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Abstract. Inspired by the all-important conformal invariance of harmonic maps on
two-dimensional domains, this article studies the relationship between biharmonicity and con-
formality. We first give a characterization of biharmonic morphisms, analogues of harmonic
morphisms investigated by Fuglede and Ishihara, which, in particular, explicits the conditions
required for a conformal map in dimension four to preserve biharmonicity and helps producing
the first example of a biharmonic morphism which is not a special type of harmonic morphism.
Then, we compute the bitension field of horizontally weakly conformal maps, which include
conformal mappings. This leads to several examples of proper (i.e., non-harmonic) biharmonic
conformal maps, in which dimension four plays a pivotal role. We also construct a family of
Riemannian submersions which are proper biharmonic maps.

1. Introduction. A central feature of harmonic maps is their conformal invariance in
dimension two. Not only this allows defining harmonic maps on Riemann surfaces but it also
is the starting point to many properties of minimal branched immersions.

In the higher-order theory of biharmonic maps, one could expect similar properties in
dimension four. While this dimension certainly enjoys a special role for biharmonicity, as
illustrated by the conformal deformation of harmonic maps of [4], the study of the bihar-
monic stress-energy tensor or the characterization of biharmonic morphisms of Section 3, no
conformal invariance of any sort has ever been observed.

Nevertheless, the interaction between conformality and biharmonicity remains a rich
subject and provides an interesting source of new examples.

In the theory of harmonic maps, a particularly fruitful approach has been to consider
maps which preserve local harmonic functions, called harmonic morphisms, because their
characterization as horizontally weakly conformal (a generalization of Riemannian submer-
sions) harmonic maps confers them a more geometrical flavour, which counterweighs the
analytical nature of harmonic maps [11, 14].

Their numerous geometrical properties have earned harmonic morphisms a choice place
among harmonic maps. The counterparts of these are biharmonic morphisms (see [18]), maps
which pull back local biharmonic functions onto biharmonic functions (and also, as it turns
out, maps) and we characterize them as horizontally weakly conformal biharmonic maps
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which are 4-harmonic and satisfy an additional equation, whose significance remains largely
enigmatic.

While the number of conditions is directly due to the order of the problem, the appear-
ance of 4-harmonicity is yet another clue to the specificity of dimension four.

This characterization also solves one aspect of the original question on the conformal
invariance of biharmonic maps on four dimensional domains, since two extra conditions are
required.

2. p-Harmonicity and biharmonicity. At the origin of this work, lie the search and
study of maps selected as extremals of a measured quantity, and the most natural class of
functionals on the space of maps between Riemannian manifolds is the p-energies.

DEFINITION 2.1. Let¢ : (M, g) — (N, h) be a smooth map between Riemannian
manifolds and assume (M, g) compact then, for p € R (p > 1), its p-energy is

1
Ep(¢):_/ ldo|? vg .
pPJIm

The critical points of E, are called p-harmonic maps and simply harmonic maps for p = 2.
Standard arguments yield the associated Euler-Lagrange equation, the vanishing of the p-
tension field:

p(¢) = |do|P*[lde|*t(¢) + pT_2d¢(grad|d¢|2)] =0,
where
T(¢p) = trace Vd¢
is the tension field.

REMARK 2.2. (i) A fundamental feature of p-harmonicity for p # 2, is the collapse
of ellipticity at critical points and its negative consequences for regularity properties (cf. [13]).
For p = 2, smoothness of continuous harmonic maps is ensured by boot-strap methods and
strong uniqueness, for example, follows.

(i) The main existence result for p-harmonic maps (p > 2) is due to Duzaar and Fuchs
in [9] and generalizes the Eells-Sampson theorem.

(iii) Working directly with the functional, one sees that, if p = dim M, E, is confor-
mally invariant, a situation that seems more natural since, when the target has trivial p-th
homotopy group, p-harmonic maps exist in each homotopy class (cf. [16]).

While harmonic maps have been extensively studied and shown to exist in numerous
circumstances (cf. [10]), in some situations they cannot exist or are very limited. It is therefore
interesting to turn to an alternative measuring the default of harmonicity.

DEFINITION 2.3. Let¢ : (M, g0 — (N, h) be a smooth map between compact Rie-
mannian manifolds. Define its bienergy as

1
E*(¢) = EfM|r(¢)|2vg.
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Critical points of the functional E? are called biharmonic maps and its associated Euler-
Lagrange equation is the vanishing of the bitension field

12 (¢) = —AP1(¢) — tracey RN (d¢, T(¢))d¢

where A? = — tracey (VOVe — V@) is the Laplacian on sections of ¢_1TN and RV the
Riemann curvature operator on (N, k).

REMARK 2.4. (i) Clearly harmonic maps are automatically biharmonic, actually ab-
solute minimums of E2. For compact domains and negatively curved targets, the converse
holds (cf. [15]).

(ii) An alternative to E 2 is to view (N, h) isometrically immersed in RY and, consid-
ering ¢ as a vector, take the L?-norm of A? and call the critical points (extrinsic) biharmonic
maps. Except for flat targets, the two definitions are distinct. The regularity of both types of
biharmonic maps has been extensively studied in [7, 20, 21, 22]

(iii) If M is non compact, we extend all these definitions by integrating over compact
subsets.

