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Abstract. In a complex projective space, we distinguish hypersurfaces of type (A1)

from hypersurfaces of type (A2) in terms of the cardinality of congruence classes of their
extrinsic geodesics.

1. Introduction. When we study shapes of Riemannian submanifolds, it is natural
to investigate their geodesics (see [4] for example). Recall that an isometric immersion f of
a Riemannian manifold M into another M̃ is totally geodesic if and only if every geodesic
on M is also a geodesic in M̃ . We say a geodesic on a submanifold M to be an extrinsic
geodesic in the ambient space M̃ if it is also a geodesic considered as a curve in M̃ . Note
that there is no totally geodesic real hypersurface, which is a submanifold of real dimension
2n − 1, in a complex n-dimensional complex projective space CPn. This leads us to study
real hypersurfaces by the cardinality of extrinsic geodesics in CPn.

A real hypersurface in a complex projective space CPn is said to be of type (A) if it is
a tube around some totally geodesic Kähler submanifold CPk , where 0 � k � n − 1. If, in
particular, k = 0 or k = n − 1, it is called a real hypersurface of type (A1), and otherwise it
is called a real hypersurface of type (A2). These real hypersurfaces are remarkable examples
of submanifolds in CPn. Recall that hypersurfaces of type (A1) (resp. of type (A2)) have
two (resp. three) distinct constant principal curvatures in CPn. They have many nice common
properties, which enrich the theory of real hypersurfaces (cf. [7]). For example, they are Hopf
hypersurfaces in CPn and each geodesic on them has constant structure torsion (for details,
see Section 2). In this regard, we give a characterization of all real hypersurfaces of type
(A) in the class of Hopf hypersurfaces (Theorem 1). Investigating the quantity of extrinsic
geodesics on real hypersurfaces and applying Theorem 1, we obtain our main results which
distinguish hypersurfaces of type (A1) from hypersurfaces of type (A2) in CPn.
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2. Extrinsic geodesics on hypersurfaces of type (A). Let M be a real hypersurface
in a Kähler manifold (M̃, 〈 , 〉, J ) with Riemannian metric 〈 , 〉 and complex structure J .
The Riemannian connections ∇̃ of M̃ and ∇ of M are related by the following Gauss and
Weingarten formulas with a unit normal local vector field N on M:

∇̃XY = ∇XY + 〈AX,Y 〉N and ∇̃XN = −AX

for vector fields X, Y on M , where A is the shape operator of M in M̃ . It is known that M

admits an almost contact metric structure (φ, ξ, η, 〈 , 〉) induced from the Kähler structure J

of the ambient Kähler manifold M̃. That is, we have a tensor field φ of type (1,1), a vector
field ξ and a 1-form η on M defined by

〈φu, v〉 = 〈Ju, v〉 and 〈ξ, u〉 = η(u) = 〈Ju,N 〉
for all tangent vectors u, v ∈ T M . These satisfy

φ2v = −v + η(v)ξ , ξ = −JN , and φξ = 0 .

It follows from these equalities and the Weingarten formula that

(2.1) ∇Xξ = φAX .

A real hypersurface in a complex projective space CPn is said to be of type (A) if it
is a tube around some totally geodesic Kähler submanifold CPk, 0 � k � n − 1. Real
hypersurfaces of type (A) are classified into two classes. Real hypersurfaces of type (A)
corresponding to the case k = 0 or k = n − 1 are said to be real hypersurfaces of type (A1),
and others are said to be real hypersurfaces of type (A2). We should note that in a complex
projective space CPn(c) of constant holomorphic sectional curvature c, a tube of radius r

with 0 < r < π/
√

c around CPk(c) is congruent to a tube of radius (π/
√

c ) − r around
CPn−k−1(c). Hence we can say that real hypersurfaces of type (A1) are geodesic spheres. In
this section, we study the quantity of extrinsic geodesics on real hypersurfaces of type (A).
We call two geodesics γ1, γ2 on a Riemannian manifold M congruent to each other if there
exist an isometry ϕ of M and a constant s0 with γ2(s + s0) = ϕ ◦ γ1(s) for all s. We can see
the quantity of congruence classes of extrinsic geodesics on real hypersurfaces of type (A) as
follows.

