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Abstract. We study the submanifolds in the unit sphere Sn+p with constant scalar
curvature and parallel normalized mean curvature vector field. In this case, we can generalize
the work of the second author about hypersurfaces in [8] to submanifolds in a unit sphere.

1. Introduction and theorems. Let Rn+p(c) be an (n + p)-dimensional Riemann-
ian manifold with constant sectional curvature c, we also call it a space form. When c = 1,
Rn+p(c) = Sn+p is the (n+p)-dimensional unit sphere space; when c = 0, Rn+p(c) = En+p

is the (n + p)-dimensional Euclidean space. Let M be an n-dimensional compact subman-
ifold in Rn+p(c), and e1, . . . , en a local orthonormal frame of tangent vector fields on M ,
en+1, . . . , en+p a local orthonormal frame of normal vector fields on M , ω1, . . . , ωn, ωn+1,

. . . , ωn+p its dual coframe field, then the second fundamental form and the mean curvature
vector of M are

(1.1) A =
∑
i,j,α

hα
ij ωi ⊗ ωj ⊗ eα , H =

∑
α

Hαeα = 1

n

∑
i,α

hα
iieα .

When p = 1, i.e., M is a hypersurface in Rn+1(c), there are many well-known results
for hypersurfaces with constant scalar curvature (see [6], [8], [9], [3], [4], [5] ect.).

In [6], Cheng and Yau have proved some well-known results by introducing a self-adjoint
differential operator � on hypersurface defined by

(1.2) �f =
∑
i,j

(nHδij − hij )fij ,

where f ∈ C2(M), (fij ) is its Hessian.
In [8], the second author proved the following rigidity theorems by the study of the above

operator � and some estimates:

THEOREM 1.1 ([8]). Let M (n ≥ 3) be an n-dimensional compact hypersurface with
constant normalized scalar curvature r in the (n + 1)-dimensional unit sphere Sn+1(1). If

(1) r̄ ≡ r − 1 ≥ 0,
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(2) the square norm |A|2 of the second fundamental form of M satisfies

(1.3) nr̄ ≤ |A|2 ≤ n

(n − 2)(nr̄ + 2)
[n(n − 1)r̄2 + 4(n − 1)r̄ + n] ,

then either |A|2 = nr̄ and M is totally umbilical, or

(1.4) |A|2 = n

(n − 2)(nr̄ + 2)
[n(n − 1)r̄2 + 4(n − 1)r̄ + n] ,

and M = S1(
√

1 − a2) × Sn−1(a), a = √
(n − 2)/(n(r̄ + 1)).

THEOREM 1.2 ([8]). Let M (n ≥ 3) be an n-dimensional compact hypersurface with
constant normalized scalar curvature r in the (n + 1)-dimensional Euclidean space En+1. If
the square norm |A|2 of the second fundamental form of M satisfies

(1.5) nr ≤ |A|2 ≤ n(n − 1)

(n − 2)
r ,

then |A|2 ≡ nr and M is the n-dimensional round sphere Sn(a) for a = √
1/r.

In this paper, we study submanifolds of the unit sphere with constant scalar curvatures
and parallel normalized mean curvature vector field, and we discover that above Theorem 1.1
about hypersurfaces still hold for submanifolds. In fact, we prove

THEOREM 1.3. Let M (n ≥ 4) be an n-dimensional compact submanifold with con-
stant normalized scalar curvature r in the (n + p)-dimensional unit sphere Sn+p(1). If

(1) r̄ ≡ r − 1 ≥ 0,

(2) ∇⊥en+1 = 0, where en+1 is a unit normal vector field, which is parallel to H,

(3) the square norm |A|2 of the second fundamental form of M satisfies

(1.6) nr̄ ≤ |A|2 ≤ n

(n − 2)(nr̄ + 2)
[n(n − 1)r̄2 + 4(n − 1)r̄ + n] ,

then either |A|2 = nr̄ and M is totally umbilical, or

(1.7) |A|2 = n

(n − 2)(nr̄ + 2)
[n(n − 1)r̄2 + 4(n − 1)r̄ + n] ,

and M = S1(
√

1 − a2) × Sn−1(a) ↪→ Sn+1 ↪→ Sn+p, a = √
(n − 2)/(n(r̄ + 1)).

