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INTRINSIC ULTRACONTRACTIVITY OF NON-SYMMETRIC
DIFFUSION SEMIGROUPS IN BOUNDED DOMAINS

PANKI KIM∗ AND RENMING SONG∗∗

(Received September 18, 2007)

Abstract. We extend the concept of intrinsic ultracontractivity to non-symmetric semi-
groups and prove the intrinsic ultracontractivity of the Dirichlet semigroups of non-symmetric
second order elliptic operators in bounded Lipschitz domains.

1. Introduction. The notion of intrinsic ultracontractivity (IU in abbreviation), intro-
duced in [10] for symmetric semigroups, is a very important concept and has been studied
extensively. Although the concept of ultracontractivity has been extended to non-symmetric
semigroups, (see, for instance, [21]), it seems that, up to now, no one has introduced the con-
cept of intrinsic ultracontractivity for non-symmetric semigroups. In this paper, we plan to fill
this gap and introduce the notion of intrinsic ultracontractivity for non-symmetric semigroups.
We show that, under natural conditions, the Dirichlet semigroups of non-symmetric second
order elliptic operators are intrinsic ultracontractive.

In the symmetric case, ultracontractivity and intrinsic ultracontractivity are connected
to logarithmic Sobolev inequalities. The connection between logarithmic Sobolev inequali-
ties and Lp to Lq bounds of semigroups was first discovered by Gross [12] in 1975. Davies
and Simons [10] adapted Gross’s approach to allow q = ∞ and therefore established the
connection between logarithmic Sobolev inequalities and ultracontractivity. (For an updated
survey on the subject of logarithmic Sobolev inequalities and contractive properties of semi-
groups, see [3] and [13].) In [4], Bañuelos proved the intrinsic ultracontractivity of killed
Schrödinger semigroups on Hölder domains of order zero or uniformly Hölder domains of
order α ∈ (0, 2), using a logarithmic Sobolev inequality characterization. In [6] and [7],
Chen and Song extended the argument of [4] to prove the intrinsic ultracontractivity of the
Schrödinger semigroup of killed symmetric stable processes in certain types of domains.

In this paper, we will also use logarithmic Sobolev inequalities as a tool to establish
the intrinsic ultracontractivity of non-symmetric semigroups. However, in the non-symmetric
case, things are very delicate. One has to use a related symmetric semigroup as a bridge to
make things work out. We show that, under some natural conditions the Dirichlet semigroup
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of a non-symmetric second order elliptic operator in a bounded Lipschitz domain is intrinsic
ultracontractive.

To concentrate on the main ideas, we will not try to obtain the most general result in
this paper. For simplicity, we will only deal with second order elliptic operators with smooth
coefficients. The case of second order differential operators with measure-valued drifts and
the case of non-local operators are considered in our papers [15] and [16], respectively.

This paper is organized as follows. In Section 2, we introduce the concept of ultracon-
tractivity and intrinsic ultracontractivity for non-symmetric semigroups. Section 3 contains
the proof of the intrinsic ultracontractivity for the Dirichlet semigroups of the non-symmetric
second order elliptic operators in bounded Lipschitz domains. In Appendix, we prove some
identities stated in Section 3.

Throughout this paper, we will use the following convention. The values of the constants
c1, c2, . . . may change from one appearance to another. In this paper, we use “:=” to denote
a definition, which is read as “is defined to be”.

2. Introduction to IU for non-symmetric semigroups. Suppose that E is a locally
compact separable metric space and m is a positive finite measure on E such that Supp[m] =
E. Suppose that we are given two semigroups {Pt } and {P̂t } on L2(E,m) such that for any
t > 0, ∫

E

f (x)Ptg(x)m(dx) =
∫
E

g(x)P̂tf (x)m(dx) .

We assume that there exists a family of continuous positive functions {p(t, ·, ·); t > 0} on
E × E such that for any (t, x) ∈ (0,∞)× E, we have

Ptf (x) =
∫
E

p(t, x, y)f (y)m(dy) , P̂t f (x) =
∫
E

p(t, y, x)f (y)m(dy) .

DEFINITION 2.1. The semigroups {Pt } and {P̂t } are said to be ultracontractive if, for
any t > 0, there exists constant ct > 0 such that

p(t, x, y) ≤ ct for any (x, y) ∈ E × E .

For any operator A from Lp(E,m) to Lq(E,m), we will use ‖A‖Lq(E,m),Lp(E,m) to
denote the norm of A. When there is no danger of confusion, we will write ‖A‖q,p for
‖A‖Lq(E,m),Lp(E,m).

It is well-known that if {Pt } and {P̂t } are sub-Markov semigroups in the sense that

Pt1(x) ≤ 1 , P̂t1(x) ≤ 1

for all t ≥ 0 and x ∈ E, then both of them are contractive semigroups on L2(E,m).

PROPOSITION 2.2. Suppose that {Pt } and {P̂t } are sub-Markov semigroups. Then {Pt }
and {P̂t } are ultracontractive if and only if, for any t > 0, Pt and P̂t are both bounded from
L2(E,m) to L∞(E,m).

