispose of it we obtain that for each
ε > 0, as N → ∞

(21)
N2

ϕN(z)
E

[ ∣∣∣∣ϕ
(

x + X

N
,
y + Y

N

)
− ϕ

(
x

N
,
y + Y

N

)∣∣∣∣; X < −εN

]
→ 0

uniformly in (x, y), of which the proof is postponed to the last step.
Applying, successively, Taylor’s expansion to ϕ( ·, y+Y

N
) and the mean value theorem to

∂sϕ( x
N

, ·) we write the difference N2
[
ϕ(x+X

N
,

y+Y
N

) − ϕ( x
N

,
y+Y
N

)
]

in the form

NXϕs

(
x

N
,

y

N

)
+ 1

2
ϕss

(
x + θX

N
,
y + Y

N

)
X2 + ϕst

(
x

N
,
y + ηY

N

)
XY ,

where θ and η are random variables taking values from the unit interval. Using the identity
EX = 0, we then find that the contribution from X ≥ −εN to KN equals

(22)

− NE[X; X < −εN]ϕs

(
x

N
,

y

N

)
+ E

[
ϕst

(
x

N
,
y + ηY

N

)
XY ; X ≥ −εN

]

+ E

[
1

2
ϕss

(
x + θX

N
,
y + Y

N

)
X2; X ≥ −εN

]
.

It is plain that the first term in (22) is negligible. As for the other two expectations, the
contribution from |Y | >

√
N to them is negligible and in view of (18), h′ ≤ 0 and (17) a little

inspection shows that the sum of them are dominated by 1
2σ 2

2

(
[π/4]2 − 1

6

)
ϕN(z) if N is large

enought and ε is taken suitably small. Combined with (20) these verify the claimed bound of
−σ 2

2 /16 if (21) is taken for granted.
Step 3. It remains to verify (21). Observe that ϕ(s, t) ≤ ϕ(s, 0) = C0h(s + s0) < 2C0

for all s, t and 1
2C0h(s + s0) ≤ ϕ(s, t) whenever |t| ≤ 1, and then that the quantity on the left

side of (21) is dominated by

2N2

h(x/N + s0)
E

[
h

(
x + X

N
+ s0

)
; X < −εN

]
+ 4N2P [X < −εN] .

The second term tends to zero. Denote the first term by IN . Since h(s) < 2, IN → 0
uniformly for 0 ≤ x ≤ 2εN . For x > 2εN we break the expectation involved in IN into two
according as X < −x/2 or not and have

IN ≤ 2N2

h(x/N + s0)

(
E

[
h

(
x + X

N
+ s0

)
; −x/2 ≤ X < −εN

]
+ 2P [X < −x/2]

)
.

Owing to the last property of u in (15) the ratio h(s′)/h(s) is bounded for 1/2 ≤ s′/s <

1, s > 0. Hence for some constant C,

IN ≤ CN2P [X < −εN] + Cx2eu(x/2)P [X < −x/2] ,

of which the right side approaches zero in view of (16). This completes the proof of (21) and
hence that of Lemma 6. �
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REMARK 9. If E[X2 log |X|] < ∞, then one can take u(x) = log log(x + e) in the
proof given above with its considerable simplification and in Lemma 6 the bound o((N/M)2)

can accordingly be replaced by o(h(M/N)) with h(s) = 1/s2 log s.

3. Proof of Theorem 1. Throughout this section we suppose that E[X̃2 log |X̃|] <

∞. We denote by C,C1, C2 etc. constants that depend only on the distribution of (X, Y ) but
whose exact values are irrelevant to our present purpose.

LEMMA 7. Uniformly in s ∈ Z, as n ∧ k → ∞
GL(in, s + ik) − GD(in, s + ik) = o

(
nk

s2 + (n + k)2

)
.

PROOF. The difference GL − GD equals
∑

y∈D\L HD(in, y)GL(y, s + ik). Since

GL(in, s + ik) is bounded away from zero if so is nk/(‖s + i(k − n)‖2 ∨ 1) (see Theo-
rem 1.1 of [14]) and, in view of Theorem A, GL(y, s + ik) ≤ CGL(y, s − ik) (for y ∈ D \ L

and k > 0), so that∑
y∈D\L

HD(in, y)GL(y, s + ik) ≤ C
∑

y∈D\L
HD(in, y)GL(y, s − ik) ≤ CGL(in, s − ik) ,

but the last member is o
(
nk/[s2 + (n + k)2]) as n ∧ k → ∞ owing to Theorem A again. �

LEMMA 8. For each n = 1, 2, . . . , uniformly for |s| ≤ k, as k → ∞
GD(in, s + ik) = 2f+(n)k

πσ 2
2 ‖s + ik‖2

(1 + o(1)) .