REMARK 1.1. Hou and Cheng got some partial results of Theorem 1.3 in [7] and
[1], and Cheng also proved a general result on complete submanifolds with constant scalar
curvature and parallel normalized mean curvature vector field in Euclidean spaces in [2].
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2. Preliminaries and lemmas. Let M be an n-dimensional compact submanifold in
the (n+p)-dimensional space form Rn+p(c). We shall make use of the following convention
on the range of indices:

1 ≤ B,C,D ≤ n + p , 1 ≤ i, j, k ≤ n , n + 1 ≤ α, β, γ ≤ n + p .

We choose a local orthonormal frame field {e1, . . . , en, en+1, . . . , en+p} along M , where
{ei}i=1,2,...,n are tangent to M and {eα}α=n+1,n+2,...,n+p are normal to M . Let {ωB} be the
corresponding dual coframe, and {ωBC} the connection 1-forms on Rn+p(c). With restricting
on M , the second fundamental form, the curvature tensor and the normal curvature tensor can
be given by

(2.1) ωiα =
∑
j

hα
ij ωj , A =

∑
i,j,α

hα
ij ωi ⊗ ωj ⊗ eα ,

(2.2) dωij −
∑

k

ωik ∧ ωkj = −1

2

∑
k,l

Rijklωk ∧ ωl ,

(2.3) dωαβ −
∑
γ

ωαγ ∧ ωγα = −1

2

∑
k,l

R⊥
αβklωk ∧ ωl ,

and the mean curvature by H = ∑
α Hαeα, where Hα = 1

n

∑
i hα

ii .
The covariant derivatives of the second fundamental form are given by

(2.4)
∑
k

hα
ij,kωk = dhα

ij +
∑
k

hα
kiωkj +

∑
k

hα
kjωki +

∑
β

h
β
ijωβα ,

(2.5)

∑
l

hα
ij,klωl = dhα

ij,k +
∑

l

hα
lj,kωli +

∑
l

hα
ij,lωlk +

∑
l

hα
il,kωlj

+
∑
β

h
β
ij,kωβα .

We can define trace-free linear maps φα : TxM → TxM by

〈φαX, Y 〉 = 〈AαX, Y 〉 − Hα〈X,Y 〉 ,

where x ∈ M , Aα is the shape operator of eα , Aα(ei) = − ∑
j 〈∇ei eα, ej 〉ej = ∑

j hα
ij ej ,

and φ is a bilinear map φ: TxM × TxM → T ⊥
x M defined by

(2.6) φ(X, Y ) =
n+p∑

α=n+1

〈φαX, Y 〉eα .

It’s easy to check that |φ|2 = |A|2 − nH 2, where H 2 = ∑
α(Hα)2.

The Gauss equation is

(2.7) Rijkl = c(δikδjl − δilδjk) +
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk) .
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In particular

(2.8) n(n − 1)(r − c) = n2H 2 − |A|2 ,

where R = n(n − 1)r is the scalar curvature of M . We call r the normalized scalar curvature
(see [8], [9], [10]).

The Codazzi equation and the Ricci equation are (see [10])

(2.9) hα
ij,k = hα

ik,j ,

(2.10) R⊥
αβij =

∑
k

(hα
ikh

β
kj − hα

jkh
β
ki) .

If the normalized scalar curvature r is a constant with r ≥ c, then n2H 2 − |A|2 ≥ 0. We
can choose a unit normal vector field en+1 which is parallel to H. Hence we have (see [10])

(2.11) Hn+1 = H , Hα = 0 (n + 2 ≤ α ≤ n + p) ,

(2.12) φn+1
ij = hn+1

ij − Hδij , φα
ij = hα

ij , n + 2 ≤ α ≤ n + p .