PROOF. Suppose that {Pt } and {P̂t } are sub-Markov semigroups and that Pt and P̂t are
both bounded from L2(E,m) to L∞(E,m). Then both ‖Pt‖∞,2 and ‖P̂t‖∞,2 are decreasing
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functions of t . Put
at = max{‖Pt‖∞,2, ‖P̂t‖∞,2} .

By taking adjoint, we know that

‖Pt‖2,1 = ‖P̂t‖∞,2 , ‖P̂t‖2,1 = ‖Pt‖∞,2 ,

so we have

‖Pt‖∞,1 ≤ ‖Pt/2‖∞,2‖Pt/2‖2,1 ≤ a2
t/2 ,

‖P̂t‖∞,1 ≤ ‖P̂t/2‖∞,2‖P̂t/2‖2,1 ≤ a2
t/2 .

Therefore {Pt } and {P̂t } are ultracontractive.
Now suppose that, for any t > 0, we have

p(t, x, y) ≤ ct for any (x, y) ∈ E ×E .

Then we have
‖Pt‖∞,1 ≤ ct , ‖P̂t‖∞,1 ≤ ct .

Since {Pt } and {P̂t } are sub-Markov semigroups, we also have

‖Pt‖∞,∞ ≤ 1 , ‖P̂t‖∞,∞ ≤ 1 ,

and hence we can use interpolation to arrive at

‖Pt‖∞,2 ≤ c
1/2
t , ‖P̂t‖∞,2 ≤ c

1/2
t . �

To introduce the concept of intrinsic ultracontractivity, we further assume that
(a) {Pt } and {P̂t } are strongly continuous semigroups on L2(E,m);
(b) for each t > 0, p(t, x, y) is bounded and strictly positive.
LetL and L̂ be the infinitesimal generators of the semigroups {Pt } and {P̂t } onL2(E,m),

respectively. It follows from Jentzsch’s Theorem (Theorem V.6.6 on page 337 of [22]) and
the strong continuity of {Pt } and {P̂t } that the common value λ0 := sup Re(σ (L)) =
sup Re(σ (L̂)) is an eigenvalue of multiplicity 1 for both L and L̂, and that an eigenfunction
φ0 of L associated with λ0 can be chosen to be strictly positive a.e. with ‖φ0‖L2(E,m) = 1

and an eigenfunctionψ0 of L̂ associated with λ0 can be chosen to be strictly positive a.e. with
‖ψ0‖L2(E,m) = 1. Thus for a.e. x ∈ E,

eλ0tφ0(x) =
∫
E

p(t, x, z)φ0(z)m(dz) , eλ0tψ0(x) =
∫
E

p(t, z, x)ψ0(z)m(dz) .(2.1)

PROPOSITION 2.3. φ0(x) and ψ0(x) are strictly positive and continuous in E. Thus
(2.1) is true for every x ∈ E.

PROOF. By (2.1), we have

φ0(x) = e−λ0

∫
E

p(1, x, z)φ0(z)m(dz)

almost everywhere on E. Since p(1, x, z) is bounded continuous and m(E) < ∞, the right
hand side of the above equation is continuous by using the dominated convergence theorem
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and the fact ‖φ0‖L2(E,m) = 1. Similarly, e−λ0
∫
E
p(1, z, x)ψ0(z)m(dz) is continuous. Thus

there exist continuous versions of φ0 and ψ0, and (2.1) is true for every x ∈ E. Now the strict
positivity of φ0 and ψ0 follow from the strict positivity of p(1, ·, ·) and (2.1). �

Define, for any (t, x, y) ∈ (0,∞)× E × E,

q(t, x, y) := e−λ0t

φ0(x)
p(t, x, y)φ0(y) , q̂(t, x, y) := e−λ0t

ψ0(y)
p(t, x, y)ψ0(x) .

Then it is easy to check that the operators {Qt } and {Q̂t } defined by

Qtf (x) :=
∫
E

q(t, x, y)f (y)m(dy) , Q̂tf (x) :=
∫
E

q̂(t, y, x)f (y)m(dy)

form semigroups with Qt1 = Q̂t1 = 1.
Define a function µ(x) by

µ(x) := φ0(x)ψ0(x)∫
E

φ0(y)ψ0(y)m(dy)

.

Then the measure µ(x)m(dx) is a probability measure onE. PutM = ∫
E φ0(y)ψ0(y)m(dy).

It is easy to see thatM ≤ 1. For any t > 0 and any positive nonnegative functions f and g on
E, we have∫

E

g(x)µ(x)Qtf (x)m(dx)

=
∫
E

g(x)
e−λ0t

φ0(x)

∫
E

p(t, x, y)φ0(y)f (y)m(dy)
1

M
φ0(x)ψ0(x)m(dx)

=
∫
E

g(x)
e−λ0t

M
ψ0(x)

∫
E

p(t, x, y)φ0(y)f (y)m(dy)m(dx)

=
∫
E

φ0(y)f (y)

∫
E

e−λ0t

M
ψ0(x)p(t, x, y)g(x)m(dx)m(dy)

=
∫
E

1

M
φ0(y)ψ0(y)f (y)

1

ψ0(y)

∫
E

e−λ0tψ0(x)p(t, x, y)g(x)m(dx)m(dy)

=
∫
E

f (y)µ(y)Q̂tg(y)m(dy) .