A natural generalization of isometric immersions are weakly conformal maps, i.e., whose
differential either vanishes or is injective and conformal. Of particular interest is their har-
monicity since it characterizes minimality of the image and defines minimal branched immer-
sions. They also explain the conformal invariance of harmonic maps on surfaces, directly at
the level of the tension field.

Dual to this notion is horizontal weak conformality where, pointwise, the differential is
required to vanish or be surjective and conformal. This reverses the constraint on the dimen-
sions and enables a preservation of harmonicity in higher dimensions.

DEFINITION 2.5. Let¢ : (M™, g) — (N", h) be a smooth map between Riemannian
manifolds. For any point x € M, let V, = kerd¢, be the vertical space at x and H, = (Vx)L
the horizontal space at x. These spaces define a vertical and a horizontal distribution. The
map ¢ is called horizontally weakly conformal if for any point x € M either d¢, = 0 or d¢y
is surjective and conformal from H, to Ty N, i.e.,

h(dex(X), dgx(Y)) = 12 (x)g(X,Y),

for all X, Y € H, and the function A is called the dilation of ¢. For a vector X € TM, X H
and XY will denote the horizontal and vertical parts of X. Points where d¢; # 0 are called
regular.

REMARK 2.6. (i) Ifm < n,then ¢ is horizontally weakly conformal if and only if it
is constant.

(i) By extending the function A by zero over critical points, we obtain a smooth func-
tion A2 defined on the whole of M. Besides |d¢|> = ni>.

(iii) Harmonic morphisms, i.e., maps which preserve local harmonic functions by com-
position on the right-hand side, were characterized by Fuglede and Ishihara, as horizontally
weakly conformal harmonic maps (cf. [11, 14]).
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Conventions: We will systematically use the Einstein convention on summing repeated
indices. Our convention for the Riemann curvature tensor will be

R(X,Y)=1[Vx,Vy]l - Vix.v1,

and the Laplacian on functions has been chosen with negative eigenvalues, i.e., Af =
trace Vd f but on vector fields AX = — trace V2 X.

3. The characterization of biharmonic morphisms. In this section, we give an im-
provement of the characterization of biharmonic morphisms and show that the inversion in
the unit sphere R" \ {0} — R" is a biharmonic morphism if and only if n = 4, thus providing
an example which, unlike any of the previously known ones, is not a harmonic morphism.

In light of the theory of harmonic morphisms, cf. the monograph [5], it only seemed
natural to define and study their biharmonic counterparts.

DEFINITION 3.1. A continuous map ¢ : (M, g) — (N, h) is a biharmonic morphism
if, for any biharmonic function f : U C N — R, such that ¢>’1(U ) # @, the pull-back
function f o ¢ : ¢~ (U) C M — R is also biharmonic.

REMARK 3.2. (i) Clearly constant maps and isometries are biharmonic morphisms
and the composition of two biharmonic morphisms is again a biharmonic morphism.

(i) Since harmonic functions are automatically biharmonic, a biharmonic morphism
will pull-back harmonic functions onto biharmonic ones, but not necessarily harmonic. Like-
wise, there is no reason to believe that a harmonic morphism should be a biharmonic mor-
phism. This distinction is clarified by Theorem 3.3 (see also [17]). Nevertheless, all the
previously known examples of biharmonic morphisms came from special types of harmonic
morphisms (cf. [17, 18, 19]).

(iii)) The existence of local harmonic coordinates on Riemannian manifolds [8] implies
that, in such a coordinate system, the components of a biharmonic morphism are continu-
ous biharmonic functions, hence smooth by standard properties of elliptic partial differential
equations. Therefore a biharmonic morphism is always smooth.

The geometric method used by Ishihara in [14] to characterize harmonic morphisms as
horizontally weakly conformal harmonic maps, and co-opted for the semi-Riemannian case
in [12] by Fuglede (who had his own approach for Riemannian metrics) is extended here
to biharmonicity. As one should expect, four conditions are needed to describe biharmonic
morphisms, with the last one still very much unfathomable.

THEOREM 3.3. Let ¢ : (M™, g) — (N",h) be a smooth map between Riemannian
manifolds. Then ¢ is a biharmonic morphism if and only if it is a horizontally weakly confor-
mal biharmonic 4-harmonic map, of dilation A, such that

I (@)|* — 2A2217() % + 4AA2 div (d, T(¢)) + n(AR2)?

M 2 2
+2(dg. (@) (VI @) +SI* = 0.
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where S € ©>¢ " T N is the symmetrization of the g-trace of dp @Vt (¢) and (d¢p, T(¢))(X)
= (d¢(X), 1(9)).

PROOF. Let¢ : (M™, g) — (N", h) be a smooth map between Riemannian manifolds,
then the statement of Theorem 3.3 is that ¢ is a biharmonic morphism if and only if

) hdp(X),dp(Y)) = 22g(X,Y) forallX,Y € H,
3) —A?z(¢) — traceRY (dop, T(¢))dp = 0,
4 A21T(p) +dpgradr? =0,

2@ — 280%[T(9) P + 4417 div (dp, T(h)) + n(AR%)?
+2(d¢. T@)VIT(@)*) + [SI* =0.
Equip the manifold (M, ¢g) with harmonic coordinates (x! )1<i<m centered at the point p

and (N, k) with harmonic coordinates (y*)1<a <, around the point ¢(p). Let f : U C N —
R be a local function on N, then

4 . o q4hB 5
© Afogy=— [u w 0¢° 0¢P dgY aq

9y2dyPayy dyd axi dxJ axk ax!