PROOF. The proof is similar to that of Lemma 4.1 of [17]. For an integer N > n put
B(N) = {z ∈ Z2; �z ≥ N}. We employ the representation

(23) GD(in, s + ik) = Ein[GD(SτB(N)
, s + ik); τB(N) < τD]

in which GD under the expectation may be replaced by GL if N is large enough in view
of Lemma 7. For evaluation of the expectation with this replacement being made we
apply the following results concerning the one dimensional walk �Sn that are proved in [17]
(Section 2). �

LEMMA B. Uniformly for 1 ≤ n < N , as N → ∞
Pin[τB(N) < τD ] = f+(n)

N
+ o

(
n

N

)
and

1

n
Ein[�SτB(N)

− N; τB(N) < τD] → 0 .

In the rest of the proof of Lemma 8, which can be readily adapted for the case when n/k → 0,
we indicate the (natural) dependence on n of the estimates given there, although n is consid-
ered to be fixed as in the statement of the lemma.

Theorem A, Lemma 7 and Lemma B together show that for each ε > 0 and an integer
n ≥ 1 there exists a positive integer N > n such that for all s ∈ Z, k > 2N and N ≤ m < k/2,

(24)

∣∣∣∣GD(im, s + ik) − 2mk

πσ 2
2 ‖s + ik‖2

∣∣∣∣ <
εmk

s2 + k2 ,
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and that

(25) |Pin[τB(N) < τD ] − f+(n)/N | ≤ εn/N ,

(26) Ein[�SτB(N)
− N; τB(N) < τD] ≤ εn .

If τ = τB(N) ∧ τD, then Ein[τ ] ≤ CnN (which may be easily derived by considering the
mean sojourn time spent by �Sj at each point in the interval [1, N)), and on using this

Pin[�SτB(N)
> k/2, τB(N) < τD] =

∞∑
j=1

Pin[�Sj−1 + Y > k/2, τ > j − 1]

≤
∞∑

j=1

Pin[τ > j − 1]P [Y > k/2 − N] ≤ CnN

k2

for all k large enough. Since GD(y, s + ik) ≤ C′ log k (see Remark 1) this entails that

(27) Ein[GD(SτB(N)
, s + ik); �SτB(N)

> k/2, τB(N) < τD] ≤ C′′nNk−2 log k .

For the other half of the expectation we make decomposition

Ein[GD(SτB(N)
, s + ik); �SτB(N)

≤ k/2, τB(N) < τD] = I + r1 + r2

where, writing A for the event {�SτB(N)
≤ k/2, τB(N) < τD},

I = Ein

[
2Nk

πσ 2
2 ‖s + ik − SτB(N)

‖2
; A

]
, r1 = Ein

[
2(�SτB(N)

− N)k

πσ 2
2 ‖s + ik − SτB(N)

‖2
; A

]

and r2 is the rest. Owing to (24) we obtain

|r2| ≤ εEin

[ �SτB(N)
k

πσ 2
2 ‖s + ik − SτB(N)

‖2
; A

]
.

From (26) we derive Ein[�SτB(N)
; τB(N) < τD] ≤ NPin[τB(N) < τD] + εn ≤ Cn; hence

|r2| < C2εn/k. By (26) again |r1| ≤ C1εn/k. Choosing M = M(ε, n) > 1 so that

(28) Pin[ |SτB(N)
| > M, τB(N) < τD] < εn/N ,

we may replace I by

Ein

[
2Nk

πσ 2
2 ‖s + ik − SτB(N)

‖2
; |SτB(N)

| ≤ M, τB(N) < τD

]
,

with the error at most 8ε/kπσ2. In the last expectation, moreover, SτB(N)
in the denominator

of its integrand may be set zero with the error of the order O(1/k2) and then, in view of (28)
again, the event {|SτB(N)

| ≤ M} may be deleted. Combined with (27) and (23) this shows that
for all sufficiently large k,∣∣∣∣GD(in, s + ik) − 2Nk

πσ 2
2 ‖s + ik‖2

Pin[τB(N) < τD ]
∣∣∣∣ < C3

εn

k

and substitution from (25) completes the proof of Lemma 8. �
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LEMMA 9. For each n = 1, 2, . . . , uniformly for k < |s|, as |s| → ∞
GD(in, s + ik) = 2f+(n)f−(k)

πσ 2
2 ‖s + i(k − n)‖2

(1 + o(1)) .