We introduce a differential operator � by defining

(2.13) �f =
n∑

i,j=1

(nHδij − hn+1
ij )fij ,

where f ∈ C2(M), (fij ) is its Hessian.
By use of Codazzi equation, we easily know that the operator � is self-adjoint. That is,

we have

(2.14)
∫

M

�f dv = 0 , f ∈ C2(M) .

The following lemma was proved in [8] and [9] for hypersurfaces in a space form. In
fact, it’s still true for submanifolds in a space form.

LEMMA 2.1. Assume that the normalized scalar curvature r is a constant and r ≥ c,
then

(2.15) |∇A|2 ≥ n2|∇H |2 .

PROOF. From the Gauss equation (2.8), we get n4|∇(H 2)|2 = |∇(|A|2)|2 and

|∇(|A|2)|2 = 4
∑
k

( ∑
i,j,α

hα
ij hα

ij,k

)2

≤ 4

( ∑
i,j,α

(hα
ij )

2
)( ∑

i,j,k,α

(hα
ij,k )

2
)

= 4|A|2|∇A|2 .

Hence

(2.16) 4n2H 2(n2|∇H |2) = n4|∇(H 2)|2 = |∇(|A|2)|2 ≤ 4|A|2|∇A|2.
If r ≥ c, then n2H 2 ≥ |A|2, we get (2.15). �
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We need the following inequalities in the proof of our Theorem 1.3:

LEMMA 2.2 ([12]). Let B : Rn → Rn be a symmetric linear map such that trB = 0,
then

(2.17) − n − 2√
n(n − 1)

|B|3 ≤ trB3 ≤ n − 2√
n(n − 1)

|B|3 ,

where |B|2 = trB2, and the equality holds if and only if at least (n − 1) eigenvalues of B are
equal.

LEMMA 2.3 ([13]). Let C,B : Rn → Rn be symmetric linear maps such that
[C,B] = 0 and trC = trB = 0, then

(2.18) − n − 2√
n(n − 1)

|C|2|B| ≤ tr(C2B) ≤ n − 2√
n(n − 1)

|C|2|B| .

LEMMA 2.4 ([11]). Let B1, B2, . . . , Bm be symmetric (n × n)-matrices. Set Sαβ =
tr(BαBβ), Sα = Sαα , S = ∑

α Sα , then

(2.19)
∑
α,β

|BαBβ − BβBα|2 +
∑
α,β

S2
αβ ≤ 3

2

( ∑
α

Sα

)2

,

where |B|2 = trBtB.

In [10], the second author calculated the Laplacian of |φ|2 for submanifolds in a unit
sphere (also see [14], [15]):

LEMMA 2.5 ([10]). In the same notations as above, we have

(2.20)

1

2
�(|A|2) = |∇A|2 +

∑
i,j,α

nHα
,ij h

α
ij + n|φ|2 +

∑
i,j,k,α,β

nHαhα
ij h

β
jkh

β
ki

−
∑

i,j,k,l

( ∑
α

hα
ij hα

kl

)2

−
∑

α,β,i,j

(R⊥
αβij )

2 .

3. Proof of Theorem 1.3. Let r̄ = r − 1. Then, for n2H 2 − |A|2 = n(n − 1)r̄ , we
have

n2�(H 2) = 2n2H�H + 2n2|∇H |2 = �|A|2.
If ∇⊥en+1 = 0, then Hα

,i = H,iδαn+1 and Hα
,ij = H,ij δαn+1. From Lemma 2.5, we get

(3.1)

�(nH) = (nHδij − hij )(nH),ij = n2H�H − nhij H,ij

= 1

2
�(|A|2) − n2|∇H |2 − nhij H,ij

= (|∇A|2 − n2|∇H |2) + n|φ|2 +
∑

i,j,k,α,β

nHαhα
ij h

β

jkh
β

ki

−
∑

i,j,k,l

( ∑
α

hα
ij hα

kl

)2

−
∑

α,β,i,j

(R⊥
αβij )

2 .
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By use of Lemmas 2.2, 2.3 and (2.12), we have

(3.2)

