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Abstract. Inspired by the all-important conformal invariance of harmonic maps on
two-dimensional domains, this article studies the relationship between biharmonicity and con-
formality. We first give a characterization of biharmonic morphisms, analogues of harmonic
morphisms investigated by Fuglede and Ishihara, which, in particular, explicits the conditions
required for a conformal map in dimension four to preserve biharmonicity and helps producing
the first example of a biharmonic morphism which is not a special type of harmonic morphism.
Then, we compute the bitension field of horizontally weakly conformal maps, which include
conformal mappings. This leads to several examples of proper (i.e., non-harmonic) biharmonic
conformal maps, in which dimension four plays a pivotal role. We also construct a family of
Riemannian submersions which are proper biharmonic maps.

1. Introduction. A central feature of harmonic maps is their conformal invariance in
dimension two. Not only this allows defining harmonic maps on Riemann surfaces but it also
is the starting point to many properties of minimal branched immersions.

In the higher-order theory of biharmonic maps, one could expect similar properties in
dimension four. While this dimension certainly enjoys a special role for biharmonicity, as
illustrated by the conformal deformation of harmonic maps of [4], the study of the bihar-
monic stress-energy tensor or the characterization of biharmonic morphisms of Section 3, no
conformal invariance of any sort has ever been observed.

Nevertheless, the interaction between conformality and biharmonicity remains a rich
subject and provides an interesting source of new examples.

In the theory of harmonic maps, a particularly fruitful approach has been to consider
maps which preserve local harmonic functions, called harmonic morphisms, because their
characterization as horizontally weakly conformal (a generalization of Riemannian submer-
sions) harmonic maps confers them a more geometrical flavour, which counterweighs the
analytical nature of harmonic maps [11, 14].

Their numerous geometrical properties have earned harmonic morphisms a choice place
among harmonic maps. The counterparts of these are biharmonic morphisms (see [18]), maps
which pull back local biharmonic functions onto biharmonic functions (and also, as it turns
out, maps) and we characterize them as horizontally weakly conformal biharmonic maps
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which are 4-harmonic and satisfy an additional equation, whose significance remains largely
enigmatic.

While the number of conditions is directly due to the order of the problem, the appear-
ance of 4-harmonicity is yet another clue to the specificity of dimension four.

This characterization also solves one aspect of the original question on the conformal
invariance of biharmonic maps on four dimensional domains, since two extra conditions are
required.

2. p-Harmonicity and biharmonicity. At the origin of this work, lie the search and
study of maps selected as extremals of a measured quantity, and the most natural class of
functionals on the space of maps between Riemannian manifolds is the p-energies.

DEFINITION 2.1. Let φ : (M, g) → (N, h) be a smooth map between Riemannian
manifolds and assume (M, g) compact then, for p ∈ R (p > 1), its p-energy is

Ep(φ) = 1

p

∫
M

|dφ|p vg .
The critical points of Ep are called p-harmonic maps and simply harmonic maps for p = 2.
Standard arguments yield the associated Euler-Lagrange equation, the vanishing of the p-
tension field:

τp(φ) = |dφ|p−4[|dφ|2τ (φ)+ p − 2

2
dφ(grad |dφ|2)] = 0 ,

where

τ (φ) = trace ∇dφ
is the tension field.

REMARK 2.2. (i) A fundamental feature of p-harmonicity for p �= 2, is the collapse
of ellipticity at critical points and its negative consequences for regularity properties (cf. [13]).
For p = 2, smoothness of continuous harmonic maps is ensured by boot-strap methods and
strong uniqueness, for example, follows.

(ii) The main existence result for p-harmonic maps (p > 2) is due to Duzaar and Fuchs
in [9] and generalizes the Eells-Sampson theorem.

(iii) Working directly with the functional, one sees that, if p = dimM , Ep is confor-
mally invariant, a situation that seems more natural since, when the target has trivial p-th
homotopy group, p-harmonic maps exist in each homotopy class (cf. [16]).

While harmonic maps have been extensively studied and shown to exist in numerous
circumstances (cf. [10]), in some situations they cannot exist or are very limited. It is therefore
interesting to turn to an alternative measuring the default of harmonicity.

DEFINITION 2.3. Let φ : (M, g) → (N, h) be a smooth map between compact Rie-
mannian manifolds. Define its bienergy as

E2(φ) = 1

2

∫
M

|τ (φ)|2 vg .
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Critical points of the functional E2 are called biharmonic maps and its associated Euler-
Lagrange equation is the vanishing of the bitension field

τ 2(φ) = −�φτ(φ)− traceg RN(dφ, τ(φ))dφ ,

where �φ = − traceg (∇φ∇φ − ∇φ
∇) is the Laplacian on sections of φ−1TN and RN the

Riemann curvature operator on (N, h).

REMARK 2.4. (i) Clearly harmonic maps are automatically biharmonic, actually ab-
solute minimums of E2. For compact domains and negatively curved targets, the converse
holds (cf. [15]).

(ii) An alternative to E2 is to view (N, h) isometrically immersed in RN and, consid-
ering φ as a vector, take the L2-norm of�φ and call the critical points (extrinsic) biharmonic
maps. Except for flat targets, the two definitions are distinct. The regularity of both types of
biharmonic maps has been extensively studied in [7, 20, 21, 22]

(iii) If M is non compact, we extend all these definitions by integrating over compact
subsets.

A natural generalization of isometric immersions are weakly conformal maps, i.e., whose
differential either vanishes or is injective and conformal. Of particular interest is their har-
monicity since it characterizes minimality of the image and defines minimal branched immer-
sions. They also explain the conformal invariance of harmonic maps on surfaces, directly at
the level of the tension field.

Dual to this notion is horizontal weak conformality where, pointwise, the differential is
required to vanish or be surjective and conformal. This reverses the constraint on the dimen-
sions and enables a preservation of harmonicity in higher dimensions.

DEFINITION 2.5. Let φ : (Mm, g) → (Nn, h) be a smooth map between Riemannian
manifolds. For any point x ∈ M , let Vx = ker dφx be the vertical space at x and Hx = (Vx)⊥
the horizontal space at x. These spaces define a vertical and a horizontal distribution. The
map φ is called horizontally weakly conformal if for any point x ∈ M either dφx = 0 or dφx
is surjective and conformal from Hx to Tφ(x)N , i.e.,

h(dφx(X), dφx(Y )) = λ2(x)g(X, Y ) ,

for all X,Y ∈ Hx and the function λ is called the dilation of φ. For a vector X ∈ TM , XH
and XV will denote the horizontal and vertical parts of X. Points where dφx �= 0 are called
regular.