PROPOSITION 1. Let M be a geodesic sphere of radius r with 0 < r < π/
√

c in
CPn(c).

(1) When 0 < r < π/(2
√

c ), there exist no extrinsic geodesics on M .
(2) When π/(2

√
c ) � r < π/

√
c , there exists just one congruence class of extrinsic

geodesics on M .

PROPOSITION 2. For a real hypersurface M of type (A2), at each point x ∈ M there
exist infinitely many congruence classes of extrinsic geodesics on M passing through x.

In order to show these propositions we here recall invariants of geodesics on real hy-
persurfaces of type (A) in CPn. Such hypersurfaces are characterized by properties of their
shape operators as follows.
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LEMMA 1 ([7]). For a real hypersurface M in CPn(c), the following conditions are
mutually equivalent to each other:

(1) M is of type (A).
(2) φA = Aφ holds on M .
(3) The covariant derivative of the shape operator A of M satisfies

(∇uA)v = (−c/4){〈φu, v〉ξ + η(v)φu}
for all tangent vectors u, v ∈ T M .

For a geodesic γ on a real hypersurface M of type (A), we define its structure torsion ργ

by ργ = 〈γ̇ , ξγ 〉. Clearly, it satisfies −1 � ργ � 1. By making use of (2.1) and Lemma 1(2),
we can see that, for each geodesic γ on M , this structure torsion ργ is constant along γ in the
following manner:

(2.2)
∇γ̇ ργ (s) = 〈γ̇ (s), φAγ̇ (s)〉 = 1

2
{〈γ̇ (s), φAγ̇ (s)〉 + 〈φAγ̇ (s), γ̇ (s)〉}

= 1

2
〈γ̇ (s), (φA − Aφ)γ̇ (s)〉 = 0 .

For geodesics on a hypersurface of type (A1), we can classify them by means of their structure
torsions (see Proposition 2.3 in [3]):

LEMMA 2. On a geodesic sphere M in CPn, two geodesics γ1, γ2 are congruent to
each other with respect to the isometry group I(M) of M if and only if their structure torsions
ργ1 and ργ2 satisfy |ργ1 | = |ργ2 |.

In order to classify geodesics on real hypersurfaces of type (A2) we need another in-
variant. For a geodesic γ on a real hypersurface of type (A) in CPn we define its normal
curvature κγ by κγ = 〈Aγ̇ , γ̇ 〉. By Lemma 1(3) we have

∇γ̇ κγ (s) = 〈(∇γ̇ (s)A)γ̇ (s), γ̇ (s)〉 = 0 ,

which shows that κγ is constant along γ . We can interpret this invariant in another way
as follows. Eigenvalues and eigenvectors of the shape operator A are called principal cur-
vatures and principal curvature vectors, respectively. When M is a geodesic sphere of ra-
dius r with 0 < r < π/

√
c in CPn(c), it has two principal curvatures

√
c cot(

√
c r)

and (
√

c r/2) cot(
√

c r/2). When M is a real hypersurface of type (A2) which is a tube
of radius r (0 < r < π/

√
c ) around CPk(c) in CPn(c), it has three principal curvatures√

c cot(
√

c r), (
√

c r/2) cot(
√

c r/2) and −(
√

c r/2) tan(
√

c r/2). For a principal curvature
λ of a real hypersurface of type (A), we denote by Vλ the subbundle of principal curvature
vectors associated with λ. For a tube M of radius r around totally geodesic CPk(c) with
0 � k � n − 2 in CPn(c), we consider a projection Proj : T M → Vλ of the tangent bundle
onto the subbundle of principal vectors with λ = (

√
c r/2) cot(

√
c r/2). For a geodesic on M

we define its principal torsion τγ by τγ = ‖Proj(γ̇ )‖. Clearly, it satisfies 0 � τγ �
√

1 − ρ2
γ
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and

(2.3)
κγ = ρ2

γ

√
c cot(

√
c r) + τ 2

γ (
√

c /2) cot(
√

c r/2)

− (1 − ρ2
γ − τ 2

γ )(
√

c /2) tan(
√

c r/2) ,

since the characteristic vector field ξ is principal with principal curvature
√

c cot(
√

c r).
Hence τγ is also constant along γ .