PROOF. First consider the case k → ∞ under k ≤ |s|. The proof is the same as the
preceding one except for a new ingredient: we need the bound

Pin[ | �SτB(N)
| > |s|/2; τB(N) < τD] = o(N2/s2) ,

which, however, is readily deduced from Lemma 6. Employing this bound we obtain as before
that

Ein[GD(SτB(N)
, s + ik); τB(N) < τD]

= Ein

[
2Nk

πσ 2
2 ‖s + ik − SτB(N)

‖2
; | �SτB(N)

| ≤ |s|
2

, τB(N) < τD

]
+ r

with |r| < Cε/s2. We can then proceed as before.
We must still prove the formula of the lemma for each k = 1, 2, . . . . But by applying

what has just been proved as well as Lemma 8 (to the dual walk) we have∣∣∣∣GD(im, s + ik) − 2mf−(k)

πσ 2
2 ‖s + ik‖2

∣∣∣∣ <
εmk

s2 + k2

(valid for all s and m ≥ N) in place of (24). The rest is similar (only simpler) to the
above. �

Combining Lemmas 7 through 9 and taking the duality of roles of n and k into account
we conclude the estimate of Theorem 1.

4. Estimatation of HD . Suppose that E[|S0
1 |2 log |S0

1 |] < ∞ and define the random
variable

G = Gn,s,k := GD(in, s − X + i(k − Y )) ,

so that (3) is rewritten as

(29) HD(in, s + ik) = E[G; Y < k] (n > 0, k ≤ 0) .

Putting M = M(s, k, n) = ‖s + i(k − n)‖ and fixing a positive constant λ ≤ 1/4
arbitrarily, we split the expectation in (29) into two ones according as ‖X + iY‖ is less than
λM or not.

First consider the case ‖X + iY‖ < λM . Bringing in the event A and random variable
G̃ by

A = {‖X + iY‖ < λM,Y < k} , G̃ = 2f+(n)

πσ 2
2

· f−(k − Y )

‖s − X + i(k − Y − n)‖2 ,

we write

(30) E[G;A] = 2f+(n)E[f−(k − Y );A]
πσ 2

2 M2
+ E[G − G̃;A] + r1
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where r1 = r1(n, s, k) is given by

(31) r1 = 2f+(n)

πσ 2
2

E

[
f−(k − Y )

‖s − X + i(k − Y − n)‖2 − f−(k − Y )

‖s + i(k − n)‖2 ;A
]

.

We claim that uniformly for s ∈ Z, k ≤ 0, n > 0, as M → ∞
(32) E[|G − G̃|;A] = M−2nq(k) × ob(1)

with ob(1) being as in Theorem 2. Clearly (1 − λ)M ≤ ‖s − X + i(k − Y − n)‖ ≤ (1 + λ)M

on A and the boundedness of ob(1) follows from (1) and Theorem 1. Owing to Theorem 1
again, for any ε > 0 there exists δ > 0 such that for M > 1/δ,

E[|G − G̃|;A, k − Y < δM] = εM−2nq(k) ,

while E[|G − G̃|; k − Y ≥ δM]M2/f+(n) → 0 as M → ∞ for each k ≤ 0. Combining
these fact verifies the claim (32). Now (30) may be written as

(33) E[G;A] = f+(n)q(k)

πM2 (1 + ob(1)) + r1 .

Noting
∣∣∣‖s − X + i(k − Y − n)‖ − M

∣∣∣ ≤ ‖X + iY‖ one obtains that

(34) |r1| ≤ Cn

M3
E

[
f−(k − Y )‖X + iY‖; Y < k

]
and the expectation on the right side tends to zero as k → −∞.

Next we evaluate the expectation on ‖X + iY‖ ≥ λM , which we denotet by r2 :

(35) r2 = r2(n, s, k) := E[G; ‖X + iY‖ ≥ λM,Y < k ] .

Substituting (33), (29) is accordingly written as

(36) HD(in, s + ik) = f+(n)q(k)

πM2 (1 + ob(1)) + r1 + r2 .