REMARK 2.6. (i) Ifm < n, then φ is horizontally weakly conformal if and only if it
is constant.

(ii) By extending the function λ by zero over critical points, we obtain a smooth func-
tion λ2 defined on the whole of M . Besides |dφ|2 = nλ2.

(iii) Harmonic morphisms, i.e., maps which preserve local harmonic functions by com-
position on the right-hand side, were characterized by Fuglede and Ishihara, as horizontally
weakly conformal harmonic maps (cf. [11, 14]).
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Conventions: We will systematically use the Einstein convention on summing repeated
indices. Our convention for the Riemann curvature tensor will be

R(X, Y ) = [∇X,∇Y ] − ∇[X,Y ] ,

and the Laplacian on functions has been chosen with negative eigenvalues, i.e., �f =
trace ∇df but on vector fields�X = − trace ∇2X.

3. The characterization of biharmonic morphisms. In this section, we give an im-
provement of the characterization of biharmonic morphisms and show that the inversion in
the unit sphere Rn \ {0} → Rn is a biharmonic morphism if and only if n = 4, thus providing
an example which, unlike any of the previously known ones, is not a harmonic morphism.

In light of the theory of harmonic morphisms, cf. the monograph [5], it only seemed
natural to define and study their biharmonic counterparts.

DEFINITION 3.1. A continuous map φ : (M, g) → (N, h) is a biharmonic morphism
if, for any biharmonic function f : U ⊂ N → R, such that φ−1(U) �= ∅, the pull-back
function f ◦ φ : φ−1(U) ⊂ M → R is also biharmonic.

REMARK 3.2. (i) Clearly constant maps and isometries are biharmonic morphisms
and the composition of two biharmonic morphisms is again a biharmonic morphism.

(ii) Since harmonic functions are automatically biharmonic, a biharmonic morphism
will pull-back harmonic functions onto biharmonic ones, but not necessarily harmonic. Like-
wise, there is no reason to believe that a harmonic morphism should be a biharmonic mor-
phism. This distinction is clarified by Theorem 3.3 (see also [17]). Nevertheless, all the
previously known examples of biharmonic morphisms came from special types of harmonic
morphisms (cf. [17, 18, 19]).

(iii) The existence of local harmonic coordinates on Riemannian manifolds [8] implies
that, in such a coordinate system, the components of a biharmonic morphism are continu-
ous biharmonic functions, hence smooth by standard properties of elliptic partial differential
equations. Therefore a biharmonic morphism is always smooth.

The geometric method used by Ishihara in [14] to characterize harmonic morphisms as
horizontally weakly conformal harmonic maps, and co-opted for the semi-Riemannian case
in [12] by Fuglede (who had his own approach for Riemannian metrics) is extended here
to biharmonicity. As one should expect, four conditions are needed to describe biharmonic
morphisms, with the last one still very much unfathomable.

THEOREM 3.3. Let φ : (Mm, g) → (Nn, h) be a smooth map between Riemannian
manifolds. Then φ is a biharmonic morphism if and only if it is a horizontally weakly confor-
mal biharmonic 4-harmonic map, of dilation λ, such that

|τ (φ)|4 − 2�λ2|τ (φ)|2 + 4�λ2 div 〈dφ, τ(φ)〉 + n(�λ2)2

+ 2〈dφ, τ(φ)〉(∇|τ (φ)|2)+ |S|2 = 0 ,
(1)
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where S ∈ �2φ−1T N is the symmetrization of the g-trace of dφ⊗∇φτ(φ) and 〈dφ, τ(φ)〉(X)
= 〈dφ(X), τ (φ)〉.

PROOF. Let φ : (Mm, g) → (Nn, h) be a smooth map between Riemannian manifolds,
then the statement of Theorem 3.3 is that φ is a biharmonic morphism if and only if

h(dφ(X), dφ(Y )) = λ2g(X, Y ) for all X,Y ∈ H ,(2)

−�φτ(φ)− trace RN(dφ, τ (φ))dφ = 0 ,(3)

λ2τ (φ)+ dφ gradλ2 = 0 ,(4)

|τ (φ)|4 − 2�λ2|τ (φ)|2 + 4�λ2 div 〈dφ, τ(φ)〉 + n(�λ2)2

+ 2〈dφ, τ(φ)〉(∇|τ (φ)|2)+ |S|2 = 0 .
(5)

Equip the manifold (M, g) with harmonic coordinates (xi)1�i�m centered at the point p
and (N, h) with harmonic coordinates (yα)1�α�n around the point φ(p). Let f : U ⊂ N →
R be a local function on N , then

�2(f ◦ φ) = ∂4f

∂yα∂yβ∂yγ ∂yδ

[
g ij gkl

∂φα

∂xi

∂φβ

∂xj

∂φγ

∂xk

∂φδ

∂xl

]
(6)

+ ∂3f

∂yα∂yβ∂yγ

[(
∂2φγ

∂xi∂xj

∂φβ

∂xk

∂φα

∂xl
+ ∂2φβ

∂xi∂xk

∂φγ

∂xj

∂φα

∂xl
+ ∂2φα

∂xi∂xl

∂φγ

∂xj

∂φβ

∂xk

+ ∂2φβ

∂xk∂xj

∂φγ

∂xi

∂φα

∂xl
+ ∂2φα

∂xl∂xj

∂φγ

∂xi

∂φβ

∂xk
+ ∂2φα

∂xl∂xk

∂φγ

∂xi

∂φβ

∂xj

)
g ij gkl

+ 2g ij
∂gkl

∂xi

(
∂φγ

∂xj

∂φβ

∂xk

∂φα

∂xl

)]