Thus {Qt } and {Q̂t } are dual semigroups on L2(E,µ(x)m(dx)).
By taking g = 1 in the display above, we see that µ is an invariant function of {Qt }.

Similarly, µ is also an invariant function of {Q̂t }.
DEFINITION 2.4. The semigroups {Pt } and {P̂t } are said to be intrinsically ultracon-

tractive if, for any t > 0, there exists a constant ct > 0 such that

p(t, x, y) ≤ ctφ0(x)ψ0(y) for all (x, y) ∈ E × E .

In Section 3, we will show that the Dirichlet semigroups of non-symmetric diffusions
with smooth coefficients in bounded Lipschitz domains are intrinsic ultracontractive. One of
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the key steps in the argument of Section 3 is Lemma 3.1 which amounts to saying that φ0

and ψ0 are comparable. This comparability of the two eigenfunctions φ0 and ψ0 is not true
in general. For instance, by using the Dirichlet heat kernel estimates in [14], one can easily
see that for the semigroups {PDt } and {P̂ Dt } defined before Lemma 5.5 in [15] with D being a
bounded C1,1 domain, φ0 is comparable to δD(x) (the distance between x and ∂D) while ψ0

is comparable to the constant function.
Since the density of Qt with respect to µ(x)m(dx) is given by

q̄(t, x, y) := Me−λ0tp(t, x, y)

φ0(x)ψ0(y)
,

it follows from Proposition 2.2 that {Pt } and {P̂t } are intrinsically ultracontractive if and only
if the semigroups {Qt } and {Q̂t } on L2(E,µ(x)m(dx)) are ultracontractive.

For the remainder of this section, we discuss some important consequences of the intrin-
sic ultracontractivity for non-symmetric semigroups. In particular, these results are used in
our upcoming papers [15] and [16].

Intrinsic ultracontractivity implies the following lower bound on the density p(t, x, y).

PROPOSITION 2.5. Suppose that {Pt } and {P̂t } are intrinsically ultracontractive, that
is, for any t > 0, there exists a constant ct > 0 such that

p(t, x, y) ≤ ctφ0(x)ψ0(y) for all (x, y) ∈ E × E.

Then, for any t > 0, there exists a constant c′t > 0 such that

p(t, x, y) ≥ c′tφ0(x)ψ0(y) for all (x, y) ∈ E ×E .

PROOF. The idea of the proof comes from the proof of (iv)⇒(v) in Theorem 3.2 of [10].
Let K be a compact subset of E such that∫

K

µ(x)m(dx) ≥ 1 − eλ0t

2Mct
.

Then by Proposition 2.3, we obtain

eλ0t
1

M
φ0(x) = 1

M

∫
E

p(t, x, y)φ0(y)m(dy)

≤ 1

M

∫
E\K

ctφ0(x)ψ0(y)φ0(y)m(dy)+ 1

M

∫
K

p(t, x, y)φ0(y)m(dy)

≤ 1

2M
eλ0t φ0(x)+ 1

M

∫
K

p(t, x, y)φ0(y)m(dy) ,

so that ∫
K

p(t, x, y)φ0(y)m(dy) ≥ 1

2
eλ0tφ0(x) for all x ∈ E .(2.2)

Similarly, we also have∫
K

p(t, x, y)ψ0(x)m(dx) ≥ 1

2
eλ0tψ0(y) for all y ∈ E .(2.3)
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Note that by the strict positivity and continuity of p(t, x, y) and Proposition 2.3, we have

J := min

{
p(t/3, x, y)

φ0(x)ψ0(y)
; x, y ∈ K

}
> 0 .(2.4)

Thus by the semigroup property and (2.4),

p(t, x, y)≥
∫
K

∫
K

p(t/3, x, z)p(t/3, z,w)p(t/3, w, y)m(dz)m(dw)

≥ J

∫
K

∫
K

p(t/3, x, z)φ0(z)ψ0(w)p(t/3, w, y)m(dz)m(dw)

= J

∫
K

p(t/3, x, z)φ0(z)m(dz)

∫
K

ψ0(w)p(t/3, w, y)m(dw)

≥ J

4
e2λ0t/3φ0(x)ψ0(y) .

