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ON PERIODIC MAPS OVER SURFACES WITH LARGE PERIODS
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Abstract. Kulkarni showed that, if g is greater than three, any periodic map on the
oriented surface of genus g with period more than or equal to 4g is conjugate to a power of
one of two types of periodic maps. In this paper, we show that, if g is greater than 12, any
periodic map on the surface with period more than or equal to 3g is conjugate to a power of
one of four types of periodic maps.

1. Introduction. Let Σg be a closed oriented surface of genus g ≥ 2. The Nielsen-
Thurston theory [10] classifies orientation preserving diffeomorphisms of Σg into the follow-
ing three types: (1) periodic, (2) reducible and (3) pseudo-Anosov. For each type, there are
important values describing conjugacy classes, for example, the periods for periodic maps and
the dilatations for pseudo-Anosov maps. A natural problem is to what extent these values de-
termine conjugacy classes. For periodic maps, Kulkarni [7] showed that the period determines
the conjugacy classes when the genera and the periods are sufficiently large.

Wiman [11] showed that, if the genus g is at least 2, a period of a periodic map on Σg is
at most 4g + 2.

We visualize periodic maps with periods 4g + 2 (see Figure 1 when g = 2). We prepare
two disks, divide each of them into 2g + 1 triangles, number each triangle on one disk by
even integers 0, 2, . . . , 4g clockwisely, and number each triangle on the other disk by odd
integers 1, 3, . . . , 4g + 1 clockwisely. We glue these disks along outer edges of triangles such
that 2i is attached to 2i + 2g + 1 for i = 0, . . . , g and 2i is attached to 2i − 2g − 1 for
i = g + 1, . . . , 2g , then we get Σg . The homeomorphism on Σg , which brings i to i + 1
for i = 0, . . . , 4g and 4g + 1 to 0 is a periodic map whose period is 4g + 2. By a slight
modification, we visualize periodic maps with periods 4g (see Figure 2 for g = 2). At first,
we glue these disks along outer edges of 0-th triangle and (2g + 1)-st triangle, then we get a

FIGURE 1. Period 10 = 4 · 2 + 2 on Σ2.
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FIGURE 2. Period 8 = 4 · 2 on Σg .

4g-gon. We memorize which pairs of outer edges are glued in the previous construction, and
erase all edges which divide this disk into 4g + 2 triangles. We divide this 4g-gon into 4g
triangles, number these triangles by 0, 1, . . . , 4g clockwisely. We glue outer edges of these
triangles according to our memory. Then we get Σg again, and the homeomorphism, which
bring i to i + 1 for i = 0, . . . , 4g − 1 and 4g to 0 is a periodic map of period 4g .

Almost one hundred years after Wiman’s paper, Kulkarni [7] showed that, if g > 3, any
periodic map on Σg with period at least 4g is conjugate to a power of one of two types of
periodic maps explained above. In this paper, we show that, if g > 12, any periodic map on
Σg with period at least 3g is conjugate to a power of one of four types of periodic maps.

For the early draft of this paper, Kulkarni pointed out that, for each periodic maps of
order 4g + 2 and 4g , we can concretely construct hyperbolic structures on Σg such that these
periodic maps act as isometries. (i) For the periodic map of order 4g + 2 = 2(2g + 1),
the hyperbolic structure is constructed as follows. Let P be a regular 2(2g + 1)-gon in the
hyperbolic plane H 2, with vertex-angle 2π/(2g + 1), and e1, . . . , e2(2g+1) the edges on ∂P

clockwisely. For 1 ≤ i ≤ 2g + 1, we glue ei with e(2g+1)+i by an isometry on H 2. Then
we obtain a hyperbolic structure on Σg , and the 2π/2(2g + 1) rotation on P induces an
isometry and the periodic map of order 4g + 2 on Σg . (ii) For the periodic map of order 4g ,
the hyperbolic structure is constructed as follows. Let P be a regular 4g-gon in the hyperbolic
plane H 2, with vertex-angle 2π/4g , and e1, . . . , e4g the edges on ∂P clockwisely. For 1 ≤
i ≤ 2g , we glue ei with e2g+i by an isometry on H 2. Then we obtain a hyperbolic structure
on Σg , and the 2π/4g rotation on P induces an isometry and the periodic map of order 4g on
Σg .