5)

L0 0’97 09P d¢*  8%¢P d¢Y 9 | 3¢ 3¢” 8¢’
Ay«dyPayy | \ 0xiox/ dxk ox! = 9xidxk 9x/ dx!  dxidx! 9x/ dxk

2¢F Bgr 99" 329" d¢Y agf 3¢ dgv M) i ki

axkaxs axi dx!  9x'oxJ axt axk  9xlaxk 9xi 9xJ

+2gifail<%ﬂa¢“)}

xi \ 9xJ dxk 9x!

N 82f 83(]5'3 a¢0{ a2¢ﬂ a2¢0{ 82(]5'3 82¢a
dy*ayP [\ 0xidx/oxk ox! ~ 9xJ/axk dxloxi ~ 9xidxk dx'ox/

0% ogf  9%F 3% 3¢ a9f 3¢ 9¢PN 4 y

Axidx/ax! 9xk ~ 9xiox/ dxloxk = Oxidxkox! 9xJ = dxJ/oxkox! 9xi

(azw o09f 929" 9gF  9%¢P a¢“>2 509" iy 92 g aqﬂ

_r _r 1 _r
axkax! ox7  9xJoax! axk  9xiaxk 9x! axt axiaxt 9x! dxk

bR Y S s
y* | axkax!” dxiox/ = dxJoxkox! dxi  3xidxJaxkax!

Plugging carefully chosen local biharmonic test functions, as given by [1, Proposition 2.4],
into Equation (6) shows that ¢ is a biharmonic morphism if and only if
B
7 i @ai = A2h%
oaxt ox/
(8) d¢? grad (\*) + 2777 (¢) =0,
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9) R AM2) +div (P (9)d¢®) + div (t% (¢)ddP) — 1% () TP (9) = A2dhP (1 (9)),
(10) 97 5T @) =0,

forall ¢, 8 = 1,...,n. Clearly Equations (7) and (8) mean that ¢ is horizontally weakly
conformal and 4-harmonic.
On the other hand, Equation (9) is equivalent to the vanishing of
;09% 3T (@) | ;09F 8T(9) OheP
gj_r_ Z- ijZr o Bip) — \2— P
v ax H G e @ @) T @)

whose norm is easily shown to be

IA]> = n(AAD? + [T(@)I* — 2(AAD) [T (9)I> + 4(AX) div (do, T($))

A = P A2 + ¢

29 97 (¢)
+4 i ax i Ix J aéhﬁu‘[: (¢)Tﬂ(¢)+2)\421’a(¢)‘[ﬂ(¢) a/g [’(¢)
ap“ 8fﬁ(¢) kla¢8 AT ()
l] d99°
+29 ax i dx j (x&hﬂ#g axk 8x1
L 0pY 8rﬁ(¢) 1 Or 8t‘3(¢)
2 ”—~ —hysh b
8¢°‘ arﬂ(cp) dhap P e
4)2 gl 22 _ p 4 o , )
+ dxt 8)(;] ayPr (@) + ayP adBu ayd ™’ (P)t (),
since
heP dhap

haﬂhaahﬂﬂ = hs, and hmgh,g#ay—p = — ayr

But

j 997 9P (@)
g7 — -
ax'  dx/

and the components of S € ©%¢~ TN, the symmetrization of g(d¢, V1 (¢)), are

dp* ol 9P 91
SC"/S — glJ d) 12 (d)) ~|—)»2h°‘51“’3 y(d)) _I_ ijoY d) T (d))
axi dxJ axi axJ

(do, (@) (VIT(@)*) =2 hashg,t (¢>rﬂ(¢>+x2r“(¢)rﬂ(¢) ""3 7 (¢)

+ Azhﬂ‘sf"‘ 7 (¢).

So its norm is

09 0tP(@), 09" ITHP) 09 9TP@) 39" 0T (@)

ijZr
IS = 20 5 o hehond G g + 207 heshpud
ap” 9P 87’ (¢) dhap anep RYRE
4a2 gl 124 A ——hgsh P(p)Td(9).
+ oxl axl  dyp ™7(¢) + ayP ashpu ayd 7(p) ()
Hence (9) is equivalent to Equation (1).
To obtain that Equation (10) is biharmonicity, observe that
;[8%T4(9) | ATV (@) 9¢P dt7 (¢) 39 9*¢P
_(A? a _ i o v r¢
(ATT@)" =g [axiaxf axi ax Loy T o g Ly T @ g Ty
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39 0T, agt 9P ., 3¢ (OTU@) gy, 0P
TG Ty axt H(¢)___ wb gyt vo — L5 — T @5 T,y
ot7 (¢) 89F or,
=2¢" axi oxJ /31’ ry(¢)rﬁ(¢)1*§‘y + 22 (P Tk yH /31/ +)\2hﬂafu(¢)Fﬂ 8>
since ¢ is horizontally weakly conformal,
2
1% (¢) =0
9 et @

and we are working with harmonic coordinates.
On the other hand, traceq RN do, t(¢p))de = AzRicN r(d)) and

dheP
—A?Ric"7(¢) = Az[ ~ Gy L = Z WP, T, ;fﬂ}fy(fﬁ)-
Thus
atY (¢)a¢ RY/RE 9
20h) = B 32 R
2(p) = [ 1 @ @I, T T @) 55 = 0.
Of course, Conditions (7)—(10) are also sufficient. O

It is well-known that harmonic morphisms into 2-dimensional manifolds have an inter-
esting link to the geometry of the fibres, which can be stated as: a horizontally conformal
submersion (M™, g) — (N2, h) is harmonic (hence a harmonic morphism) if and only if it
has minimal fibres. The corresponding result for biharmonic morphisms is partially true.