In the last inequality above, we used (2.2) and (2.3). �

For simplicity, we will write L2(E,µ(x)m(dx)) as L2(E,µ) from now on. The fol-
lowing result implies that, when {Pt } and {P̂t } are strongly continuous on L2(E,m), then
{Qt } and {Q̂t } are strongly continuous contraction semigroups on L2(E,µ). Note that in the
symmetric case, {Qt } and {Q̂t } are automatically strongly continuous on L2(E,µ). We also
note that when {Pt } and {P̂t } are associated with a pair of dual right processes, by repeating
the argument in Section 11.3 of [8], one can show that there are pair of right processes as-
sociated with the transition densities q and q̂. These two right processes are duals of each
other with respect to the measure µ(x)m(dx). Thus {Qt } and {Q̂t } are strongly continuous
on L2(E,µ(x)m(dx)); see, for instance, the second paragraph after Lemma 2.3 in [11]. But
in general, the strong continuity of {Qt } and {Q̂t } is not obvious. This is only one of the many
indications that the non-symmetric case is much delicate to deal with.

PROPOSITION 2.6. {Qt } and {Q̂t } are strongly continuous contraction semigroups in
L2(E,µ).

PROOF. The contraction property follows immediately from the fact that {Qt } and {Q̂t }
are Markov semigroups. For f ∈ L2(E,µ), let

fk := f 1{|f |≤k} , k ≥ 1 .

Since ‖φ0‖L2(E,m) = ‖ψ0‖L2(E,m) = 1 and fk is bounded, we have φ0fk ∈ L2(E,m),
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ψ0fk ∈ L2(E,m) and fk ∈ L2(E, φ2
0m) ∩ L2(E,ψ2

0m). Moreover, for any k ≥ 1 and t > 0,

‖Qtfk − fk‖2
L2(E,φ2

0m)

=
∫
E

( ∫
E

e−λ0t

φ0(x)
p(t, x, y)φ0(y)fk(y)m(dy)− fk(x)

)2

φ2
0(x)m(dx)

= e−2λ0t

∫
E

( ∫
E

p(t, x, y)φ0(y)fk(y)m(dy)− eλ0tφ0(x)fk(x)

)2

m(dx)

= e−2λ0t‖Pt (φ0fk)− eλ0tφ0fk‖2
L2(E,m)

≤ 2e−2λ0t (‖Pt (φ0fk)− φ0fk‖2
L2(E,m)

+ (1 − eλ0t )2‖φ0fk‖2
L2(E,m)

) .

(2.5)

Similarly, for any k ≥ 1 and t > 0,

‖Q̂tfk − fk‖2
L2(E,ψ2

0m)

≤ 2e−2λ0t (‖P̂t (ψ0fk)− ψ0fk‖2
L2(E,m)

+ (1 − eλ0t )2‖ψ0fk‖2
L2(E,m)

) .
(2.6)

Since {Pt } and {P̂t } are strongly continuous semigroups on L2(E,m), from (2.5) and
(2.6) we have

lim
t→0

‖Qtfk − fk‖2
L2(E,φ2

0m)
= lim
t→0

‖Q̂t fk − fk‖2
L2(E,ψ2

0m)
= 0 , k ≥ 1 .(2.7)

On the other hand, since ‖Qtfk‖∞ ≤ ‖fk‖∞ ≤ k and ‖Q̂tfk‖∞ ≤ k, we have∫
E

(Qtfk(x)− fk(x))
2ψ2

0 (x)m(dx) ≤ 4k2 , k ≥ 1 , t > 0 ,(2.8)

and ∫
E

(Q̂tfk(x)− fk(x))
2φ2

0(x)m(dx) ≤ 4k2 , k ≥ 1 , t > 0 .(2.9)

Thus, by the Hölder inequality and (2.7) through (2.9), we obtain that

lim sup
t→0

‖Qtfk − fk‖2
L2(E,µ)

= 1

M
lim sup
t→0

∫
E

(Qtfk(x)− fk(x))φ0(x)(Qtfk(x)− fk(x))ψ0(x)m(dx)

≤ 1

M
lim sup
t→0

‖Qtfk − fk‖L2(E,φ2
0m)

(∫
E

(Qtfk(x)− fk(x))
2ψ2

0 (x)m(dx)

)1/2

≤ 2k

M
lim sup
t→0

‖Qtfk − fk‖L2(E,φ2
0m)

= 0 , k ≥ 1 ,

and, similarly,
lim sup
t→0

‖Q̂t fk − fk‖2
L2(E,µ)

= 0 , k ≥ 1 .
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Now, by the contraction property of {Qt } and {Q̂t }, we see that

‖Qtf − f ‖L2(E,µ) ≤ ‖Qt(f − fk)‖L2(E,µ) + ‖Qtfk − fk‖L2(E,µ) + ‖f − fk‖L2(E,µ)

≤ 2‖f − fk‖L2(E,µ) + ‖Qtfk − fk‖L2(E,µ)

and

‖Q̂tf − f ‖L2(E,µ) ≤ 2‖f − fk‖L2(E,µ) + ‖Q̂tfk − fk‖L2(E,µ) .