+ ∂2f

∂yα∂yβ

[(
∂3φβ

∂xi∂xj ∂xk

∂φα

∂xl
+ ∂2φβ

∂xj∂xk

∂2φα

∂xl∂xi
+ ∂2φβ

∂xi∂xk

∂2φα

∂xl∂xj

+ ∂3φα

∂xi∂xj∂xl

∂φβ

∂xk
+ ∂2φβ

∂xi∂xj

∂2φα

∂xl∂xk
+ ∂3φα

∂xi∂xk∂xl

∂φβ

∂xj
+ ∂3φα

∂xj∂xk∂xl

∂φβ

∂xi

)
g ij gkl

+
(
∂2φα

∂xk∂xl

∂φβ

∂xj
+ ∂2φα

∂xj∂xl

∂φβ

∂xk
+ ∂2φβ

∂xj ∂xk

∂φα

∂xl

)
2g ij

∂gkl

∂xi
+ g ij

∂2gkl

∂xi∂xj

∂φα

∂xl

∂φβ

∂xk

]

+ ∂f

∂yα

[
∂2φα

∂xk∂xl
g ij

∂2gkl

∂xi∂xj
+ ∂3φα

∂xj∂xk∂xl
2g ij

∂gkl

∂xi
+ ∂4φα

∂xi∂xj ∂xk∂xl
g ij gkl

]
.

Plugging carefully chosen local biharmonic test functions, as given by [1, Proposition 2.4],
into Equation (6) shows that φ is a biharmonic morphism if and only if

g ij
∂φα

∂xi

∂φβ

∂xj
= λ2hαβ ,(7)

dφγ grad (λ2)+ λ2τγ (φ) = 0 ,(8)
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hαβ�(λ2)+ div (τβ(φ)dφα)+ div (τα(φ)dφβ)− τα(φ)τβ(φ) = λ2dhαβ(τ (φ)) ,(9)

g ij
∂2

∂xi∂xj
τα(φ) = 0 ,(10)

for all α, β = 1, . . . , n. Clearly Equations (7) and (8) mean that φ is horizontally weakly
conformal and 4-harmonic.

On the other hand, Equation (9) is equivalent to the vanishing of

Aαβ = hαβ�(λ2)+ g ij
∂φα

∂xi

∂τβ(φ)

∂xj
+ g ij

∂φβ

∂xi

∂τα(φ)

∂xj
+ τα(φ)τβ(φ)− λ2 ∂h

αβ

∂yp
τp(φ) ,

whose norm is easily shown to be

|A|2 = n(�λ2)2 + |τ (φ)|4 − 2(�λ2)|τ (φ)|2 + 4(�λ2) div 〈dφ, τ(φ)〉

+ 4g ij
∂φα

∂xi

∂τβ(φ)

∂xj
hαδhβµτ

δ(φ)τµ(φ)+ 2λ2τα(φ)τβ(φ)
∂hαβ

∂yp
τp(φ)

+ 2g ij
∂φα

∂xi

∂τβ(φ)

∂xj
hαδhβµgkl

∂φδ

∂xk

∂τµ(φ)

∂xl

+ 2g ij
∂φα

∂xi

∂τβ(φ)

∂xj
hαδhβµgkl

∂φµ

∂xk

∂τ δ(φ)

∂xl

+ 4λ2g ij
∂φα

∂xi

∂τβ(φ)

∂xj

∂hαβ

∂yp
τp(φ)+ λ4 ∂h

αβ

∂yp
hαδhβµ

∂hδµ

∂yq
τp(φ)τq(φ) ,

since

hαβhαδhβµ = hδµ and hαδhβµ
∂hαβ

∂yp
= −∂hαβ

∂yp
.

But

〈dφ, τ(φ)〉(∇|τ (φ)|2) = 2g ij
∂φα

∂xi

∂τβ(φ)

∂xj
hαδhβµτ

δ(φ)τµ(φ)+ λ2τα(φ)τβ(φ)
∂hαβ

∂yp
τp(φ)

and the components of S ∈ �2φ−1T N , the symmetrization of g(dφ,∇φτ(φ)), are

Sαβ = g ij
∂φα

∂xi

∂τβ(φ)

∂xj
+ λ2hαδΓ

β
γ δτ

γ (φ)+ g ij
∂φβ

∂xi

∂τα(φ)

∂xj
+ λ2hβδΓ αγ δτ

γ (φ) .

So its norm is

|S|2 = 2g ij
∂φα

∂xi

∂τβ(φ)

∂xj
hαδhβµgkl

∂φδ

∂xk

∂τµ(φ)

∂xl
+ 2g ij

∂φα

∂xi

∂τβ(φ)

∂xj
hαδhβµgkl

∂φµ

∂xk

∂τ δ(φ)

∂xl

+ 4λ2g ij
∂φα

∂xi

∂τβ(φ)

∂xj

∂hαβ

∂yp
τp(φ)+ λ4 ∂h

αβ

∂yp
hαδhβµ

∂hδµ

∂yq
τp(φ)τq(φ).

Hence (9) is equivalent to Equation (1).
To obtain that Equation (10) is biharmonicity, observe that

− (�φτ(φ))α = g ij
[
∂2τα(φ)

∂xi∂xj
+ ∂τγ (φ)

∂xj

∂φβ

∂xi
Γ αβγ + ∂τγ (φ)

∂xi

∂φβ

∂xj
Γ αβγ + τγ (φ)

∂2φβ

∂xi∂xj
Γ αβγ
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+ τγ (φ)
∂φβ

∂xj

∂Γ αβγ

∂yµ

∂φµ

∂xi
+ τµ(φ)

∂φβ

∂xj
Γ
γ
µβ

∂φδ

∂xi
Γ αγ δ − Γ kij

∂τα(φ)

∂xk
− Γ kij τ

γ (φ)
∂φβ

∂xk
Γ αβγ

]

= 2g ij
∂τ γ (φ)

∂xi

∂φβ

∂xj
Γ αβγ + τγ (φ)τβ(φ)Γ αβγ + λ2τγ (φ)hβµ

∂Γ αβγ

∂yµ
+ λ2hβδτµ(φ)Γ

γ
µβΓ

α
γ δ ,

since φ is horizontally weakly conformal,

g ij
∂2

∂xi∂xj
τα0(φ) = 0

and we are working with harmonic coordinates.
On the other hand, traceg RN(dφ, τ (φ))dφ = λ2RicNτ(φ) and

−λ2RicNτ(φ) = λ2
[

− ∂hαβ

∂yγ
Γ δαβ − hαβ

∂Γ δαγ

∂yβ
−

n∑
µ=1

hαβΓ µαγ Γ
δ
µβ

]
τγ (φ) .