COROLLARY 3.4. A biharmonic morphism ¢ : (M™, g) — (N*, h) (m > 4), with a
4-dimensional target, always has minimal fibres. However there exist horizontally conformal
submersions which are 4-harmonic, have minimal fibres but are not biharmonic morphisms.

PROOF. By Theorem 3.3, a biharmonic morphism is a 4-harmonic morphism. The
first statement then follows from a result in [3] that a horizontally weakly conformal map
(M™,g) — (N", h) is a p-harmonic map (hence a p-harmonic morphism) with p = n =
dim N if and only if it has minimal fibres. It is well-known that the radial projection ¢ :
R\ {0} — s4, ¢(x) = x/|x| is a horizontally homothetic submersion with totally geodesic
fibres and hence a harmonic morphism (see [5]). It is also a p-harmonic morphism for any p
and, in particular, a 4-harmonic morphism. However, the radial projection ¢ : R™ \ {0} —
sm=1 ¢(x) = x/|x| is a biharmonic morphism if and only if m = 4 [19]. a

REMARK 3.5. (1) A straightforward computation shows that if ¢ is a biharmonic
morphism then there exists a continuous function A on M such that

2P op) =12 W) o g,

for any map v (including functions).
(2) Taking the trace of Equation (9) yields

(11) nA(M2) + 2div (de, T(d)) = |[T()]?,
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hence by Stokes’ Theorem, biharmonic morphisms on a compact manifold without boundary
are exactly homothetic submersions with minimal fibres. See [17] for similar results.

Apart from harmonic morphisms with harmonic dilation, examples of biharmonic mor-
phisms are hard to unearth. Conformal maps in dimension four have the double advantage of
satisfying automatically two of the four conditions, namely horizontal weak conformality and
4-harmonicity. Once biharmonicity is secured, remains only Equation (1) to fulfil, though no
geometric insight is yet at our disposal.

THEOREM 3.6. The inversion in the unit sphere
¢:R"\{0} - R"

X

x> —
x|
is a biharmonic morphism if and only if n = 4.

PROOF. By [4], the inversion in the unit sphere is a biharmonic map if and only if n = 4.
Moreover the map

¢ : R*\ {0} > R*

X
X —
|x|?
is clearly a conformal map of dilation A> = 1/|x|* between spaces of dimension four,
hence a 4-harmonic map (cf. [19]) and t(¢) = —4x/ |x|4. Using the standard coordinates
{x*}a=123.4 0on R?, simple computations show that
16 8 x . 8
TP = —. A= —r, (dh, 1) =42, divid,T(®)) = ——.
x| x| x| x|
As to the symmetric tensor S, we have
8 16
§9 = ——(IxP+2*)?), 8% = ——x“xF
|x[® |x8

foralla # B =1,...,4,50|S> = 3(16)%/|x|'2. Therefore ¢ satisfies Equation (1) and is a
biharmonic morphism. a

4. Biharmonicity and conformality. Since biharmonic morphisms appear so rigid,
we drop two of their characteristic conditions and only keep horizontal weak conformality and
biharmonicity. In the light of the Fuglede-Ishihara theorem, such maps are the exact counter-
parts of harmonic morphisms. Moreover, the expression of the tension field of a horizontally
weakly conformal map enlightens the relationship between minimality of the fibres and har-
monicity of the map. Though the formula for the bitension field is far more intricate, we can
apply it to some special cases to obtain new examples of biharmonic maps.

We will denote by

1 m-—n 1 n
n=— Zl(veses)” and v = ;(ve,-ei)",
S= 1=
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for an orthonormal frame {e;, es}i=1,.. n.s=1,...m—n, With e; horizontal and e, vertical, the
mean curvatures of the vertical and horizontal distributions, and A and B the second funda-
mental forms of the horizontal and vertical distributions:

ApF = (Ven FTYY BpF = (Vv F), E F e (TM).

THEOREM 4.1. Let¢ : (M™, g) — (N",h) (m = n > 2) be a horizontally weakly
conformal map of dilation A between Riemannian manifolds, then ¢ is biharmonic if and only
if, at every regular point,

do(—AX) + AH(lnA)dcb(X) + (m—2)v(InA)do(X) + 2d¢(VgradH naX)

+ 2d¢(grad X (In 1)) — d¢p(Vx (grad”t In 1)) — 2(div’t X)d ¢ (grad In 1)

+ X(InA)dp(X) —dep(Vx gradln 1) + 22 RicciN(d¢(X)) + (n — Ddep(Vxv)

— (m —m)[u(nr)do(X) — (X, p)dep(gradln )] — (m — n)dg(Vxp) + nde(Axv)

+ traced¢p((VA)y — (VA)X +3Ayy + (VxB*)" — Byx + 2By, — 2A’§X) =0,

where X = (2 — n) gradH Ink — (m —n)pu, gradH being the horizontal gradient.