2. Nielsen’s classification of periodic maps. An orientation preserving homeomor-
phism f from a surface Σg to itself is said to be a periodic map, if there is a positive integer
n such that f n = idΣg . The period of f is the smallest positive integer which satisfies the
above condition. Two periodic maps f and f ′ on Σg are conjugate, if there is an orientation
preserving homeomorphism h from Σg to itself such that f ′ = h ◦ f ◦ h−1. In this section,
we will review the classification of conjugacy classes of periodic maps on surfaces by Nielsen
[8]. We follow a description by Smith [9] and Yokoyama [12].

Let f be a periodic map on Σg , whose period is n. A point p on Σg is a multiple point
of f , if there is a positive integer k less than n such that f k(p) = p. Let Mf be the set
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of multiple points of f . The orbit space Σg/f of f is defined by identifying x in Σg with
f (x). Let πf : Σg → Σg/f be the quotient map. Then πf is an n-fold branched covering
ramified at πf (Mf ). The set πf (Mf ) is denoted by Bf , and each element of Bf is called a
branch point of f . We choose a point x in Σg/f − Bf , and a point x̃ in π−1

f (x). We define
a homomorphism Ωf : π1(Σg/f − Bf ) → Zn as follows: Let l be a loop in Σg/f − Bf

with the base point x, and [l] the element of π1(Σg/f − Bf ) represented by l. Let l̃ be the
lift of l on Σg which begins from x̃. There is a positive integer r less than or equal to n

such that the terminal point of l̃ is f r(x̃). We define Ωf ([l]) = r mod n. Since Zn is an
Abelian group, the homomorphism Ωf induces a homomorphism ωf from the abelianization
of π1(Σg/f −Bf ) to Zn. The abelianization of π1(Σg/f −Bf ) is H1(Σg/f −Bf ), therefore
ωf is a homomorphism from H1(Σg/f − Bf ) to Zn. For each point of Bf = {Q1, . . . ,Qb},
let Di be a disk in Σg/f , which contains Qi in its interior and is sufficiently small so that no
other points of Bf are in Di . Let SQi be the boundary of Di with clockwise orientation.

THEOREM 2.1 [8, §11]. Two periodic maps f and f ′ on Σg are conjugate to each
other if and only if the following three conditions are satisfied.

(1) The period of f is equal to the period of f ′.
(2) The number of elements in Bf is equal to that of Bf ′ .
(3) After renumbering the elements of Bf ′ , we have ωf (SQi ) = ωf ′(SQi ) for each i.

Let θi = ωf (SQi ) for each i. By the above Theorem, the data [g, n; θ1, . . . , θb] de-
termines a periodic map up to conjugacy. The following proposition shows a sufficient and
necessary condition for a data [g, n; θ1, . . . , θb] to correspond to a periodic map.

PROPOSITION 2.2. There is a periodic map with the data [g, n; θ1, . . . , θb] if and only
if the following conditions are satisfied.

(1) θ1 + · · · + θb ≡ 0 mod n.
(2) If Σg/f is a sphere, then gcd{θ1, . . . , θb} ≡ 1 mod n.
(3) Let g ′ be the genus of Σg/f and ni = n/ gcd{θi, n}, then

2g − 2 = n
(

2g ′ − 2 +
∑(

1 − 1

ni

))
,

where i runs through the branch points.

The necessity of the three conditions in the above proposition are shown as follows. (1)
follows from the fact that ωf is a homomorphism and SQ1 + · · · + SQb is null-homologous,
(2) follows from the fact that ωf is a surjection, and (3) is the Riemann-Hurwitz formula. The
sufficiency of these conditions follows from the existence theorem of a branched covering
space by Hurwitz [4]. The number ni is called the branching index of Qi .

In the following, we will use the expression (n, θ1/n + · · · + θb/n) in place of
[g, n; θ1, . . . , θb]. This data (n, θ1/n + · · · + θb/n) is called the total valency, which is intro-
duced by Ashikaga and Ishizaka [1]. In the above data, we call θi/n the valency of Qi , and
often rewrite this by an irreducible fraction. We remark that the denominator of the reduced
θi/n is equal to the branching index of Qi .
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3. Main Result. The main result of this paper is:

THEOREM 3.1. Let the genus g be greater than or equal to 3. If the period of a peri-
odic map on Σg is greater than or equal to 3g , then this map is conjugate to the power of one
of the maps in Table 1. In Table 1, g is the genus, V = (n, a/b + · · · ) is the total valency.