Geodesics on a hypersurface of type (A2) are classified by means of their structure tor-
sions and normal curvatures (see Theorem 2 in [2] and Proposition 1 in [1]):

LEMMA 3. On a hypersurface M of type (A2), two geodesics γ1, γ2 are congruent to
each other with respect to the isometry group I(M) of M if and only if one of the following
conditions holds:

(1) Their structure torsions and normal curvatures satisfy |ργ1 | = |ργ2 | and κγ1 = κγ2 .
(2) Their structure torsions and principal torsions satisfy |ργ1 | = |ργ2 | and τγ1 = τγ2 .

We now prove Propositions 1 and 2.

PROOF OF PROPOSITION 1. By the Gauss formula, we see that a geodesic γ on M is
an extrinsic geodesic in CPn if and only if it has null normal curvature. Since its principal
torsion is

√
1 − ρ2

γ , we find

κγ = ρ2
γ

√
c cot(

√
c r) + (1 − ρ2

γ )(
√

c /2) cot(
√

c r/2) .

Since 2 cot(
√

c r) = cot(
√

c r/2) − tan(
√

c r/2), we conclude that κγ = 0 if and only if
ργ = ± cot(

√
c r/2). This implies that r � π/(2

√
c ) because −1 � ργ � 1. By virtue of

Lemma 2 we obtain the result. �

PROOF OF PROPOSITION 2. By Relation (2.3), a geodesic γ on M is an extrinsic geo-
desic (i.e., κγ = 0) if and only if

ρ2
γ = (1 − τ 2

γ ) tan2(
√

c r/2) − τ 2
γ

holds. Since 0 � ρ2
γ � 1, the above equality holds if and only if

sin2(
√

c r/2) − cos2(
√

c r/2) � τ 2
γ � sin2(

√
c r/2) .

Hence we obtain the conclusion with the aid of Lemma 3. �

REMARK. (1) On a geodesic sphere of radius r in CPn(c) with π/(2
√

c ) � r <

π/
√

c , a geodesic is an extrinsic geodesic in CPn(c) if and only if its structure torsion is
± cot(

√
c r/2).

(2) On a real hypersurface of type (A2) which is a tube of radius r around CPk(c) in
CPn(c), a geodesic is an extrinsic geodesic in CPn(c) if and only if its structure torsion and
principal torsion satisfy

(i) sin2(
√

c r/2) − cos2(
√

c r/2) � τ 2
γ � sin2(

√
c r/2),

(ii) ρ2
γ = (1 − τ 2

γ ) tan2(
√

c r/2) − τ 2
γ .
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We here make a remark on the congruency of geodesics on real hypersurfaces M of type
(A) in CPn. Let ι : M → CPn be a canonical isometric embedding. If two geodesics γ1 and
γ2 on M are congruent to each other with respect to the isometry group I(M) of M , then the
curves ι ◦ γ1 and ι ◦ γ2 are also congruent to each other as curves in CPn with respect to the
isometry group SU(n+1) of CPn, because ι is an equivariant isometric embedding. However,
in general, the converse does not hold. Our discussion guarantees that we can take infinitely
many geodesics on a real hypersurface M of type (A2) which are not congruent to one another
on M and are extrinsic geodesics on CPn. As CPn is a Riemannian symmetric space of rank
one, these extrinsic geodesics are congruent to one another with respect to SU(n+1).