PROOF. At a regular point, the tension field of a horizontally weakly conformal map
¢ (M™, g) — (N", h), of dilation A, is 7(¢) = d¢(X), where X = (2 — n) gradH InA —
(m — n)u. Recall that the mean curvature of the horizontal distribution is v = gradv InA.
Then, for an adapted orthonormal frame {e;, €s}i=1,... n.s=1...m—n, € € H and e € V on
(M™, g),

V2dp(X) = ei(In2)dp(X) + X (In2)de(ei) — (X, ei)dg(gradIn 1) + dp(Ve, X) ,

.....

SO
VEVEdp(X) = ei(eiIn1)dp(X) + (ei(In1)*d (X) + e;(In 1) X (In 2)d¢p (e;)
— ei(In2)(X, ei)d¢(gradIn 1) + i (In 1)d (Ve X) + ei (X (In 2))d¢p (e;)
+ X(n )L)Vg do(ei) —ei(X,ei)dop(gradlnr) — (X, e;)e;(InA)d¢p(gradIn A)
— (X, ¢;) (gradH In))(InX)deo(e;) + (X, e;){(gradIn A, e;)d¢p (grad In 1)
— (X, e;)dp(V,, grad In L) + ¢;(In 1)dp (V. X)
+ (Ve )M (In0)dep (ei) — (ei. Ve, X)dgp(grad In 2) + dp (Ve (Ve, X)),

Summing on the index i

(VEVE =V, )¢ (X) = ei(ein 1))d (X) + 24 (Vg7 1y, X)
+ de(grad(X (In 1)) + X (In 1) (Vd@)(e;, e;) — dp(Vx (grad™ In 1))
+ (Ve, X) (In 2)dep (er) — 2(ei. Ve, X)dp (grad In 1) + d(Ve, (Ve, X))
— (Ve (I N)dp (X) + d§ (Vx (Veren)Y) — dg(Vy, o X) .
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On the other hand, for the vertical bundle,
—VE, o dD(X) == (Veue) " (In2)d (X) — X (In2)dg (Ve e5)
+ (X, Ve,es)d¢(gradIn 1) — dp(Vy, o1 X) — dp([(Ve,e)V, X1,

SO

(VZ Vi - V@gsex)d(ﬁ (X) = d¢ (Vex vl’xX) - d¢ (Vex VXeS) - d¢(VVgSXes)
+d¢(Vyye,es) — (Ve,e)H(In2)dp (X) — X (In 1) d (Ve, e5)
+ (X, Ve e5)dp(gradIn2) — dp(Vy, o, X) + dp(Vx (Ve,e)Y) .

Therefore

— A(T(9) = dp(—AX) — dp(Ve, (Ve X)V) + AT (In 1) d ¢ (X) + nv(In 1)dp (X)
+2d (Vo115 X) + dp(grad X (In 1)) — dp(Vx (grad” 1n 1)) — 2(div’? X)de(gradIn 1)
+ X(nA)(t(p) + (m — n)ddp () + (Ve, X) ™ (In2)dp (er) + nd(Vxv)

= (m —n)[u(nr)de(X) + X(InA)d¢(n) — (X, n)d¢(gradln 1)]

—d¢(Ve,Vxes) —dp(Vy, xes) +dp(Vvye,es) + de(Vx (Ve,es)Y) .

But

(Ve X)H (InA)dg(e;) = dep(grad X (In X)) — dep(Vx gradln )
— (Ve X)Y, grad¥ InA)dep (er) .
However (cf. [5, Proposition 2.5.17])

— (Ve X)Y . grad” Ina)dg (er) = —((1/2)(V, X)Y . grad” In 2)dep (e;)
+ ((1/2)(Vxei)Y, grad” InA)de(e;) — | grad” In A[>d¢p (X)
since (Lyg)(X,Y) = —g(VxY 4+ VyX, V) = —d(lnkz)(V)g(X, Y). Hence
—((Ve, X)Y, grad” In0)d ¢ (e;) = —d¢p(Vx grad” In 1) — 2| grad” In 1|2 d¢p (X) .

Therefore

(Ve, )" (In M)dp (e;) = dp(grad X (In 1)) — d¢p(Vx gradIn 1) — dp(Vxv)
—2|vPd¢(X)
and
— A(T(#) = dp(—=AX) — d§(Ve, (Ve X)V) + AT (In 1) (X)
4+ (n—2)v(InA)do(X) + 2d¢(VgradH X)) +2d¢(grad X (In 1))
—d¢(Vyx (gradH InA)) — 2(diVH X)de(gradlnX) + X(InA)t(¢p) — d¢p(Vx gradln A)
+ (n — Dd¢(Vxv) — (m —n)[u(n2r)dp(X) — (X, u)dé(gradinA)]
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— d¢(Ve,Vxes) — dp(Vy, xes) + dp(Vye.es) +dp(Vx (Veyes)V) .