Therefore, for any ε > 0, we have

‖Qtf − f ‖L2(E,µ) ≤
ε

2
+ ‖Qtfk − fk‖L2(E,µ) ,

‖Q̂tf − f ‖L2(E,µ) ≤
ε

2
+ ‖Q̂tfk − fk‖L2(E,µ)

for large k. ThusQtf (x) and Q̂tf (x) converge to f (x) in L2(E,µ). �

The following result means that the intrinsic ultracontractivity of {Pt } and {P̂t } implies
that the semigroups {Qt } and {Q̂t } on L2(E,µ) converge to equilibrium exponentially fast.

THEOREM 2.7. Suppose that {Pt } and {P̂t } are intrinsically ultracontractive. Then
there exist positive constants c and ν such that

∣∣∣∣Me
−λ0tp(t, x, y)

φ0(x)ψ0(y)
− 1

∣∣∣∣ ≤ ce−νt , (t, x, y) ∈ (1,∞)× E × E .(2.10)

PROOF. The argument in this proof is very much similar to that used in the proof of
Theorem 4 in [20]. We can not directly use proof of Theorem 3 in [20] in the present situation
since we have to work with L2 spaces instead of the space of bounded continuous functions.

Let L̄ and ¯̂
L be the generators of {Qt } and {Q̂t } in L2(E,µ). Then 0 = sup Re(σ (L̄)) =

sup Re(σ ( ¯̂L)) and 1 is a positive eigenfunction of both L̄ and ¯̂
L corresponding to the eigen-

value 0. It follows the intrinsic ultracontractive assumption, Proposition 2.2 and Proposition
2.5 that for any t > 0, q̄(t, x, y) is bounded and strictly positive. Applying Jentzsch’s The-
orem and the strong continuity of {Qt } and {Q̂t } (Proposition 2.6), we know that the eigen-
value 0 is of multiplicity 1. By the Riesz-Schauder theory of compact operators, it follows
thatL2(E,µ) = N⊗R, whereN = {c ; c ∈ R} and Q̂t leavesN and R invariant (see Section
6.6 of [5]). Since 1 = sup Re(σ (Q̂t )) and the nonzero eigenvectors of a compact operator is
isolated, it follows that there exist positive constants c1 and ν such that

‖Q̂t |R‖L2(E,µ) ≤ c1e
−νt , t > 0 .

By the above decomposition of L2(E,µ), it follows that any f ∈ L2(E,µ) can be written as
f = cf + ψf , where ψf ∈ R. Thus

‖Q̂tf − cf ‖L2(E,µ) = ‖Q̂tψf ‖L2(E,µ) ≤ c1e
−νt‖ψf ‖L2(E,µ) .(2.11)
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We now identify cf . Since µ(x)m(dx) is a probability measure on E, we have

0 = lim
t→∞

∫
E

(Q̂tf (x)− cf (x))µ(x)m(dx)

= lim
t→∞

∫
E

f (x)Qt1(x)µ(x)m(dx)− cf =
∫
E

f (x)µ(x)m(dx)− cf .

Thus cf = ∫
E
f (x)µ(x)m(dx) and |cf | ≤ ‖f ‖L2(E,µ). Hence

‖ψf ‖L2(E,µ) ≤ ‖f ‖L2(E,µ) + |cf | ≤ 2‖f ‖L2(E,µ) .

Therefore, it follows from (2.11) that for all t > 0,

‖Q̂tf − cf ‖L2(E,µ) ≤ 2c1e
−νt‖f ‖L2(E,µ) .(2.12)

Since for t > 1/2 we have

q̄(t, x, y) =
∫
E

q̄(1/2, x, z)q̄(t − 1/2, z, y)µ(z)m(dz) = Q̂t−1/2fx(y) ,(2.13)

with fx(z) = q̄(1/2, x, z), we obtain

cfx =
∫
E

q̄(1/2, x, z)µ(z)m(dz) = 1 .(2.14)

Let c2
2 = supx∈E

∫
E q̄

2(1/2, x, z)µ(z)m(dz). From (2.12), (2.13) and (2.14) we obtain for
any t > 1/2,

sup
x∈E

∫
E

|q̄(t, x, y)− 1|2µ(y)m(dy) = sup
x∈E

∫
E

|Q̂t−1/2fx(y)− cfx |2µ(y)m(dy)

≤ sup
‖f ‖

L2(E,µ)≤c2

∫
E

|Q̂t−1/2f (y)− cf |2µ(y)m(dy) ≤ (2c1c2e
−ν(t−1/2))2 .

Thus for any t > 1/2, there exist c3 > 0 such that

sup
x∈E

∫
E

|q̄(t, x, z)− 1|2µ(z)m(dz) ≤ c3e
−2νt ,

sup
y∈E

∫
E

|q̄(t, z, y)− 1|2µ(z)m(dz) ≤ c3e
−2νt .