∑
i,j,k,α,β

Hαhα
ij h

β
jkh

β
ki =

∑
i,j,k,β

Hhn+1
ij h

β
jkh

β
ki

=
∑
i,j,k

Hhn+1
ij hn+1

jk hn+1
ki +

n+p∑
β=n+2

∑
i,j,k

Hhn+1
ij φ

β
jkφ

β
ki

= H · tr(φn+1 + HI)3 +
n+p∑

β=n+2

Hφn+1
ij φ

β
jkφ

β
ki +

n+p∑
β=n+2

H 2|φβ |2

= H · tr(φn+1)3 + 3H 2|φn+1|2 + nH 4 +
n+p∑

β=n+2

H 2|φβ |2

+
n+p∑

β=n+2

∑
i,j,k

Hφn+1
ij φ

β
jkφ

β
ki

≥ − n − 2√
n(n − 1)

|H | · |φn+1|3 + 2H 2|φn+1|2 + H 2|φ|2 + nH 4

− n − 2√
n(n − 1)

n+p∑
β=n+2

|H | · |φn+1||φβ |2

= 2H 2|φn+1|2 + H 2|φ|2 + nH 4 − n − 2√
n(n − 1)

|H | · |φn+1||φ|2 .

Using the Lemma 2.4, we get

(3.3)

∑
i,j,k,l

(∑
α

hα
ij hα

kl

)2

+
∑

α,β,i,j

(R⊥
αβij )

2

=
∑
α,β

[tr(AαAβ)]2 +
∑

α �=n+1,β �=n+1,i,j

(R⊥
αβij )2

≤ [tr(An+1An+1)]2 + 2
∑

β �=n+1

(tr An+1Aβ)2 + 3

2

[ ∑
β �=n+1

|φβ |2
]2

= |φn+1|4 + 2nH 2|φn+1|2 + n2H 4 + 2
∑

β �=n+1

(tr φn+1φβ)2

+ 3

2
(|φ|2 − |φn+1|2)2

≤ 5

2
|φn+1|4 + 2nH 2|φn+1|2 + n2H 4 + 2|φn+1|2(|φ|2 − |φn+1|2)

+ 3

2
|φ|4 − 3|φ|2|φn+1|2

= 1

2
|φn+1|4 + 2nH 2|φn+1|2 + n2H 4 − |φ|2|φn+1|2 + 3

2
|φ|4 .
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From Lemma 2.1, |∇A|2 ≥ n2|∇H |2, and we have, by putting (3.2) and (3.3) into (3.1),

(3.4)

�(nH)

≥ n|φ|2 − n(n − 2)√
n(n − 1)

|H | · |φn+1||φ|2 + nH 2|φ|2

− 1

2
|φn+1|4 + |φ|2|φn+1|2 − 3

2
|φ|4

= |φ|2
[
n − n(n − 2)√

n(n − 1)
|H | · |φ| + nH 2 − |φ|2

]

+ (|φ| − |φn+1|)
[

n(n − 2)√
n(n − 1)

|H | · |φ|2 − 1

2
(|φ| − |φn+1|)(|φ| + |φn+1|)2

]
.

We will show the following key claim:

(3.5) (|φ| − |φn+1|)(|φ| + |φn+1|)2 ≤ 32

27
|φ|3 .

(1) If |φ| = 0, then |φn+1| = 0, and (3.5) holds.

(2) If |φ| �= 0, define x = |φn+1|/|φ|, so x ∈ [0, 1]. We have by a direct calculation

(3.6) max
x∈[0,1]

(1 − x)(1 + x)2 = 32

27
,

so (3.5) still holds, and we complete the proof of the claim.

As n2H 2 ≥ |A|2 = |φ|2 + nH 2, n(n − 1)H 2 ≥ |φ|2, then

(3.7)
n(n − 2)√
n(n − 1)

|H | · |φ|2 − 1

2
(|φ| − |φn+1|)(|φ| + |φn+1|)2 ≥

(
n − 2

n − 1
− 16

27

)
|φ|3.