REMARK 3.2. In the above theorem, the power k is an integer prime to n. If k satisfies
this condition and f = (n,m1/n1 + · · · + mb/nb), then f k = (n, (k∗ · m1)/n1 + · · · + (k∗ ·
mb)/nb) where k∗ is an integer such that k · k∗ ≡ 1 mod n, and k∗ · mi is the remainder of
k∗mi modulo ni .

COROLLARY 3.3. Let the genus g > 12.
1. If the period of a periodic map on Σg is greater than or equal to 3g , then the period

of this map is 4g + 2, 4g , 3g + 3 or 3g .

TABLE 1.

g V

(1) arbitrary
(

4g + 2,
1

2
+ g

2g + 1
+ 1

4g + 2

)

(2) arbitrary
(

4g,
1

2
+ 2g − 1

4g
+ 1

4g

)

(3)-(i) 3k
(

3g + 3,
2

3
+ k

g + 1
+ 1

3g + 3

)

(3)-(ii) 3k + 1
(

3g + 3,
1

3
+ 2k + 1

g + 1
+ 1

3g + 3

)

(4)-(i) 3k or 3k + 1
(

3g,
1

3
+ 2g − 1

3g
+ 1

3g

)

(4)-(ii) 3k + 2
(

3g,
2

3
+ g − 1

3g
+ 1

3g

)

(5) 4
(

12,
3

4
+ 1

6
+ 1

12

)

(6) 6
(

20,
3

4
+ 1

5
+ 1

20

)

(7) 9
(

28,
1

4
+ 5

7
+ 1

28

)

(8) 12
(

36,
3

4
+ 2

9
+ 1

36

)

(9) 10
(

30,
4

5
+ 1

6
+ 1

30

)
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2. If the periods of two periodic maps f1, f2 on Σg are equal and greater than or equal
to 3g , then f2 is conjugate to a power of f1.

In order to prove Theorem 3.1, we make an observation on branching indices. Since we
assume that the period is greater than or equal to 3g , by the result of Kasahara [6, Proposition
1.1 and Theorem 4.1], the orbit space of the periodic map is a 2-sphere with three branch
points. Let n1, n2 and n3 be the branching indices of these branch points, such that n1 ≤ n2 ≤
n3.

LEMMA 3.4. Under the condition of Theorem 3.1, the genus g , the period n and
branching indices I = (n1, n2, n3) of the periodic map should be one of the following.

(1) g is arbitrary, n = 4g + 2, I = (2, 2g + 1, 4g + 2),
(2) g is arbitrary, n = 4g , I = (2, 4g, 4g),
(3) g + 1 is not a multiple of 3, n = 3g + 3, I = (3, g + 1, 3g + 3),
(4) g is arbitrary, n = 3g , I = (3, 3g, 3g),
(5) g = 4, n = 12, I = (4, 6, 12),
(6) g = 6, n = 20, I = (4, 5, 20),
(7) g = 9, n = 28, I = (4, 7, 28),
(8) g = 12, n = 36, I = (4, 9, 36),
(9) g = 10, n = 30, I = (5, 6, 30).

We prove Lemma 3.4 and then Theorem 3.1.
From the Riemann-Hurwitz formula (Proposition 2.2, (3)), we see,

2g − 2 = n
(

1 −
( 1

n1
+ 1

n2
+ 1

n3

))
.(3.1)

We have n1 ≥ 2 by the definition of branching index, and n ≥ 3g by our assumption. Hence
we have 2 ≤ n1 ≤ 8 from the above equation. The following theorem is shown by Harvey.

THEOREM 3.5 [2, Theorem 4, (i)]. For n1, n2, n3 and n above, we have
lcm{n1, n2} = lcm{n2, n3} = lcm{n3, n1} = n.

By the above theorem, Kulkarni pointed out the following fact in the beginning of the
proof of [7, Proposition 4.5].

LEMMA 3.6. (1) If n1 divides n2, then n2 = n3 = n.
(2) If n1 is a power of a prime and n1 does not divide n2, then n3 = n.

We assume n1 divides n2, then, by Lemma 3.6, (1), n2 = n3 = n. From (3.1), we have
2g = n(1 − 1/n1). If n1 = 2, then n = 4g , I = (2, 4g, 4g) (Lemma 3.4, (2)). If n1 = 3, then
n = 3g , I = (3, 3g, 3g) (Lemma 3.4, (4)). If n1 ≥ 4, then n ≤ (8/3)g . This contradicts our
assumption n ≥ 3g .