(2.15)

By the semigroup property of q̄(t, x, y), we have

q̄(t, x, y)− 1 =
∫
E

q̄(t/2, x, z)q̄(t/2, z, y)µ(z)m(dz)− 1

=
∫
E

q̄(t/2, x, z)q̄(t/2, z, y)µ(z)m(dz)−
∫
E

q̄(t/2, x, z)µ(z)m(dz)

−
∫
E

q̄(t/2, z, y)µ(z)m(dz)+
∫
E

µ(z)m(dz)

=
∫
E

(q̄(t/2, x, z)− 1)(q̄(t/2, z, y)− 1)µ(z)m(dz) .
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Therefore, from (2.15), we obtain for any t > 1,

sup
(x,y)∈E×E

|q̄(t, x, y)− 1|2

≤
(

sup
x∈E

∫
E

|q̄(t/2, x, z)− 1|2µ(z)m(dz)
)(

sup
y∈E

∫
E

|q̄(t/2, z, y)− 1|2µ(z)m(dz)
)

≤ c2
3e

−2νt . �

In the remainder of this section we assume that the semigroups {Pt } and {P̂t } are associ-
ated with two dual Hunt processesX and X̂, respectively. We are going to use SH+ to denote
the family of nonnegative superharmonic functions ofX, or equivalently, the family of exces-
sive functions of X. For any h ∈ SH+, we use Pxh to denote the law of the h-conditioned
processX and use Exh to denote the expectation with respect to Pxh . The following result gives
some important consequences of intrinsic ultracontractivity.

THEOREM 2.8. Suppose that {Pt } and {P̂t } are intrinsically ultracontractive and that
λ0 < 0.

(1) If ζh stands for the lifetime of the h-conditioned process X, then

sup
x∈E,h∈SH+

Exh(ζh) < ∞ .

(2) For any h ∈ SH+, we have

lim
t↑∞ e

−λ0tP xh (ζh > t) = φ0(x)

Mh(x)

∫
E

ψ0(y)h(y)m(dy) .

In particular,

lim
t↑∞

1

t
logPxh (ζh > t) = λ0 .

PROOF. (1) For any h ∈ SH+, it follows from Proposition 2.5 that there exists a
constant c1 > 0 such that

h(x) ≥
∫
E

p(1, x, y)h(y)m(dy) ≥ c1φ0(x)

∫
E

ψ0(y)h(y)m(dy) , x ∈ E .

Therefore

sup
x∈E,h∈SH+

φ0(x)

h(x)

∫
E

ψ0(y)h(y)m(dy) ≤ c−1
1 < ∞ .
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By Theorem 2.7 we know there exists a constant c2 > 0 such that

sup
x∈E,h∈SH+

Exh(ζh) = sup
x∈E,h∈SH+

1

h(x)

∫ ∞

0

∫
E

p(t, x, y)h(y)m(dy)dt

≤ sup
x∈E,h∈SH+

(
1

h(x)

∫ 1

0

∫
E

p(t, x, y)h(y)m(dy)dt

+ 1

h(x)

∫ ∞

1

∫
E

p(t, x, y)h(y)m(dy)dt

)

≤ 1 + c2

∫ ∞

1
eλ0t dt sup

x∈E,h∈SH+

φ0(x)

h(x)

∫
E

ψ0(y)h(y)m(dy) < ∞ .

(2) By Theorem 2.7 we have

lim
t↑∞ e

−λ0tP xh (ζh > t)= lim
t↑∞ e

−λ0t
1

h(x)

∫
E

p(t, x, y)h(y)m(dy)

= φ0(x)

Mh(x)

∫
E

ψ0(y)h(y)m(dy) . �

3. IU for non-symmetric diffusion semigroups. In this section we assume that
aij (x), bi(x), i, j = 1, . . . , d, and c(x) are bounded C∞ functions on Rd . We will also
assume that the functions ∂bi/∂xi , i = 1, . . . , d, are bounded and that the matrix (aij (x)) is
symmetric and uniformly elliptic, that is, there is a positive number λ such that

d∑
i,j=1

aij (x)ξiξj ≥ λ‖ξ‖2 for all ξ ∈ Rd .

In this section we assume that L is a second order differential operator

L =
d∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
−

d∑
i=1

bi
∂

∂xi
− c.

The formal adjoint of L is given by

L̂ =:
d∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
+

d∑
i=1

bi
∂

∂xi
−

(
c −

d∑
i=1

∂bi

∂xi

)
.

In this section, we will always assume that D is a bounded domain in Rd . Let p(t, x, y)
be the Dirichlet heat kernel of the operator L in D. For any t > 0, define

Ptf (x) :=
∫
D

p(t, x, y)f (y)dy , P̂t f (x) :=
∫
D

p(t, y, x)f (y)dy .

Then {Pt } and {P̂t } are both strongly continuous semigroups in L2(D, dx). The generator of
the semigroup {Pt } is L|D with zero Dirichlet boundary condition and the generator of the
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semigroup {P̂t } is L̂|D with zero Dirichlet boundary condition. By definition, we have∫
D

f (x)Ptg(x)dx =
∫
D

g(x)P̂t f (x)dx .