Thus

τ 2(φ) =
[

2g ij
∂τ γ (φ)

∂xi

∂φβ

∂xj
Γ αβγ + τγ (φ)τβ(φ)Γ αβγ − λ2 ∂h

δβ

∂yγ
Γ αδβτ

γ (φ)

]
∂

∂yα
= 0 .

Of course, Conditions (7)–(10) are also sufficient. �

It is well-known that harmonic morphisms into 2-dimensional manifolds have an inter-
esting link to the geometry of the fibres, which can be stated as: a horizontally conformal
submersion (Mm, g) → (N2, h) is harmonic (hence a harmonic morphism) if and only if it
has minimal fibres. The corresponding result for biharmonic morphisms is partially true.

COROLLARY 3.4. A biharmonic morphism φ : (Mm, g) → (N4, h) (m � 4), with a
4-dimensional target, always has minimal fibres. However there exist horizontally conformal
submersions which are 4-harmonic, have minimal fibres but are not biharmonic morphisms.

PROOF. By Theorem 3.3, a biharmonic morphism is a 4-harmonic morphism. The
first statement then follows from a result in [3] that a horizontally weakly conformal map
(Mm, g) → (Nn, h) is a p-harmonic map (hence a p-harmonic morphism) with p = n =
dimN if and only if it has minimal fibres. It is well-known that the radial projection ϕ :
R5 \ {0} → S4, ϕ(x) = x/|x| is a horizontally homothetic submersion with totally geodesic
fibres and hence a harmonic morphism (see [5]). It is also a p-harmonic morphism for any p
and, in particular, a 4-harmonic morphism. However, the radial projection ϕ : Rm \ {0} →
Sm−1, ϕ(x) = x/|x| is a biharmonic morphism if and only if m = 4 [19]. �

REMARK 3.5. (1) A straightforward computation shows that if φ is a biharmonic
morphism then there exists a continuous function λ on M such that

τ 2(ψ ◦ φ) = λ4τ 2(ψ) ◦ φ ,
for any map ψ (including functions).

(2) Taking the trace of Equation (9) yields

n�(λ2)+ 2 div 〈dφ, τ(φ)〉 = |τ (φ)|2 ,(11)
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hence by Stokes’ Theorem, biharmonic morphisms on a compact manifold without boundary
are exactly homothetic submersions with minimal fibres. See [17] for similar results.

Apart from harmonic morphisms with harmonic dilation, examples of biharmonic mor-
phisms are hard to unearth. Conformal maps in dimension four have the double advantage of
satisfying automatically two of the four conditions, namely horizontal weak conformality and
4-harmonicity. Once biharmonicity is secured, remains only Equation (1) to fulfil, though no
geometric insight is yet at our disposal.

THEOREM 3.6. The inversion in the unit sphere

φ : Rn \ {0} → Rn

x 
→ x

|x|2
is a biharmonic morphism if and only if n = 4.

PROOF. By [4], the inversion in the unit sphere is a biharmonic map if and only if n = 4.
Moreover the map

φ : R4 \ {0} → R4

x 
→ x

|x|2
is clearly a conformal map of dilation λ2 = 1/|x|4 between spaces of dimension four,
hence a 4-harmonic map (cf. [19]) and τ (φ) = −4x/|x|4. Using the standard coordinates
{xα}α=1,2,3,4 on R4, simple computations show that

|τ (φ)|2 = 16

|x|6 , �λ2 = 8

|x|6 , 〈dφ, τ(φ)〉 = 4
x

|x|6 , div〈dφ, τ(φ)〉 = − 8

|x|6 .
As to the symmetric tensor S, we have

Sαα = − 8

|x|8
(

|x|2 + 2(xα)2
)
, Sαβ = − 16

|x|8x
αxβ ,

for all α �= β = 1, . . . , 4, so |S|2 = 3(16)2/|x|12. Therefore φ satisfies Equation (1) and is a
biharmonic morphism. �

4. Biharmonicity and conformality. Since biharmonic morphisms appear so rigid,
we drop two of their characteristic conditions and only keep horizontal weak conformality and
biharmonicity. In the light of the Fuglede-Ishihara theorem, such maps are the exact counter-
parts of harmonic morphisms. Moreover, the expression of the tension field of a horizontally
weakly conformal map enlightens the relationship between minimality of the fibres and har-
monicity of the map. Though the formula for the bitension field is far more intricate, we can
apply it to some special cases to obtain new examples of biharmonic maps.

We will denote by

µ = 1

m− n

m−n∑
s=1

(∇es es)H and ν = 1

n

n∑
i=1

(∇ei ei )V ,
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for an orthonormal frame {ei, es}i=1,...,n,s=1,...,m−n, with ei horizontal and es vertical, the
mean curvatures of the vertical and horizontal distributions, and A and B the second funda-
mental forms of the horizontal and vertical distributions:

AEF = (∇EHFH)V BEF = (∇EVFV )H , E, F ∈ Γ (TM) .
THEOREM 4.1. Let φ : (Mm, g) → (Nn, h) (m � n � 2) be a horizontally weakly

conformal map of dilation λ between Riemannian manifolds, then φ is biharmonic if and only
if, at every regular point,

dφ(−�X)+�H(lnλ)dφ(X)+ (n− 2)ν(lnλ)dφ(X)+ 2dφ(∇gradH lnλX)

+ 2dφ(gradX(ln λ))− dφ(∇X(gradH lnλ))− 2(divHX)dφ(grad lnλ)

+X(ln λ)dφ(X)− dφ(∇X grad ln λ)+ λ2 RicciN(dφ(X))+ (n− 1)dφ(∇Xν)
− (m− n)[µ(lnλ)dφ(X)− 〈X,µ〉dφ(grad lnλ)] − (m− n)dφ(∇Xµ)+ ndφ(A∗

Xν)

+ trace dφ((∇A)∗X − (∇A)X + 3A∗∇X + (∇XB∗)∗ − B∇X + 2B∇X − 2A∗∇X) = 0 ,

where X = (2 − n) gradH ln λ− (m− n)µ, gradH being the horizontal gradient.