Since GD ≤ C log(n + 1),

(37) r2 ≤ C(log(n + 1))P [‖X + iY‖ ≥ λM,Y < k ]
for some constant C and by the assumed moment condition

(38) r2 = o

(
log(n + 1)

M2 log M

)
(M = ‖s + i(k − n)‖ → ∞) .

Combined with (34) and (36) this gives (7) for the case λn > |s̃| as well as (5) with the
estimate r = r1 + r2 = O(log(n + 1)/M2 log M). Here

s̃ = s − μ(n − k) , μ = σ12/σ
2
2 .

It remains to show (7) for λn ≤ |s̃|. To this end it suffices to prove that

(39)
s2 + n2

n

∑
k<−m

E[G; Y < k] → 0 as m , |s| → ∞
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under the constraint λn ≤ |s̃|. For evaluation of the expectation above we consider it on
each of the following three events, where we write σ̃1 = σ 2/σ2 so that ‖s + i(k − n)‖2 =
[σ 2

2 s̃2 + σ̃ 2
1 (n − k)2]/σ 2; remember X̃ = X − μY .

(1) A1 = {|X̃| < λ|s̃|}: On this event we have G ≤ Cn(k − Y )/s̃2 if Y < k and the
required estimate of

∑
k≤−m E[G; A1, Y < k] follows from

(40)
∑

k≤−m

E[k−Y ; Y < k] = 1

2
E

[
(−m−Y )(−m−Y +1); Y ≤ −m

] → 0 as m → ∞.

(2) A2 = {|k − Y − n| < n and |X̃| ≥ λ|s̃|}: Since G ≤ C log(n + 1) (a.s.), the sum∑
k≤0 E[G; A2, Y < k] is dominated by C log(n + 1) times∑

k≤0

P(A2) ≤
∑
|l|<n

∑
k≤0

P
[
Y = k − n + l, |X̃| ≥ λ|s̃| ]

≤
∑
|l|<n

P
[|X̃| ≥ λ|s̃|] = o

(
n

s̃2 log |s̃|
)

.

(3) A3 = {|k − Y − n| ≥ n and |X̃| ≥ λ|s̃|}: On A3 ∩ {Y < k} we have k − Y > 2n

and, in view of Theorem A and (2), G ≤ Cn/|k − Y − n| for some constant C. Now
∑
k≤0

E
[|k − Y − n|−1; Y < k, A3

] ≤ E

[ ∑
Y+2n<k≤0

(k − Y − n)−1; −Y > 2n, |X̃| ≥ λ|s̃|
]

≤ E
[
(1 + log |Y |); Y < 0, |X| ≥ λ|s̃| ] = o(1/s̃2) .

These prove (39). The proof of Theorem 2 is complete.

5. Estimatation of GL for nk < 0. For simplicity we let 0 < n ≤ −k unless other-
wise stated, which gives rise to no loss of generality in view of duality. The proof is based on
the representation

(41) GL(in, s + ik) =
∑
m<0

∑
j∈Z

HD(in, j + im)GL(j + im, s + ik) (n > 0, k < 0) .

As in the preceding section put M = M(j,m, n) = ‖j + i(m − n)‖ to have

(42) HD(in, j + im) = f+(n)q(m)

πM2
(1 + o(1)) + (r1 + r2)(n, j,m) (m < 0)

with r1 and r2 defined in (31) and (35) with λ = 1/4. Suppose E[|S0
1 |3 log(|Y | ∨ 2)] < ∞.

Then we have
∑

m<0 q(m)|m| log |m| < ∞ and, in place of (34),

(43) r1(n, j,m) = O

(
n

M4 log(2 − m)

)
.

We partition the range of summation in (41) into three parts D1,D2 and D3 defined by

D1 = {k/2 < m < 0} , D2 = {|j − s|2 + |m − k|2 < k2/4}
and D3 = {m ≤ k/2, |j − s|2 + |m − k|2 ≥ k2/4} ,

and denote the corresponding sums by I, II and III , respectively.
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I is the principal part: in view of Theorems A and 2 it may be written as

I = I (s, n, k) = 1

π2

∑
k/2<m<0

∑
j∈Z

f+(n)q(m)

‖j + i(m − n)‖2 · σ 4
2 a(m)a(−k) + mk

σ 2
2 ‖s − j + i(k − m)‖2

(1 + o(1)) .

Hence, on using the convolution formula for the Cauchy distribution (cf. Remark 5) with the
help of the dominated convergence theorem, as n → ∞ (under n ≤ −k)

(44) I = 1

π

( ∑
m<0

q(m)(σ 2
2 a(m) + |m|)

)
n − k

‖s + i(k − n)‖2
(1 + o(1)) .