From here, we assume n1 does not divide n2.
If n1 = 2, 3, 5, 7, then gcd{n1, n2} = 1. By Theorem 3.5, the period n is equal to

lcm{n1, n2} = n1n2, and by Lemma 3.6, (2), n3 = n. From (3.1), we have 2g = (n1 −
1)(n/n1 − 1). When n1 = 2, we have n = 4g + 2 and I = (2, 2g + 1, 4g + 2) (Lemma
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3.4, (1)). When n1 = 3, we have n = 3g + 3 and I = (3, g + 1, 3g + 3). Since n1 does not
divide n2, g + 1 is not a multiple of 3 (Lemma 3.4, (3)). When n1 = 5, n = (5/2)g + 5. Since
n ≥ 3g , 10 ≥ g . On the other hand, by the condition gcd{n1, n2} = 1, n1 is not equal to n2,
so n1 < n2 = n/n1. Therefore, (5/2)g + 5 = n > n2

1 = 25, so g > 8. Since n = (5/2)g + 5
is an integer, g should be an even integer, hence g = 10. We have only one case, g = 10,
n = 30, I = (5, 6, 30) (Lemma 3.4, (9)). When n1 = 7, from the same argument as when
n1 = 5, we see that there is no case to seek.

If n1 = 4, 8, then n1 is a power of a prime(= 2), hence by Lemma 3.6, (2), n3 = n.
From (3.1), we have 2g − 1 = n(1 − 1/n1 − 1/n2). When n1 = 4, n2 should be 2k or
k, where k is an odd integer. If n2 = 2k, by Theorem 3.5, n = lcm{n1, n2} = 4k = 2n2,
therefore 2g − 1 = (3/2)n2 − 2, so n = (8g + 4)/3. As we assume n ≥ 3g , we have
4 ≥ g . Since 8g + 4 is a multiple of 3 and g ≥ 3, g should be 4. Hence we have only one
case, g = 4, n = 12, I = (4, 6, 12) (Lemma 3.4, (5)). If n2 = k, then gcd{n1, n2} = 1,
hence, from the same argument as the beginning of the last paragraph, we have n = n1n2 and
2g = (n1 − 1)(n/n1 − 1) = (3/4)n − 3, so n = (8/3)g + 4. As we assume n ≥ 3g , we have
12 ≥ g . Since n = (8/3)g + 4 is an integer, g is a multiple of 3, hence g = 3, 6, 9, 12. The
case g = 3 is excluded, since in this case n2 = 3 < 4 = n1. We have three cases, g = 6,
n = 20, I = (4, 5, 20) (Lemma 3.4, (6)), g = 9, n = 28, I = (4, 7, 28) (Lemma 3.4, (7)) and
g = 12, n = 36, I = (4, 9, 36) (Lemma 3.4, (8)). When n1 = 8, n2 should be 4k, 2k or k,
where k is an odd integer. By the same argument as when n1 = 4, we see that this is not the
case.

Finally, we consider the case where n1 = 6. From our assumption n ≥ 3g and (3.1),
we have 1/n2 + 1/n3 ≥ (g + 4)/6g . From the condition n1 ≤ n2 ≤ n3, we have 6 ≤
n2 ≤ 12g/(g + 4). Therefore 6 ≤ n2 ≤ 11. Since we assume that n1 does not divide n2, we
omit the case where n2 = 6. If n2 = 7, then, by Theorem 3.5, we have n = lcm{n1, n2} =
lcm{6, 7} = 6 · 7 = 42. Since 6 · 7 = lcm{n1, n3} = lcm{6, n3}, n3 should be a multiple
of 7, and since 6 · 7 = lcm{n2, n3} = lcm{7, n3}, n3 should be a multiple of 6. Therefore
n3 = 42. From (3.1), we have 2g − 2 = 28, hence g = 15. This contradicts our assumption
n ≥ 3g . If n2 = 8, then, by Theorem 3.5, we have n = lcm{n1, n2} = lcm{6, 8} = 24. The
branching index n3 should be a divisor of n = 24 which is more than or equal to n2 = 8, so
n3 = 12, 24. If n3 = 12, then lcm{n3, n1} = lcm{12, 6} = 12 �= 24 = n, which conflicts
with Theorem 3.5. So, n3 = 24. From (3.1), we have 2g − 2 = 16, hence g = 9. This
contradicts our assumption n ≥ 3g . If n2 = 9, 10, 11, from the argument as above, we come
to a contradiction to our assumption n ≥ 3g . Thus we finished the proof of Lemma 3.4.