The bilinear form associated with {Pt } and {P̂t } is given by (E,H 1
0 (D)), where

E(u, v) :=
d∑

i,j=1

∫
D

aij
∂u

∂xi

∂v

∂xj
dx +

d∑
i=1

∫
D

biv
∂u

∂xi
dx +

∫
D

cuvdx , u, v ∈ H 1
0 (D) .

If we assume that c is a nonnegative function, then there is a diffusion process X with gener-
ator L and {Pt } is the semigroup of XD , the process obtained by killing the process X upon
exitingD. If we further assume that

c(x)−
d∑
i=1

∂bi

∂xi
(x) ≥ 0 , x ∈ Rd ,

then there is a diffusion process X̂ with generator L̂ and {P̂t } is the semigroup of X̂D , the
process obtained by killing the process X̂ upon exiting D, and the bilinear form (E,H 1

0 (D))

is a Dirichlet form in the sense of [17].
It follows from Jentzsch’s Theorem (Theorem V.6.6 on page 337 of [22]) that the com-

mon value λ0 := sup Re(σ (L|D)) = sup Re(σ (L̂|D)) is an eigenvalue of multiplicity 1 for
both L|D and L̂|D , and that an eigenfunction φ0 of L|D associated with λ0 can be chosen to
be strictly positive with ‖φ0‖L2(D,dx) = 1 and an eigenfunction ψ0 of L̂|D associated with λ0

can be chosen to be strictly positive with ‖ψ0‖L2(D,dx) = 1. It is well-known that φ0 and ψ0

are C∞ in D.
Define, for any (t, x, y) ∈ (0,∞)×D ×D,

q(t, x, y) := e−λ0t

φ0(x)
p(t, x, y)φ0(y) , q̂(t, x, y) := e−λ0t

ψ0(y)
p(t, x, y)ψ0(x) .

Then it is easy to check that the operators {Qt } and {Q̂t } defined by

Qtf (x) :=
∫
D

q(t, x, y)f (y)dy , Q̂tf (x) :=
∫
D

q̂(t, y, x)f (y)dy

form Markov semigroups on D.
Define a function µ(x) by

µ(x) := φ0(x)ψ0(x)∫
D

φ0(y)ψ0(y)dy

.

Then the measure µ(x)dx is a probability measure on D. From Section 2 we know that {Qt }
and {Q̂t } are dual semigroups on L2(D,µ) and that µ is an invariant function for both {Qt }
and {Q̂t }.
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The generators of {Qt } and {Q̂t } are given respectively by

1

φ0
(L|D − λ0)(φ0f ) =

d∑
i,j=1

∂

∂xi

(
aij

∂f

∂xj

)
−

d∑
i=1

bi
∂f

∂xi
+ 2

φ0

d∑
i,j=1

aij
∂φ0

∂xj

∂f

∂xi
,

1

ψ0
(L̂|D − λ0)(ψ0f ) =

d∑
i,j=1

∂

∂xi

(
aij

∂f

∂xj

)
+

d∑
i=1

bi
∂f

∂xi
+ 2

ψ0

d∑
i,j=1

aij
∂ψ0

∂xj

∂f

∂xi
.

Put
F := {f ∈ L2(D,µ) ; f φ0, f ψ0 ∈ H 1

0 (D)} ,
and define a bilinear form Q on F by

Q(f, g) := 1

M
E(f φ0, gψ0)+ λ0

∫
D

µ(x)f (x)g(x)dx , f, g ∈ F .(3.1)

It is obvious that C∞
c (D) is contained in F . It can be checked by elementary calculations (see

the appendix for a proof) that for any bounded f ∈ C1(D) ∩ F

Q(f, f ) =
∫
D

µ(x)

d∑
i,j=1

∂f (x)

∂xi
aij (x)

∂f (x)

∂xj
dx .(3.2)

We are going to use (Ẽ,H 1
0 (D)) to denote the symmetric part of (E,H 1

0 (D)):

Ẽ(u, v) := 1

2
(E(u, v)+ E(v, u)) , u, v ∈ H 1

0 (D) .

Then (Ẽ,H 1
0 (D)) is a symmetric bilinear form on L2(D) and its generator is given by

L̃|D = L|D + L̂|D
2

=
d∑

i,j=1

∂

∂xi

(
aij

∂

∂xj

)
− c + 1

2

d∑
i=1

∂bi

∂xi
.

Let (P̃t ) be the semigroup associated with the form (Ẽ,H 1
0 (D)). Then (P̃t ) has a strictly

positive continuous transition density p̃(t, x, y) with respect to the Lebesgue measure on D.
Let λ̃0 = sup σ(L̃|D). Then λ̃0 is an eigenvalue of L̃|D of multiplicity 1. Let ϕ0 be the

positive eigenfunction of L̃|D corresponding to λ̃0 such that
∫
D
ϕ2

0(x)dx = 1.
Define, for any (t, x, y) ∈ (0,∞)×D ×D,

q̃(t, x, y) := e−λ̃0t

ϕ0(x)
p̃(t, x, y)ϕ0(y) .