PROOF. At a regular point, the tension field of a horizontally weakly conformal map
φ : (Mm, g) → (Nn, h), of dilation λ, is τ (φ) = dφ(X), where X = (2 − n) gradH ln λ −
(m − n)µ. Recall that the mean curvature of the horizontal distribution is ν = gradV ln λ.
Then, for an adapted orthonormal frame {ei, es}i=1,...,n,s=1,...,m−n, ei ∈ H and es ∈ V on
(Mm, g),

∇φ
ei
dφ(X) = ei(lnλ)dφ(X)+ X(lnλ)dφ(ei)− 〈X, ei〉dφ(grad lnλ)+ dφ(∇eiX) ,

so

∇φ
ei
∇φ
ei
dφ(X) = ei(ei(lnλ))dφ(X) + (ei(ln λ))2dφ(X)+ ei(ln λ)X(lnλ)dφ(ei)

− ei(ln λ)〈X, ei〉dφ(grad ln λ)+ ei(ln λ)dφ(∇eiX)+ ei(X(ln λ))dφ(ei)

+X(lnλ)∇φ
ei
dφ(ei)− ei〈X, ei〉dφ(grad ln λ)− 〈X, ei〉ei(ln λ)dφ(grad ln λ)

− 〈X, ei〉(gradH lnλ)(ln λ)dφ(ei)+ 〈X, ei〉〈grad ln λ, ei〉dφ(grad lnλ)

− 〈X, ei〉dφ(∇ei gradH lnλ)+ ei(ln λ)dφ(∇eiX)
+ (∇eiX)H(lnλ)dφ(ei)− 〈ei ,∇eiX〉dφ(grad lnλ)+ dφ(∇ei (∇eiX)H).

Summing on the index i

(∇φ
ei
∇φ
ei

− ∇φ
∇ei ei )dφ(X) = ei(ei(ln λ))dφ(X)+ 2dφ(∇gradH lnλX)

+ dφ(grad(X(ln λ)))+ X(lnλ)(∇dφ)(ei, ei )− dφ(∇X(gradH ln λ))

+ (∇eiX)H(ln λ)dφ(ei)− 2〈ei,∇eiX〉dφ(grad lnλ)+ dφ(∇ei (∇eiX)H)
− (∇ei ei)H(ln λ)dφ(X)+ dφ(∇X(∇ei ei )V )− dφ(∇∇ei eiX) .
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On the other hand, for the vertical bundle,

−∇φ
∇es es dφ(X) = − (∇es es)H(lnλ)dφ(X) −X(lnλ)dφ(∇es es)

+ 〈X,∇es es〉dφ(grad ln λ)− dφ(∇(∇es es )HX)− dφ([(∇es es)V ,X]) ,
so

(∇φ
es

∇φ
es

− ∇φ
∇es es )dφ(X) = dφ(∇es∇esX)− dφ(∇es∇Xes)− dφ(∇∇es Xes)

+ dφ(∇∇Xes es)− (∇es es)H(lnλ)dφ(X)− X(lnλ)dφ(∇es es)
+ 〈X,∇es es〉dφ(grad ln λ)− dφ(∇∇es esX)+ dφ(∇X(∇es es)V ) .

Therefore

−�(τ(φ)) = dφ(−�X)− dφ(∇ei (∇eiX)V )+�H(ln λ)dφ(X)+ nν(ln λ)dφ(X)

+ 2dφ(∇gradH ln λX)+ dφ(gradX(lnλ))− dφ(∇X(gradH ln λ))− 2(divHX)dφ(grad ln λ)

+X(lnλ)(τ (φ)+ (m− n)dφ(µ))+ (∇eiX)H(lnλ)dφ(ei)+ ndφ(∇Xν)
− (m− n)[µ(lnλ)dφ(X)+ X(lnλ)dφ(µ)− 〈X,µ〉dφ(grad ln λ)]
− dφ(∇es∇Xes)− dφ(∇∇es Xes)+ dφ(∇∇Xes es)+ dφ(∇X(∇es es)V ) .

But

(∇eiX)H(lnλ)dφ(ei) = dφ(gradX(ln λ))− dφ(∇X grad ln λ)

− 〈(∇eiX)V , gradV lnλ〉dφ(ei) .
However (cf. [5, Proposition 2.5.17])

− 〈(∇eiX)V , gradV lnλ〉dφ(ei ) = −〈(1/2)(∇eiX)V , gradV ln λ〉dφ(ei)
+ 〈(1/2)(∇Xei)V , gradV lnλ〉dφ(ei )− | gradV ln λ|2dφ(X)

since (LV g)(X, Y ) = −g(∇XY + ∇YX, V ) = −d(lnλ2)(V )g(X, Y ). Hence

− 〈(∇eiX)V , gradV ln λ〉dφ(ei) = −dφ(∇X gradV lnλ)− 2| gradV ln λ|2dφ(X) .
Therefore

(∇eiX)H(ln λ)dφ(ei) = dφ(gradX(lnλ))− dφ(∇X grad lnλ)− dφ(∇Xν)
− 2|ν|2dφ(X)

and

−�(τ(φ)) = dφ(−�X)− dφ(∇ei (∇eiX)V )+�H(ln λ)dφ(X)
+ (n− 2)ν(lnλ)dφ(X)+ 2dφ(∇gradH lnλX)+ 2dφ(gradX(ln λ))

− dφ(∇X(gradH lnλ))− 2(divHX)dφ(grad lnλ)+X(ln λ)τ(φ)− dφ(∇X grad ln λ)

+ (n− 1)dφ(∇Xν)− (m− n)[µ(lnλ)dφ(X)− 〈X,µ〉dφ(grad lnλ)]
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− dφ(∇es∇Xes)− dφ(∇∇es Xes)+ dφ(∇∇Xes es)+ dφ(∇X(∇es es)V ) .
LEMMA 4.2. Let A and B be the second fundamental forms of the horizontal and

vertical distributions. Then

dφ(traceh ∇(∇X)V ) = dφ(trace(∇A)X) ,
dφ(−∇es∇Xes − ∇∇es Xes + ∇∇Xes es + ∇X(∇es es)V ) = −(m− n)dφ(∇Xµ)
+ trace dφ((∇A)∗X + 3A∗∇X + (∇XB∗)∗ − B∇X − 2A∗∇X + 2B∇X)+ ndφ(A∗

Xν) .