In Lemma 3.4, we found the denominators of valencies. For the proof of Theorem 3.1,
we have to find good numerators.

A branch point corresponds to a fixed point, if the branching index is equal to the period.
Hence, in each case, there is a fixed point. We can take a proper power so that the numerator
of the valency at the fixed point is equal to 1. Therefore we assume that, for one of the fixed
points, the valency of the corresponding branch point is 1/n. Cases (1) and (2) in the statement
of Lemma 3.4 are treated by Kulkarni in [7, §5], so we discuss other cases.
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For case (3), there are 2 candidates,

(A)
1

3
+ 2g + 1

3g + 3
+ 1

3g + 3
, (B)

2

3
+ g

3g + 3
+ 1

3g + 3
.

Since n2 = g + 1, if we rewrite the second fractions into irreducible fractions, then their
denominators should be g + 1. Since g + 1 is not a multiple of 3, g is equal to 3k or 3k + 1.
If g = 3k, then 2g + 1 = 6k + 1 is not a multiple of 3, hence (A) is not the case. In (B),
the second fraction is equal to an irreducible fraction k/(3k + 1) = k/(g + 1). Therefore
the valencies should be 2/3 + k/(g + 1) + 1/(3g + 3) when g = 3k. If g = 3k + 1, then
g is not a multiple of 3, hence (B) is not the case. In (A), the second fraction is equal to an
irreducible fraction (2k + 1)/(3k + 2) = (2k + 1)/(g + 1). Therefore the valencies should be
1/3 + (2k + 1)/(g + 1) + 1/(3g + 3) when g = 3k + 1.

For case (4), there are 2 candidates,

(C)
1

3
+ 2g − 1

3g
+ 1

3g
, (D)

2

3
+ g − 1

3g
+ 1

3g
.

If g = 3k, then the second fractions (2g − 1)/3g of (C) and (g − 1)/3g of (D) are irreducible
fractions, hence (C) and (D) are data of periodic maps we need. By the remark after Theorem
3.1, the (g − 1)∗-th power of (C) is

g − 1

3
+ (g − 1)(2g − 1)

3g
+ g − 1

3g
= 2

3
+ 1

3g
+ g − 1

3g
,

where we consider a denominator of a valency a/b as an element of Z/bZ. Therefore, (D)
is the (g − 1)∗-th power of (C). If g = 3k + 1, then g − 1 = 3k is a multiple of 3, so the
second fraction of (D) is not an irreducible fraction, which means m2 �= 3g and is not the
case. In (C), the second fraction (2g − 1)/3g is an irreducible fraction. Therefore, (C) is the
data of periodic map we need. If g = 3k + 2, then 2g − 1 = 6k + 3 is a multiple of 3, so the
second fraction of (C) is not an irreducible fraction. In (D), the second fraction (g − 1)/3g is
an irreducible fraction. Therefor (D) is the data of periodic map we need.

For the cases (5) to (9), we find the numerators of valency data uniquely as shown in the
statement in Theorem 3.1 easily.

We finished the proof of Theorem 3.1.

REMARK 3.7. 1. The periodic maps (1) and (2) in Theorem 3.1 commute with the
hyperelliptic involution. The presentation of these maps as products of Dehn twists are inves-
tigated by Ishizaka [5]. Other periodic maps listed in Theorem 3.1 are not on the list in [5] of
periodic maps which commute with the hyperelliptic involution.

2. Each periodic map (3) in Theorem 3.1 is a monodromy of (3, g + 1)-torus knot, and
their presentation as a product of Dehn twists are give in [3, §4.3] ((3)-(i) is “Phase I”, and
(3)-(ii) is “Phase III”).

3. The periodic maps illustrated in Introduction are (1) and (2) in Theorem 3.1. In
Introduction, we visualized the relationship between (1) and (2). There is a same kind of
relationship between (3) and (4). In Figure 3, we illustrate the relationship when g = 3.
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FIGURE 3. The top figure illustrates (12, 2/3+1/4+1/12). The bottom figure
illustrates (9, 1/3 + 5/9 + 1/9).
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