LEMMA 4.2. Let A and B be the second fundamental forms of the horizontal and
vertical distributions. Then

dé (trace, V(VX)Y) = d¢ (trace(VA)X) ,
d(—Ve, Vxes — Vv, xes + Vyye es + Vx(Ve,e)Y) = —(m — n)de (V)
+ trace dp (VA% +3A%x + (VxB*)* — Byx — 24% +2Byy) + ndp(Axv) .

PROOF. Consider an adapted orthonormal frame {e;, e}i=1,... n.s=1
es € V. First observe that

m—n»> € € H and

,,,,,

dp (Ve A, X) = dp(Ve, (Ve X)V) |
and (V. A)., X is vertical. For the second equality, we have
(=Ve,Vxes — Vy, xes + Vyye,es + VxVees, e))
= ((Ve,A)xej, e5) + (Av, xej, e5) + (VX B")eej, €5) + (By, xej, e)
+ 2(Vie,, x1€), €5)
(confer [5, Th. 11.2.1 iii)].) Moreover
(Vie,, x1€j, €5) = (e}, A%gsxes — A%XL«ES — By, xes + Bvye,es)
To conclude, observe that
((Ve; A)xeisej) = —nlej, Axv),
A’%eixe,- = Ag,,€ =0,
((VxB™)ei,ej) = By, xei = Byyeei = 0. |

Note that for a horizontally weakly conformal map, the curvature term of the bitension
field becomes

—A2Ricei¥ (dp (X)) .
This completes the proof of Theorem 4.1. a
Three special cases are interesting enough to be stated separately.

COROLLARY 4.3. (i) A conformal map ¢ : (M™, g) — (N", h) of conformal factor
A, between manifolds of equal dimensions (im = n > 2), is biharmonic if and only if

(12) —d¢(A(gradlnr)) — A(InA)dg(gradIn A) + 2d ¢ (grad | gradlan)
+ (2 — n)| gradIn A|*d¢ (grad In 1) + A% Ricci™ (d¢p(gradIn 1)) = 0.

(i) A horizontally conformal map ¢ : (M™, g) — (NZ, h) of dilation  into a surface
(m > n = 2) is biharmonic if and only if

dp(—Ap) + AT (In1)d (1) + 2d¢ (Vo rt 1y, 1) + 2 (grad p(In 1))
— d¢(V, (grad™ In 1)) — 2(div"* 11)d ¢ (gradIn 1)
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+ (m —2)|p?d¢ (gradln i) — d¢p(V,, gradIn 1) 4 A% Ricci™ (dg (1))
+dp(Vpv) + 2 —m)de¢ (V) —2(m — 2)u(In 1)d¢ ()
+ trace d¢((VA)Z — (VAu + 3A§ﬂ + (V,B")* + 2By, — Bvu — 2A§M)
+ 2d¢(AZv) =0.
(iii) A homothetic submersion ¢ : (M™, g) — (N", h) (m > n), i.e., A is constant, is
biharmonic if and only if
dp(Ap) — 2> Ricci™ (dp () + (m — n)d¢ (V)
— (tracedd)((VA)Z — (VA u + 3A*§M + (V,B")* + 2By, — Byu — 2A§M)) =0.
REMARK 4.4. (i) The case m = n = 2 is trivial since any conformal map between
surfaces is harmonic, hence biharmonic.
(ii)) When ¢ : (M™, g) — (N™, h) is the identity and h = ey, Equation (12) be-
comes [6, Equation (3.1)]:
0 = tracey v? grad p + (—2Ap + (2 — m)| grad,o|2) grad p

6—m

+ grad(| grad ,o|2) + Ricci9 (grad p).

(iii) A formula similar to the one of Theorem 4.1 was obtained in [2].

The first case of Corollary 4.3 is the most prolific and the following examples indicate
not only that horizontally weakly conformal biharmonic maps are easier to come by than
biharmonic morphisms, but also that, even for this situation, dimension four emerges as re-
markable.

PROPOSITION 4.5. The inverse stereographic projection 01\71 from (R",ds?) into
(8™ \ {N}, ds?), where N is the north pole and ds* the Euclidean metric, is a biharmonic map
ifand only ifn = 4. Similarly, the identity map from (B", ds?) into (B", (4/(1 — |x|*)?)ds?),
where B" is the open unit ball of R", is a biharmonic map if and only if n = 4.

Furthermore, in either case, the biharmonic map is not a biharmonic morphism.

PROOF. For the first case, the map is given by o ' (x) = (1/(1 + |x[>))(1 — |x|?, 2x)
and is isometric to the identity map from the Euclidean space (R", ds?) into (R", @/ +
|x1%)?)ds?). We can treat both examples at once, by considering the identity map ¢ on R" or
B", from the Euclidean metric ds? into the conformal metric @/ + £|x|2)2)ds2 (e =1 for
the sphere and ¢ = —1 for the ball).
The map ¢ is clearly conformal of dilation A = 2/(1 + &|x|?), so

2¢ 5 4|x|?
gradlnA = ——=x, |gradlnA|" = ————=,
1+ ¢lx)? (1 + g|x|?)?
8(1 —¢lx|?) 2¢
grad|gradln)»|2=mx, Alnk:—m(n—i-(n—Z)slﬂz),

(trace V?)(gradIn 1) = n+2+ (n—2elx|P)x,

(1 +elx|)?
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and Equation (12) becomes

(A —elx?)
———=x =0,
(1 + elx[?)?

so both maps, into the sphere or the Poincaré model, are biharmonic if and only if n = 4.