PROOF. Consider an adapted orthonormal frame {ei, es}i=1,...,n,s=1,...,m−n, ei ∈ H and
es ∈ V . First observe that

dφ((∇eiA)eiX) = dφ(∇ei (∇eiX)V ) ,
and (∇esA)esX is vertical. For the second equality, we have

〈−∇es∇Xes − ∇∇es Xes + ∇∇Xes es + ∇X∇es es , ej 〉
= 〈(∇esA)Xej , es〉 + 〈A∇es Xej , es〉 + 〈(∇XB∗)es ej , es〉 + 〈B∗∇es Xej , es〉

+ 2〈∇[es,X]ej , es〉
(confer [5, Th. 11.2.1 iii)].) Moreover

〈∇[es ,X]ej , es〉 = 〈ej ,A∗∇es Xes − A∗∇Xes es − B∇es Xes + B∇Xes es〉 .
To conclude, observe that

〈(∇eiA)∗Xei, ej 〉 = −n〈ej ,A∗
Xν〉 ,

A∗∇ei Xei = A∗∇Xei ei = 0 ,

〈(∇XB∗)∗ei ei, ej 〉 = B∇ei Xei = B∇Xei ei = 0 . �

Note that for a horizontally weakly conformal map, the curvature term of the bitension
field becomes

−λ2 RicciN(dφ(X)) .

This completes the proof of Theorem 4.1. �

Three special cases are interesting enough to be stated separately.

COROLLARY 4.3. (i) A conformal map φ : (Mm, g) → (Nn, h) of conformal factor
λ, between manifolds of equal dimensions (m = n > 2), is biharmonic if and only if

− dφ(�(grad ln λ))−�(lnλ)dφ(grad lnλ)+ 2dφ(grad | grad lnλ|2)
+ (2 − n)| grad ln λ|2dφ(grad ln λ)+ λ2 RicciN(dφ(grad lnλ)) = 0 .

(12)

(ii) A horizontally conformal map φ : (Mm, g) → (N2, h) of dilation λ into a surface
(m > n = 2) is biharmonic if and only if

dφ(−�µ)+�H(ln λ)dφ(µ)+ 2dφ(∇gradH lnλµ)+ 2dφ(gradµ(lnλ))

− dφ(∇µ(gradH lnλ))− 2(divH µ)dφ(grad ln λ)
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+ (m− 2)|µ|2dφ(grad ln λ)− dφ(∇µ grad ln λ)+ λ2 RicciN(dφ(µ))

+ dφ(∇µν)+ (2 −m)dφ(∇µµ)− 2(m− 2)µ(lnλ)dφ(µ)

+ trace dφ((∇A)∗µ − (∇A)µ+ 3A∗∇µ + (∇µB∗)∗ + 2B∇µ − B∇µ − 2A∗∇µ)
+ 2dφ(A∗

µν) = 0.

(iii) A homothetic submersion φ : (Mm, g) → (Nn, h) (m > n), i.e., λ is constant, is
biharmonic if and only if

dφ(�µ)− λ2 RicciN(dφ(µ))+ (m− n)dφ(∇µµ)
− (trace dφ((∇A)∗µ − (∇A)µ+ 3A∗∇µ + (∇µB∗)∗ + 2B∇µ − B∇µ − 2A∗∇µ)) = 0 .

REMARK 4.4. (i) The case m = n = 2 is trivial since any conformal map between
surfaces is harmonic, hence biharmonic.

(ii) When φ : (Mm, g) → (Nm, h) is the identity and h = e2ρg , Equation (12) be-
comes [6, Equation (3.1)]:

0 = traceg ∇2 gradρ + (−2�ρ + (2 −m)| gradρ|2) grad ρ

+ 6 −m

2
grad(| grad ρ|2)+ Riccig (gradρ).

(iii) A formula similar to the one of Theorem 4.1 was obtained in [2].

The first case of Corollary 4.3 is the most prolific and the following examples indicate
not only that horizontally weakly conformal biharmonic maps are easier to come by than
biharmonic morphisms, but also that, even for this situation, dimension four emerges as re-
markable.

PROPOSITION 4.5. The inverse stereographic projection σ−1
N from (Rn, ds2) into

(Sn \ {N}, ds2), where N is the north pole and ds2 the Euclidean metric, is a biharmonic map
if and only if n = 4. Similarly, the identity map from (Bn, ds2) into (Bn, (4/(1−|x|2)2)ds2),
where Bn is the open unit ball of Rn, is a biharmonic map if and only if n = 4.

Furthermore, in either case, the biharmonic map is not a biharmonic morphism.

PROOF. For the first case, the map is given by σ−1
N (x) = (1/(1 + |x|2))(1 − |x|2, 2x)

and is isometric to the identity map from the Euclidean space (Rn, ds2) into (Rn, (4/(1 +
|x|2)2)ds2). We can treat both examples at once, by considering the identity map φ on Rn or
Bn, from the Euclidean metric ds2 into the conformal metric (4/(1 + ε|x|2)2)ds2 (ε = 1 for
the sphere and ε = −1 for the ball).
The map φ is clearly conformal of dilation λ = 2/(1 + ε|x|2), so

grad ln λ = − 2ε

1 + ε|x|2 x , | grad ln λ|2 = 4|x|2
(1 + ε|x|2)2 ,

grad | grad ln λ|2 = 8(1 − ε|x|2)
(1 + ε|x|2)3 x , � lnλ = − 2ε

(1 + ε|x|2)2 (n+ (n− 2)ε|x|2) ,

(trace ∇2)(grad ln λ) = 4

(1 + ε|x|2)3 (n+ 2 + (n− 2)ε|x|2)x ,
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and Equation (12) becomes

−8(n− 4)
(1 − ε|x|2)
(1 + ε|x|2)3 x = 0 ,

so both maps, into the sphere or the Poincaré model, are biharmonic if and only if n = 4.
To know whether φ is also a biharmonic morphism we only need to check Equation (5),

whose constituents are

τ (φ) = 4ε

1 + ε|x|2x , |τ (φ)|2 = 4.16

(1 + ε|x|2)4 |x|2 ,

�λ2 = −16ε

(1 + ε|x|2)4 (4 − 2ε|x|2) , div〈dφ, τ(φ)〉 = 16ε

(1 + ε|x|2)4 (4 − 2ε|x|2) ,

∇|τ (φ)|2 = 8.16(1 − 3ε|x|2)
(1 + ε|x|2)5 x , 〈dφ, τ(φ)〉(∇|τ (φ)|2) = 8.162(1 − 3ε|x|2)

(1 + ε|x|2)8 |x|2 ,
therefore

|τ (φ)|4 − 2�λ2|τ (φ)|2 + 4�λ2 div 〈dφ, τ(φ)〉 + 4(�λ2)2 + 2〈dφ, τ(φ)〉(∇|τ (φ)|2)

= 163

(1 + ε|x|2)8 |x|2(1 + 2ε − 3ε|x|2) ,
so φ cannot be a biharmonic morphism. �

PROPOSITION 4.6. The identity map from (Bn, ds2) to (Bn, h), where Bn is the unit
ball in Rn, ds2 its Euclidean metric and hx = 4(1 − |x|2)−2ds2 gives the hyperbolic space,
is a biharmonic map if and only if n = 4. Furthermore, in either case, the biharmonic map is
not a biharmonic morphism.