As pointed out in (ii) of Remark 8 we have
∑

m<0 q(m)(σ 2
2 a(m) + |m|) = C∗ − λ3,

and the desired formula follows if we show that II + III = o(|k|/(s2 + k2)) (n → ∞ under
n < −k).

Estimate of II . Change the variables according to u = j − s and v = m − k. Then,
since GL ≤ C log[k2/(u2 + v2 + 1)] on D2 (see Theorem 1.1 of [14]),

(45) II ≤ C
∑

u2+v2<k2/4

[
nq(k + v)

(s + u)2 + (n − v − k)2
+ r1 + r2

]
log

k2

u2 + v2 + 1
.

On D2 we have r2 = o(log(n + 1)/M3 log |m|) = o(1/(s2 + k2)3/2), which combined with

∑
u2+v2≤k2/4

log
k2

u2 + v2 + 1
≤

k/2∑
v=−k/2

2
∫ k

0
log

k2

u2
du ≤ 4k2 ,

verifies that the contribution of r2 to the sum in (45) is o(k/(k2 + s2)). The contribution of
the other terms are evaluated in a similar way so that II = o

(
k/(s2 + k2)

)
.

Estimate of III . First of all we note that on D3

GL(j + im, s + ik) ≤ C|mk|
(s − j)2 + m2

.

For the contribution of the main term in (42) to III we first carry out the summation over j

with the help of the convolution formula for the Cauchy distribution as before, showing that
it is dominated by a constant multiple of∑

m≤k/2

|m|q(m)

(|m| + n)(|m| + |k|) · (2|m| + n + |k|)|mk|
s2 + (2|m| + n + |k|)2

≤ Ck

s2 + k2

∑
m≤k/2

q(m)|m| = o

(
k

s2 + k2

)
.

In a similar way the contribution of r1 is evaluated with the same bound. That of r2 is at most

(log(n + 1))
∑
m<k

∑
j∈Z

P [‖X + iY‖ > δ|j |, Y < m] C|mk|
(s − j)2 + m2

,

where δ is a positive constant depending on Q only. This is o(k/(s2 + k2)) owing to the
following lemma.
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LEMMA 10. If α and β are random variables taking values of positive integers, then
there exists a universal constant C such that for k > 0, s ≥ 0

∞∑
m=k

∞∑
j=0

P [α > j, β > m] m

(s − j)2 + m2 ≤ C
E[α3 + β3; β > k]

s2 + k2 .

PROOF. Let J be the left side of the formula of the lemma. It may be written as

J = E

[ β−1∑
m=k

α−1∑
j=0

m

(s − j)2 + m2
; β > k

]
.

If s ≤ k, we can dominate J by 2πE[β; β > k] ≤ 2πE[β3; β > k]/k2 since the inner sum
(over j ) is at most 2π (for m large enough). Let s > k and break the expectation into two
according as α is less or not less than s/2 and name the corresponding ones E1 and E2. E1

is dominated by s−2E[αβ2; β > k] as is readily seen. On the other hand E2 ≤ 2πE[β; α ≥
s/2, β > k] ≤ 8πs−2E[α2β; β > k].

Thus the proof of Lemma 10, hence of Theorem 4, is complete. �

6. Appendix.
(A) Minimality of f+(�z). In this appendix we prove what is stated in Remark 2

concerning uniqueness of regular function on the upper half plane Z2\D = {z ∈ Z2; �z ≥ 1}.
We here have only to require that �Sn is recurrent as a process on Z (no moment condition is
assumed). Even under this condition there exists a positive regular function for the walk �Sn

on [1,∞), which is unique up to a constant factor. We choose any positive regular function
and still denote it by f+. (f+(n)/n may tend to zero as n → ∞.)

THEOREM 11. Suppose that Sn is irreducible and the one dimensional walk Yn :=
�Sn is recurrent. If h is a regular function on Z2 \ D for the process killed on D and
h(z)/f+(�z) is bounded, then h(z)/f+(�z) is a constant.

PROOF. It suffices to prove h(m + 1, n) = h(m, n) for all m ∈ Z and n = 1, 2, . . . .
The proof is divided into two steps.

Step 1. We prove that uniformly in m ∈ Z

(46) lim
n→∞

h(m + 1, n) − h(m, n)

f+(n)
= 0 .