3. Characterizations of real hypersurfaces of type (A). In this section we give
some characterizations of real hypersurfaces of type (A) in CPn by properties of extrinsic
geodesics. A real hypersurface M of a Kähler manifold M̃ is said to be a Hopf hypersurface
if the shape operator A of M satisfies Aξ = αξ for some function α on M , namely, the char-
acteristic vector field ξ is principal. If we restrict ourselves on Hopf hypersurfaces in CPn,
it is well-known that the function α is automatically locally constant on them. Furthermore,
roughly speaking, every tube of sufficiently small constant radius around an arbitrary Kähler
submanifold of CPn is a Hopf hypersurface (see [7]). This means that the class of Hopf hy-
persurfaces is an abundant class in the theory of real hypersurfaces in CPn. The following
proposition characterizes geometrically all Hopf hypersurfaces of CPn.

LEMMA 4. Let M be a real hypersurface with a unit normal local vector field N in
CPn, n � 2, endowed with the Kähler structure J . Then M is a Hopf hypersurface if and
only if the following condition (S) holds:

(S) At each point x ∈ M , let Lx

(∼= CP 1
)

be a totally geodesic holomorphic line in
CPn through x whose tangent space TxLx is the complex one dimensional linear subspace
of TxCPn spanned by ξx . Then the normal section Nx = M ∩ Lx given by Lx is the integral
curve through the point x for the characteristic vector field ξ on M .

PROOF. It follows from the Gauss formula and (2.1) that ∇̃ξ ξ = φAξ + 〈Aξ, ξ〉N .
Thus M is a Hopf hypersurface if and only if

∇̃ξ ξ = 〈Aξ, ξ〉N = 〈Aξ, ξ〉J ξ ,

which is nothing but Condition (S). �

In view of the constancy of structure torsions of geodesics on real hypersurfaces of type
(A) (see (2.2)) and Lemma 4, we first establish a characterization of all hypersurfaces of type
(A) (cf. [6]).

THEOREM 1. A connected real hypersurface M of CPn, n � 2, is of type (A) if and
only if it satisfies Condition (S) and the following condition (G) :

(G) At each point x ∈ M , there exists an orthonormal basis {v1, v2, . . . , v2n−2} of
the linear subspace T 0

x M = {v ∈ TxM | 〈v, ξx 〉 = 0} of TxM satisfying the following two
conditions:
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(1) Every geodesic γi of M through x with initial vector γ̇i(0) = vi (1 � i � 2n − 2)

has constant structure torsion ργi .
(2) Every geodesic γij of M through x with initial vector γ̇ij (0) = (vi + vj )/

√
2 (1 �

i < j � 2n − 2) has constant structure torsion ργij .

PROOF. It suffices to prove the “if” part. By Condition (1) and (2.1) we have

0 = γ̇i(s)〈γ̇i (s), ξγi (s)〉 = 〈γ̇i(s),∇γ̇i ξ(s)〉 = 〈γ̇i(s), φAγ̇i(s)〉 ,

so that at the point x ∈ M we obtain

(3.1) 〈(φA − Aφ)vi, vi〉 = 0 for each i ∈ {1, 2, . . . , 2n − 2}
as well as

(3.2) 〈φAvi, vi〉 = 0 for each i ∈ {1, 2, . . . , 2n − 2} .

It follows from (3.2) and Condition (2) that

〈φA(vi + vj ), vi + vj 〉 = 0 for 1 � i < j � 2n − 2 .

This, together with (3.2), shows that

(3.3) 〈(φA − Aφ)vi, vj 〉 = 0 for 1 � i < j � 2n − 2 .

Hence, from (3.1) and (3.3) we see that φA = Aφ holds on the linear subspace T 0
x M . More-

over, it follows from Lemma 4 that the characteristic vector ξ is principal, so in particular
φAξ = 0 = Aφξ . Hence we can see that φA = Aφ holds on TxM at each point x of our real
hypersurface M . Thus M is of type (A) by Lemma 1. �

In the hypothesis of Theorem 1 we do not need to take the vectors {v1, . . . , v2n−2} as a
local smooth field of orthonormal frames in M . However, for each hypersurface M of type
(A) in CPn, we can take a global smooth field of orthonormal frames {v1, . . . , v2n−2} in M

satisfying Condition (G).
As immediate consequences of Theorem 1 and Propositions 1 and 2 we obtain the fol-

lowing three theorems which distinguish real hypersurfaces of type (A1) from those of type
(A2) in CPn. We assume always n � 2.