If n ≥ 4, (n − 2)/(n − 1) − 16/27 > 0, so we have

(3.8)

�(nH) ≥ |φ|2
[
n − n(n − 2)√

n(n − 1)
|H | · |φ| + nH 2 − |φ|2

]

= |φ|2
[
|φ| + 1

2
(n − 2)

√
n

n − 1
|H | +

√
n + n3H 2

4(n − 1)

]

·
[

− |φ| − 1

2
(n − 2)

√
n

n − 1
|H | +

√
n + n3H 2

4(n − 1)

]
.

It is checked directly that our assumption (1.6), i.e.,

(3.9) |A|2 ≤ n

(n − 2)(nr̄ + 2)
[n(n − 1)r̄2 + 4(n − 1)r̄ + n] ,
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is equivalent to

(3.10)

(n − 2)2

4(n − 1)2
[n(n − 1)r̄ + |A|2] · [|A|2 + n(n − 1)r̄ + 4(n − 1)]

≤
[
n + n2

2
r̄ − n − 2

2(n − 1)
|A|2

]2

.

Noting (3.9) implies n + (n2/2)r̄ − (n − 2)|A|2/(2(n − 1)) > 0, we know (3.10) is
equivalent to

(3.11)

n − 2

2(n − 1)

√
[n(n − 1)r̄ + |A|2] · [|A|2 + n(n − 1)r̄ + 4(n − 1)]

≤ n + n2

2
r̄ − n − 2

2(n − 1)
|A|2 .

We note that (3.11) is equivalent to

(3.12) |φ| ≤ −1

2
(n − 2)

√
n

n − 1
|H | +

√
n + n3H 2

4(n − 1)
.

Therefore, the right-hand side of (3.8) is non-negative. From (2.14) we also have∫
M

�(nH)dv = 0.

Thus either |A|2 = nr̄ , that is |φ| = 0 or

(3.13) |A|2 = n

(n − 2)(nr̄ + 2)
[n(n − 1)r̄2 + 4(n − 1)r̄ + n] ,

and if (3.13) holds, we get |φ| = |φn+1|.
Let N1 be the sub-bundle spanned by {en+2, . . . , en+p}. Then, with the assumption

∇⊥en+1 = 0, it’s easy to check that N1 is parallel in the normal bundle. If |φ| = 0 or
|φ| = |φn+1|, we can always get that |φα| = 0 for each n + 2 ≤ α ≤ n + p, that means M is
totally geodesic with respect to N1. So from [15, Theorem 1] we know that M lies in Sn+1,
which is an (n + 1)-dimensional totally geodesic submanifold in Sn+p . Using Theorem 1.1,
we complete the proof of Theorem 1.3.

REMARK 3.1. If n = 3, we have from the first inequality of (3.4)

(3.14)

�(nH) ≥ |φ|2
[

3 + 3H 2 − 3

2
|φ|2 − 3√

6
|H | · |φn+1| + 1

2
|φn+1|2

]

= |φ|2
[

3 + 9

4
H 2 − 3

2
|φ|2 + 1

2
(|φn+1| −

√
3

2
|H |)2

]

≥ |φ|2
[

3 + 9

4
H 2 − 3

2
|φ|2

]
.

Hence if |φ|2 ≤ 2 + 3
2H 2, which is equivalent to

(3.15) |A|2 ≤ 4 + 6r̄ ,
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we get that M is totally umbilical. We also note that (1.6) is equivalent to

(3.16) nr̄ ≤ |A|2 ≤ n(n − 1)

n − 2
r̄ + 2(n − 1)

n − 2
+ n − 2

nr̄ + 2
.

Thus, when n = 3, (3.16) is

(3.17) |A|2 ≤ 4 + 6r̄ + 1

3r̄ + 2
.

Thus (3.15) is stronger than (3.17).

REMARK 3.2. When n = 3, our technique here is not effective to prove Theorem 1.3,
so it is an interesting problem to know that Theorem 1.3 holds or not for n = 3.

Acknowledgments. The authors would like to thank the referee for some useful comments.
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