To know whether ¢ is also a biharmonic morphism we only need to check Equation (5),
whose constituents are

—8(n —4)

@)= —2 ¢ k@P=—2
=T T T et
2 IO o eix). divide, T(@) = ——F (4~ 2elx)
T eyt T2 AR @) = e e
» 8.16(1 —3¢lx|?) 2 81671 —3elx)
VIEOF = — e (dp, T @) (VIT(@)*) = Traapr
therefore
IT(@)* — 2827 T(P)1> + 4A02 div (do, T(#)) +4(AXD? +2(d¢, T(9))(VIT()]?)
3
_ 2 _ 2
= —(1 PN x| (1 + 2& — 3e|x|7),
s0 ¢ cannot be a biharmonic morphism. O

PROPOSITION 4.6. The identity map from (B", ds*) to (B", h), where B" is the unit
ball in R", ds its Euclidean metric and h, = 4(1 — |x|*)~2ds? gives the hyperbolic space,
is a biharmonic map if and only if n = 4. Furthermore, in either case, the biharmonic map is
not a biharmonic morphism.

PROOF. Call ¢ the identity from (B”, ds?) to (B", h). Clearly h = > ds* for p =
In(2(1 — [x®)~ ") and

v 2 Vol? 4)x|?
= —x, = —,
PETP PE=a—npe
14 |x|? 2 ) 5
V V 2 = 87 N A = — 1 - 2 El
Vol PR o (1_|x|2)2(n( [x|) + 2[x[%)
trace, V2V Y 2 —2P
=  —))—n — (n — X .
9 P T Uk
So Equation (12) becomes
8x
S a— /| =0
(1_|x|2)3( n)(1+ |x]9)

and ¢ is biharmonic only in dimension four. However, in dimension four, the Laplacian of its
conformal factor A2 = 4(1 — |x|?)~2 is
16

T 4 +2/x»)

AN =



68 E. LOUBEAU AND Y.-L. OU

and
(¢) = —2 grad -~ a ey = T
T = —2gradp = X an T = —
L= (1= )
On the other hand:
_ — ; _ — 2
(do, t(9)) = mx and div{d¢, 1(¢)) = m(‘“‘ 2|x]%).

Therefore

4AN7 +2div(de, T(9)) = ———=— (4 +2[x[*) # [T(9)°,

(I —1x1%)

S0 ¢ is not a biharmonic morphism. O

PROPOSITION 4.7. The identity map from (R, ds*) to H" = (R™, h=(1/(x")%)ds?)
from the upper-half Euclidean space to the hyperbolic space is biharmonic if and only if
n = 4. Furthermore, in either case, the biharmonic map is not a biharmonic morphism.

PROOF. Call ¢ the identity map from (R" , ds?) to H". Since h = e for p = —Inx"
and

1 1
gradp = — , lgradpl” = —=
X

X 9x™
2 ad A 1
(x™)3 9x" ’ -

grad | grad,o|2 =

and Equation (12) becomes

2 ad
——(n—4)
(x")3 Ix"
On the other hand, in dimension four, its dilation is A2 = 1 / (xH? and T(p) = —2gradp =
(2/x*)3/3x%, so

=0.

> 4 2 6
|T(¢)| - ()C4)4 ’ AL = (x4)4 ’
divide. T(¢)) = ———

(xhH*”

(do,t(¢)) =

(xH3 xt”
SO

12
4707 +2div(de, T(9)) = —7 # [t@)I
(x*)
and ¢ is not a biharmonic morphism. a

Not all conformal maps in dimension four are biharmonic.

EXAMPLE 4.8. (1) Consider the identity map ¢ from (H*, g) = (R*, (x*)72ds?)
to (Ri, ds?). Then ds*> = e*g for p = Inx* and, using the orthonormal basis {¢; =
x43/8xi}i:1 4, we have

.....

grad? p = eq, |grad? ,o|f7 =1, grad?|grad’ p|>=0,
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Adp =-3, trace, V2gradp = —3e4, Ricci(grad? p) = —3ey,
since g = e2*ds? for « = — Inx* and
ng]le4 = —e, Vegze4 = —ey, Veg364 = —e3, Veg4€4 =0,
Vif]lel Vg e) = Vg ez =e4.

Testing Equation (12), we have —2e4 # 0, so ¢ is not biharmonic.
Moreover, from simple considerations

() = —2es, A =0H?, A =-20xh?,
(dp, T(9)) = —2eq, div(de, T(9)) =6,

s0 4AN% + 2div(de, T(p)) # |t(¢)|> and ¢ does not satisfy (5).

(2) Let ¢ be the identity map from (R", g = 4/(1+¢|x|*)%ds?) to (R", ds?) (e = £1).
It is clearly conformal of dilation A2 = (1 + ¢|x|*)?/4 and ¢ = €>°ds® for p = In2 — In(1 +
elx|?). Then ¢; = ((1 + &|x|*)/2) 3/dx" is an orthonormal basis for ¢ and

2 .
Veg,-ej = V:lis ej+ei(pej+ej(ple — (e, ej)gradp = —ex’e; +dijeX

where X = Y"}_, x*ex. Therefore

1 2 9 3
grad? In) = %—(1 )Wst,

4 (1 + elx|*)?

d9 a2 = 2= xl?,
| grad? In Al ENEE 2 x| = |x|
1 2?2 9
grad? | grad? ln)L|g % - (x ? ) = (14¢lx])X.