THEOREM 2. A connected real hypersurface M of CPn(c) is a geodesic sphere of
radius r with 0 < r < π/(2

√
c ) if and only if M satisfies Conditions (S), (G) and has a

point x0 ∈ M such that there exist no extrinsic geodesics passing through this point.

THEOREM 3. A connected real hypersurface M of CPn(c) is a geodesic sphere of
radius r with π/(2

√
c ) � r < π/

√
c if and only if it satisfies Conditions (S), (G) and has a

point x0 ∈ M such that there exists just one congruence class of extrinsic geodesics passing
through this point.
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COROLLARY. A connected real hypersurface M of CPn(c) is a hypersurface of type
(A1) if and only if it satisfies Conditions (S), (G) and has a point x0 ∈ M such that there exist
at most finite congruence classes of extrinsic geodesics passing through this point.

THEOREM 4. A connected real hypersurface M of CPn(c) is a hypersurface of type
(A2) if and only if it satisfies Conditions (S), (G) and has infinitely many congruence classes
of extrinsic geodesics.

Finally, we characterize hypersurfaces of type (A) in CPn(c) whose radius is just
π/(2

√
c ).

THEOREM 5. A connected real hypersurface M in CPn(c) is of type (A) of radius
π/(2

√
c ) if and only if it satisfies Conditions (S), (G) and has a point x0 ∈ M such that the

normal section Nx0 at this point is an extrinsic geodesic.

PROOF. By virtue of Lemma 4 and Theorem 1 we see that M is of type (A). If its radius
is r , we can set Aξ = √

c cot(
√

c r)ξ (see [7]). On the other hand, as the normal section Nx0

can be seen as an extrinsic geodesic, we have

0 = ∇̃ξ ξ(x0) = ∇ξ ξ(x0) + 〈Aξx0, ξx0〉Nx0 = 〈Aξx0, ξx0〉Nx0 .

Therefore r = π/(2
√

c ). �

4. Two comments on our theorems. We first remark that Theorem 1 does not hold
without Condition (S), that is, the assumption that M is a Hopf hypersurface. To see this,
we take ruled real hypersurfaces. A real hypersurface M is called a ruled real hypersurface
in CPn if the holomorphic distribution T 0M is integrable and each of its maximal integral
manifolds is a totally geodesic hyperplane CPn−1 of CPn. The following proposition gives
a fundamental property of geodesics on ruled real hypersurfaces.

PROPOSITION 3. On a ruled real hypersurface M in CPn every geodesic γ , whose
initial vector γ̇ (0) is orthogonal to the vector ξγ (0), has constant structure torsion, namely
the tangential vector γ̇ (s) is orthogonal to ξγ (s) for every s, and is an extrinsic geodesic.

PROOF. Let CPn−1 be the maximal integral manifold through the point x = γ (0) for
the holomorphic distribution T 0M . We take a geodesic γ1 on this leaf CPn−1 satisfying the
initial condition γ1(0) = x and γ̇1(0) = γ̇ (0). Since the leaf CPn−1 is totally geodesic
in CPn, the curve γ1 is a geodesic on CPn. Hence γ1, considered as a curve on our real
hypersurface M , is also a geodesic on M . Therefore by the uniqueness of geodesics, we see
that γ (s) = γ1(s) for each s with −ε < s < ε for some ε > 0, so that γ has null structure
torsion and is an extrinsic geodesic. �

Proposition 3 shows that Theorem 1 is no longer true without the assumption that M is a
Hopf hypersurface.
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In order to guarantee the existence of ruled real hypersurfaces, we review the construc-
tion of such hypersurfaces in CPn. For an arbitrary regular real curve γ in CPn, we attach at
each point γ (s) a totally geodesic hyperplane Ms (∼= CPn−1) whose tangent space is orthog-
onal to the complex one-dimensional linear subspace {γ̇ (s), J γ̇ (s)} and obtain a ruled real
hypersurface M = ⋃

s Ms . We deal with a ruled real hypersurface locally, because generally
this hypersurface has self-intersections and singularities. We recall the shape operator A of a
ruled real hypersurface M . We set differentiable functions µ, ν on M by µ = 〈Aξ, ξ〉 and
ν = ‖Aξ − µξ‖. Then on the open dense subset M∗ = {x ∈ M; ν(x) > 0} of M , the shape
operator A of M satisfies the following equalities with a unit vector field U orthogonal to ξ

for an arbitrary tangent vector X orthogonal to ξ and U :

Aξ = µξ + νU , AU = νξ , AX = 0 .

In the theory of real hypersurfaces, for a ruled real hypersurface M we omit the points where
ξ is principal and suppose that M∗ = M . All ruled real hypersurfaces are typical examples
of non-Hopf hypersurfaces. Furthermore, every ruled real hypersurface in CPn(c) is not
complete (see (18) and (19) in [5]). On the contrary, every hypersurface of type (A) in CPn

is compact.
We next consider real hypersurfaces M in a complex n-dimensional complex hyperbolic

space CHn(c) of constant holomorphic sectional curvature c < 0. We note that there exist no
totally geodesic real hypersurfaces neither in CHn(c). The following hypersurfaces are basic
examples in the theory of real hypersurfaces in CHn(c) (cf. [7]):

(1) A horosphere in CHn(c).
(2) A geodesic sphere of radius r , where 0 < r < ∞.
(3) A tube of radius r around totally geodesic CHn−1(c), where 0 < r < ∞.
(4) A tube of radius r around totally geodesic CHk(c), where 1 � k � n − 2 and

0 < r < ∞.
We shall call them real hypersurfaces of type (A), or individually call them of type (A0),

(A1,0), (A1,1), (A2) in serial order. Usually both of real hypersurfaces of type (A1,0) and
of (A1,1) are said to be of type (A1). These real hypersurfaces are Hopf hypersurfaces in a
complex hyperbolic space CHn. For real hypersurfaces in CHn, we consider the following
condition (S′) corresponding to Condition (S) for real hypersurfaces in CPn. Since the asser-
tion of Lemma 1 also holds for real hypersurfaces in CHn, by the same discussion as that in
the proof of Theorem 1, we obtain the following theorem which characterizes all hypersur-
faces of type (A) in CHn(c).

THEOREM 6. A connected real hypersurface M in CHn(c) for n � 2 is of type (A) if
and only if it satisfies Condition (G) and the following condition (S′):

(S′) At each point x ∈ M , let Lx

(∼= CH 1
)

be a totally geodesic holomorphic line in
CHn through x whose tangent space TxLx is the complex one-dimensional linear subspace
of TxCHn spanned by ξx . Then the normal section Nx = M ∩ Lx given by Lx is the integral
curve through the point x for the characteristic vector field ξ on M .
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The principal curvatures of hypersurfaces of type (A) in CHn(c) are given as follows
([7]):

Type λ1 λ2 α

(A0)
√|c|

2 —
√|c|

(A1,0)
(√|c|

2

)
coth

(√|c| r
2

)
—

√|c| coth(
√|c| r)

(A1,1)
(√|c|

2

)
tanh

(√|c| r
2

)
—

√|c| coth(
√|c| r)

(A2)
(√|c|

2

)
coth

(√|c| r
2

) (√|c|
2

)
tanh

(√|c| r
2

) √|c| coth(
√|c| r)

In view of this table of principal curvatures, we can easily see that there exist no extrinsic
geodesics on every hypersurface of type (A) in CHn. Therefore, we emphasize that we cannot
characterize individually these real hypersurfaces of type (A0), of type (A1) and of type (A2)

by investigating the number of congruence classes of their extrinsic geodesics.
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