We adapt the proof given in [11, Theorem 24.1] and reduce the problem to the latter, namely,
the fact that any bounded regular function (on Z2) for Sn is constant. Define

sn(m) = h(m, n)/f+(n) and t (m, n) = sn(m + 1) − sn(m)

and put M = lim supn→∞ supm t(m, n). Owing to the assumed bound of h sn is uniformly
bounded, so that we can choose a sequence (n(k),m(k)) in Z2 such that n(k) ↑ ∞ and for
every (l, j) ∈ Z2 there exists

lim
k→∞ t (m(k) + l, n(k) + j) =: t∗(l, j) with t∗(0, 0) = M .
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Clearly t∗(l, j) ≤ M . From the hypothesis that h is regular on Z2 \ D it follows that

f+(n(k) + z2)t (m(k) + z1, n(k) + z2)

f+(n(k))

is regular on z2 > −n(k) for the process killed on its complement. With the help of Lemma
12 given below we take limit as k → ∞ and apply the bounded convergence theorem to
conclude that t∗(z) is regular on Z2, hence t∗ must be identical to M . Now for an ε > 0 and
a positive integer r choose k so that for l = 0, 1, . . . , r − 1,

sn(k)(m(k) + l + 1) − sn(k)(m(k) + l) ≥ M − ε ,

or, what we are interested in,

sn(k)(m(k) + r) − sn(k)(m(k)) ≥ r(M − ε) ,

which is possible only if M ≤ 0 for sn(k) is bounded and non-negative. Thus

lim sup
n→∞

sup
m

t(m, n) ≤ 0 .

Arguing with −t (m, n) in place of t (m, n) we have lim infn→∞ infm tn(m) ≥ 0. The proof of
(46) is complete.

Step 2. Put f (m, n) = h(m+1, n)−h(m, n); for N = 1, 2, . . . , τ = τ(−∞,0] ∧ τ[N,∞)

(the first time when Yn exits from {1, . . . , N − 1}); and Mn = f (Sτ∧n). It is notified first that

(47) Ein[f+(Yτ )] ≤ f+(n) ,

and then that the martingale Mn is uniformly integrable with respect to Pz (with z fixed). Now,
on using (46) and (47)

|f (z)| = |Ez[f (Sτ )]| ≤ 2

(
sup
j≥0

sup
m

f (m,N + j)

f+(N + j)

)
Ez[f+(Sτ )] → 0 (N → ∞) ,

showing that h(z + 1) = h(z) as desired. �

LEMMA 12. f+ is subadditive, namely f+(n+k) ≤ f+(n)+f+(k) for n, k ≥ 1. (The
strict inequality holds if n + k > 2 and P [Y ≤ −2] > 0.)

PROOF. Let T (k) be the first entrance time into [k,∞) of the strict ascending lad-
der height process associated with the walk −�Sn. Then f+(k)/f+(1) = E0[T (k)] − 1
(cf.[11]:Proof of P18.8.; [5], Sections XII.1 and 3) and the Markov property concludes the
proof. �

(B) An expression of GD . Let t = 0, 1, . . . denote the time parameter of the walk.
Put v(t, s + in) = P0[St = s + in, τD > t] and let v∗ be its dual (one defined for −Sn). By a
duality argument (cf. [5, XII (2.1)])

v∗(t, s + i(n − k)) = Pin[M̂t−1 > M̂t = k,�St = s] ,
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where M̂t = min0≤t1≤t �St1 and M̂−1 = 1. By making decomposition by means of events
analogous to that in the above probability we obtain

Pin[St = s + ik, τD > t] =
t∑

t1=0

n∧k∑
j=1

∞∑
x=−∞

v∗(t1, x + i(n − j))v0(t − t1, s − x + i(k − j)) ,

where v0(t, s+in) = Pi[St = s+i(n+1), τD > t] ([1, Lemma 2.1]). Now taking summation
over t we have

(48) GD(in, s + ik) =
n∧k∑
j=1

∞∑
x=−∞

V ∗(x + i(n − j))V 0(s − x + i(k − j)) ,

where V 0(s + in) = ∑∞
t=0 v0(t, s + in) = GD(1, s + i(n + 1)) and V ∗ is similarly defined.

It seems hard to derive from the formula (48) an asymptotic form of GD at least in the
case when |s| → ∞ with n, k remaining in a bounded set, even if we know those of V 0 and
V ∗ since the contribution of x around either 0 or s to the sum of (48) is not negligible at all.
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