Since A9 InA = Z?:l ei(ej(Inr)) — (Vegl. ¢;)(InA) and
n n
D Viei=(m—DeX, Xni)=el’, Y (Vienna) =~ D,
i i=l
ei(lnd) = ex’, ei(ei(Inn) = e(l +¢lx[*)/2,

we have A9Inx = e(n + (2 — n)e|x|?) /2.
On the other hand

AgraddIni = ZVQ VJ (grad? Inx) — Vg (gradg Ink),
1
and -
—ng (grad?Inx) = =V | (X)) =—(n— 1)1%‘”'2&
1 —¢lx|?

VZ (grad/ Inx) = e( 5

e —i—ex’X) ,



70 E. LOUBEAU AND Y.-L. OU

1 z. ;
VE v @radiny) = — e 4y ec)x
n
2n —1 2
Z VIV (gradfn ) = nf—‘_ng,

i=1
SO
n—+ 2 —n)e

—AgraddIni =
2

Equation (12) becomes
Q2+ @ —melxHX =0,
which is impossible, whatever the value of n.

EXAMPLE 4.9. Let (M 2 h) be a Riemannian surface of Gaussian curvature G, 8 :
M?x R — R*and A : R — R* two positive functions. Consider the doubly twisted product
(R x M2, g= ,32dt2 + )»’211). Then, the projection

¢ (R x M?, g=pB%dit> +272h) — (M?, h)
(t,x) — x
is a biharmonic map if and only if
0 = —*grad, (A, In B) — 24*Gy, grad, In B + (3/2)V (A?| grad,, In B|*)V
(13)  — A% grad,, In B|? grad, In B — Vy Vy[A? grad,, In 8] — (A*/2) grad,, | grad, In 8|7
— A2V(V(Inx) grad, In g — 2V (In 1)[Vy (A? grad;, In B) — A%| grad, In B3 V].
In particular, for 8 = > el T dx with
—c1(1 4 1)

f) = —rs
and ¢y, c; € R*, we have a family of Riemannian submersions
¢ : (R* x R, dx* +dy* + B*(x)dz*) — (R?, dx* + dy?)
¢(x,y,2) = (x,y)

which are proper biharmonic maps.

In fact, it is easily checked that ¢ is a horizontally conformal submersion of dilation A2.
Let V be the unit vertical vector 8~'d/dt, using the Koszul formula one can show that for
vector fields £ and F on R x M?

ApF = g(ET, F'hyvna)V .
On the other hand, if W is a vertical vector field, then
By W = —2% grad, (In B)(W, V).

Note also that the mean curvature of the fibres is u = V‘g V=A% grad;, (In 8) and the mean
curvature of the horizontal distributionis v = V(InA)V.
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Choosing a geodesic frame {e], e} around a point p € M? and evaluating all subsequent
formulas at a point (p, ) € M? x R, straightforward computations show that (summing on

repeated indices)
[trace((VA)), — (VA)u + 345, + (VuB*)* + 2By, — By, — 2A§M) + ZAZU]H
=V(VIn)p+3(V(In )2 —3V(»In 1)V (e (In B))re;
+ u(gQhej, p)rej + |l

Since gradH In 2 = 0, the only remaining terms are

[V, = (3*/2) grad,, (| grad;, In BI7) ,
(V] = —(V(In 1) *p.
AMnr) = —2(V(nr))?,
[V, gradin A] = —(V(In1))%u,
[A]™ = A%ei(ei(ejIn B)))e; — (V(In2))* grad” In B
— V(In 1)V (rej(In f))re; + V(V (he,;(In B))re;
— 2% grad;, In B|7 grad,, In B + (A*/2) grad,, (| grad;, In B|2)
+ hep(n B2 [Vie, (VI ep)] .

So the projection ¢ is biharmonic if and only if (still summing on repeated indices)

0=—2%e(ei(ejInB))ej — V(V(re;(In B))re; — (A*/2) grad, | grad;, In BI;
— G grad, In B — A2V(V(In &) grad, In 8 — 2V (In 1)V (re; (In B)) re;
— hex(In B2 (Vi (VA et
Using

V(V(rej(In B))re; = —(3/2)V(3%| grad;, In B|*)V + A*| grad,, In B|* grad,, In B

+ VyVy [Az grad;, In ],

V(re;(In B)re; = Vy (A? grad;, In B) — A?| grad, In B|7V ,

grad, (A, InB) = ejejej(InB)ej — Gy grad;, In B

— Ve, Vee1 + Ve, Veyer, ea)er(In Blep — (Ve Ve 2 + Ve, Ve,e2, e1)e1(Infes

he(In BN [Vie, (VI )T = —a*e1(n BV VM 0y + VIV 0 1)

+ex(In BV o) 4 VIV, er)ey],

we obtain the biharmonic equation (13) for ¢.
For the Riemannian submersion

¢ : (R* x R,dx* +dy* + p*(x)dz?) — (R?, dx* + dy?)
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o(x,y,2) =(x,y),

Equation (13) reduces to

I+ 1" =0,

where f = In . Solving this equation, we obtain the last statement in the example.
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