PROOF. Call φ the identity from (Bn, ds2) to (Bn, h). Clearly h = e2ρds2 for ρ =
ln(2(1 − |x|2)−1) and

∇ρ = 2

1 − |x|2 x , |∇ρ|2 = 4|x|2
(1 − |x|2)2 ,

∇|∇ρ|2 = 8
1 + |x|2
(1 − |x|2)3 x , �ρ = 2

(1 − |x|2)2 (n(1 − |x|2)+ 2|x|2) ,

traceg ∇2∇ρ = 4x

(1 − |x|2)3 (n+ 2 − (n− 2)|x|2) .
So Equation (12) becomes

8x

(1 − |x|2)3 (4 − n)(1 + |x|2) = 0

and φ is biharmonic only in dimension four. However, in dimension four, the Laplacian of its
conformal factor λ2 = 4(1 − |x|2)−2 is

�λ2 = 16

(1 − |x|2)4 (4 + 2|x|2)
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and

τ (φ) = −2 gradρ = −4

1 − |x|2 x and |τ (φ)|2 = 64|x|2
(1 − |x|2)4 .

On the other hand:

〈dφ, τ(φ)〉 = −16

(1 − |x|2)3 x and div〈dφ, τ(φ)〉 = −16

(1 − |x|2)4 (4 + 2|x|2) .
Therefore

4�λ2 + 2 div〈dφ, τ(φ)〉 = 32

(1 − |x|2)4 (4 + 2|x|2) �= |τ (φ)|2 ,
so φ is not a biharmonic morphism. �

PROPOSITION 4.7. The identity map from (Rn+, ds2) to H n=(Rn+, h̃=(1/(xn)2)ds2)

from the upper-half Euclidean space to the hyperbolic space is biharmonic if and only if
n = 4. Furthermore, in either case, the biharmonic map is not a biharmonic morphism.

PROOF. Call φ the identity map from (Rn+, ds2) to H n. Since h̃ = e2ρ for ρ = − ln xn

and

grad ρ = − 1

xn

∂

∂xn
, | gradρ|2 = 1

(xn)2
,

grad | gradρ|2 = − 2

(xn)3

∂

∂xn
, �ρ = 1

(xn)2
,

and Equation (12) becomes

2

(xn)3
(n− 4)

∂

∂xn
= 0 .

On the other hand, in dimension four, its dilation is λ2 = 1/(x4)2 and τ (φ) = −2 gradρ =
(2/x4)∂/∂x4, so

|τ (φ)|2 = 4

(x4)4
, �λ2 = 6

(x4)4
,

〈dφ, τ(φ)〉 = 2

(x4)3

∂

∂x4 , div〈dφ, τ(φ)〉 = − 6

(x4)4
,

so

4�λ2 + 2 div〈dφ, τ(φ)〉 = 12

(x4)4
�= |τ (φ)|2

and φ is not a biharmonic morphism. �

Not all conformal maps in dimension four are biharmonic.

EXAMPLE 4.8. (1) Consider the identity map φ from (H 4, g) = (R4+, (x4)−2ds2)

to (R4+, ds2). Then ds2 = e2ρg for ρ = ln x4 and, using the orthonormal basis {ei =
x4∂/∂xi}i=1,...,4, we have

gradg ρ = e4 , | gradg ρ|2g = 1 , gradg | gradg ρ|2 = 0 ,
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�gρ = −3 , traceg ∇2 grad ρ = −3e4 , Ricci(gradg ρ) = −3e4 ,

since g = e2αds2 for α = − ln x4 and

∇g
e1e4 = −e1 , ∇g

e2e4 = −e2 , ∇g
e3e4 = −e3 , ∇g

e4e4 = 0 ,

∇g
e1e1 = ∇g

e2e2 = ∇g
e3e3 = e4 .

Testing Equation (12), we have −2e4 �= 0, so φ is not biharmonic.
Moreover, from simple considerations

τ (φ) = −2e4 , λ2 = (x4)2 , �λ2 = −2(x4)2 ,

〈dφ, τ(φ)〉 = −2e4 , div〈dφ, τ(φ)〉 = 6,

so 4�λ2 + 2 div〈dφ, τ(φ)〉 �= |τ (φ)|2 and φ does not satisfy (5).
(2) Let φ be the identity map from (Rn, g = 4/(1+ε|x|2)2ds2) to (Rn, ds2) (ε = ±1).

It is clearly conformal of dilation λ2 = (1 + ε|x|2)2/4 and g = e2ρds2 for ρ = ln 2 − ln(1 +
ε|x|2). Then ei = ((1 + ε|x|2)/2) ∂/∂xi is an orthonormal basis for g and

∇g
ei ej = ∇ds2

ei
ej + ei(ρ)ej + ej (ρ)ei − 〈ei, ej 〉 gradρ = −εxj ei + δij εX

where X = ∑n
k=1 x

kek . Therefore

gradg lnλ = (1 + ε|x|2)2
4

∂

∂xi
(ln λ)

∂

∂xi
= εX ,

| gradg ln λ|2g = 4

(1 + ε|x|2)2
(1 + ε|x|2)2

4
|x|2 = |x|2 ,

gradg | gradg ln λ|2g = (1 + ε|x|2)2
4

∂

∂xi
(|x|2) ∂

∂xi
= (1 + ε|x|2)X .

Since �g lnλ = ∑4
i=1 ei(ei(lnλ))− (∇g

ei ei)(ln λ) and
n∑
i=1

∇g
ei ei = (n− 1)εX , X(lnλ) = ε|x|2 ,

n∑
i=1

(∇g
ei ei)(lnλ) = (n− 1)|x|2 ,

ei(lnλ) = εxi , ei(ei(lnλ)) = ε(1 + ε|x|2)/2 ,
we have �g lnλ = ε(n+ (2 − n)ε|x|2)/2.
On the other hand

� gradg lnλ = −
n∑
i=1

∇g
ei∇g

ei (gradg lnλ)− ∇g
∇g
ei
ei
(gradg ln λ) ,

and

−
n∑
i=1

∇g
∇g
ei
ei
(gradg lnλ) = −∇g

(n−1)εX(εX) = −(n− 1)
1 + ε|x|2

2
X ,

∇g
ei (gradg lnλ) = ε

(
1 − ε|x|2

2
ei + εxiX

)
,
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∇g
ei∇g

ei (gradg lnλ) = −1 + ε|x|2
2

xiei + (1 + ε(xi)2)X ,

n∑
i=1

∇g
ei∇g

ei (gradg lnλ) = 2n− 1 + ε|x|2
2

X ,

so

−� gradg lnλ = n+ (2 − n)ε|x|2
2

X.

Equation (12) becomes

(2 + (4 − n)ε|x|2)X = 0 ,

which is impossible, whatever the value of n.

EXAMPLE 4.9. Let (M2, h) be a Riemannian surface of Gaussian curvature Gh, β :
M2 ×R → R∗ and λ : R → R∗ two positive functions. Consider the doubly twisted product
(R ×M2, g = β2dt2 + λ−2h). Then, the projection

φ : (R ×M2, g = β2dt2 + λ−2h) → (M2, h)

(t, x) 
→ x

is a biharmonic map if and only if

0 = −λ4 gradh(�h lnβ)− 2λ4Gh gradh lnβ + (3/2)V (λ2| gradh lnβ|2)V
− λ4| gradh lnβ|2 gradh lnβ − ∇V∇V [λ2 gradh ln β] − (λ4/2) gradh | gradh lnβ|2h
− λ2V (V (lnλ) gradh ln β − 2V (lnλ)[∇V (λ2 gradh ln β)− λ2| gradh ln β|2hV ] .

(13)

In particular, for β = c2 e
∫
f (x) dx with

f (x) = −c1(1 + ec1x)

1 − ec1x

and c1, c2 ∈ R∗, we have a family of Riemannian submersions

φ : (R2 × R, dx2 + dy2 + β2(x)dz2) → (R2, dx2 + dy2)

φ(x, y, z) = (x, y)

which are proper biharmonic maps.
In fact, it is easily checked that φ is a horizontally conformal submersion of dilation λ2.

Let V be the unit vertical vector β−1d/dt , using the Koszul formula one can show that for
vector fields E and F on R ×M2

AEF = g(EH, FH)V (ln λ)V .

On the other hand, if W is a vertical vector field, then

BVW = −λ2 gradh(lnβ)〈W,V 〉 .
Note also that the mean curvature of the fibres is µ = ∇g

V V = −λ2 gradh(lnβ) and the mean
curvature of the horizontal distribution is ν = V (lnλ)V .
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Choosing a geodesic frame {e1, e2} around a point p ∈ M2 and evaluating all subsequent
formulas at a point (p, t) ∈ M2 × R, straightforward computations show that (summing on
repeated indices)

[trace((∇A)∗µ − (∇A)µ+ 3A∗∇µ + (∇µB∗)∗ + 2B∇µ − B∇µ − 2A∗∇µ)+ 2A∗
µν]H

= V (V (lnλ))µ+ 3(V (ln λ)2)µ− 3V (lnλ)V (λei(lnβ))λei

+ µ(g(λej , µ))λej + |µ|2µ.
Since gradH ln λ = 0, the only remaining terms are

[∇µµ]H = (λ4/2) gradh(| gradh ln β|2h) ,
[∇µν]H = −(V (lnλ))2µ ,
�H(lnλ) = −2(V (lnλ))2 ,

[∇µ grad ln λ]H = −(V (lnλ))2µ ,
[�µ]H = λ4ei(ei(ej ln β)))ej − (V (ln λ))2 gradH ln β

− V (ln λ)V (λej (lnβ))λej + V (V (λej (lnβ)))λej

− λ4| gradh lnβ|2h gradh ln β + (λ4/2) gradh(| gradh lnβ|2h)
+ λek(lnβ)λ2[∇λei (∇M2

ei
ek)]H .

So the projection φ is biharmonic if and only if (still summing on repeated indices)

0 = −λ4ei(ei(ej lnβ))ej − V (V (λej (ln β)))λej − (λ4/2) gradh | gradh lnβ|2h
− λ4Gh gradh ln β − λ2V (V (ln λ) gradh lnβ − 2V (lnλ)V (λei(lnβ))λei

− λek(lnβ)λ
2[∇λei (∇M2

ei
ek)]H .

Using

V (V (λej (lnβ)))λej = −(3/2)V (λ2| gradh lnβ|2)V + λ4| gradh lnβ|2 gradh lnβ

+ ∇V∇V [λ2 gradh ln β] ,
V (λej (ln β))λej = ∇V (λ2 gradh ln β)− λ2| gradh ln β|2hV ,
gradh(�h ln β) = eieiej (lnβ)ej −Gh gradh ln β

− 〈∇e1∇e1e1 + ∇e2∇e2e1, e2〉e2(ln β)e1 − 〈∇e1∇e1e2 + ∇e2∇e2e2, e1〉e1(lnβ)e2 ,

λek(ln β)λ2[∇λei (∇M2

ei
ek)]H = −λ4[e1(ln β)h(∇M2

e1
∇M2

e1
e2 + ∇M2

e2
∇M2

e2
e2, e1)e2

+ e2(ln β)h(∇M2

e1
∇M2

e1
e1 + ∇M2

e2
∇M2

e2
e1, e2)e1],

we obtain the biharmonic equation (13) for φ.
For the Riemannian submersion

φ : (R2 × R, dx2 + dy2 + β2(x)dz2) → (R2, dx2 + dy2)
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φ(x, y, z) = (x, y) ,

Equation (13) reduces to

ff ′ + f ′′ = 0 ,

where f = ln β. Solving this equation, we obtain the last statement in the example.
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