Then the semigroup {Q̃t } defined by

Q̃tf (x) :=
∫
D

q̃(t, x, y)f (y)dy

is a strongly continuous symmetric Markov semigroup on L2(D, ϕ2
0 ).

Let (Q̃,D(Q̃)) be the Dirichlet form onL2(D, ϕ2
0 ) associated with {Q̃t }. Then it follows

from [4] and [6] that

D(Q̃) = {f ∈ L2(D, ϕ2
0) ; fϕ0 ∈ H 1

0 (D)}



540 P. KIM AND R. SONG

and that

Q̃(f, f ) = Ẽ(f ϕ0, f ϕ0)+ λ̃0

∫
D

ϕ2
0(x)f

2(x)dx , f ∈ D(Q̃) .(3.3)

We also know from [3] and [4] that for any f ∈ D(Q̃),

Q̃(f, f ) =
∫
D

ϕ2
0(x)

d∑
i,j=1

∂f (x)

∂xi
aij (x)

∂f (x)

∂xj
dx .(3.4)

In the remainder of this section we will always assume that D is a bounded Lipschitz
domain. Then we have the following

LEMMA 3.1. The functions φ0, ψ0 and ϕ0 are comparable, that is, there exists con-
stants c1, c2 ≥ 1 such that for all x ∈ D,

c−1
1 φ0(x) ≤ ϕ0(x) ≤ c1φ0(x) , c−1

2 ψ0(x) ≤ ϕ0(x) ≤ c2ψ0(x) .

PROOF. Take a positive constant λ such that

c(x)+ λ ≥ 0 , c(x)+ λ−
d∑
i=1

∂bi

∂xi
(x) ≥ 0 for all x ∈ Rd .

The functions

Gλ(x, y) =
∫ ∞

0
e−λtp(t, x, y)dt , G̃λ(x, y) =

∫ ∞

0
e−λt p̃(t, x, y)dt

are finite off the diagonal of D ×D. It follows from [2] that bothGλ and G̃λ are comparable
to the Green function of the operator

d∑
i,j=1

∂

∂xi

(
aij (x)

∂

∂xj

)

with zero Dirichlet boundary condition on ∂D. Our assertion now follows easily from Theo-
rem 1.5 in [18]. �

Using this lemma, one can easily check that {Qt } and {Q̂t } are strongly continuous
semigroups in L2(D,µ).

LEMMA 3.2. F ∩ L∞(D,µ) = D(Q̃) ∩ L∞(D, ϕ2
0).

PROOF. If f ∈ D(Q̃) ∩ L∞(D, ϕ2
0 ), then f ϕ0 ∈ H 1

0 (D) and f is bounded. Since

∇(f φ0)= ∇
(
f ϕ0 · φ0

ϕ0

)
= φ0

ϕ0
∇(f ϕ0)+ fϕ0∇

(
φ0

ϕ0

)

= φ0

ϕ0
∇(f ϕ0)+ f∇φ0 − f · φ0

ϕ0
∇ϕ0 ,

we know by the previous lemma that f φ0 ∈ H 1
0 (D). Similarly, we also have fψ0 ∈ H 1

0 (D).
Therefore we know that f ∈ F ∩ L∞(D,µ).
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Now suppose that f ∈ F ∩ L∞(D,µ). Then f φ0, fψ0 ∈ H 1
0 (D). Since

∇(f ϕ0)= ∇
(
fφ0 · ϕ0

φ0

)
= ϕ0

φ0
∇(f φ0)+ fφ0∇

(
ϕ0

φ0

)

= ϕ0

φ0
∇(f φ0)+ f∇ϕ0 − f · ϕ0

φ0
∇φ0 ,

we know by the previous lemma that f ϕ0 ∈H 1
0 (D). Therefore f ∈D(Q̃) ∩ L∞(D, ϕ2

0). �

Now, combining this lemma above with (3.2) and (3.4), we immediately arrive at the
following

LEMMA 3.3. There exists a constant c > 1 such that for any bounded f ∈ C1(D)∩F ,

1

c
Q̃(f, f ) ≤ Q(f, f ) ≤ cQ̃(f, f ) .(3.5)

By following the argument in the proofs of Theorem 4.6 and Theorem 5.2 in [6] (see also
the proof of Theorem 1 in [4]), we can get the following result.

LEMMA 3.4. For any ε > 0 and bounded f ∈ D(Q̃), we have∫
D

ϕ2
0f

2 log |f |dx ≤ εQ̃(f, f )+ β(ε)‖f ‖2
L2(D,ϕ2

0 )
+ ‖f ‖2

L2(D,ϕ2
0 )

log ‖f ‖L2(D,ϕ2
0 )

with

β(ε) =
{ −c1 log ε + c2 , ε ≤ 1
c1 + c2 , ε > 1

for some constant c1, c2 > 0.

PROOF. We omit the details. �

Combining the result above with (3.1) and Lemma 3.3, we can easily get the following

LEMMA 3.5. For any ε > 0 and bounded f ∈ C1(D) ∩ F , we have∫
D

µf 2 log |f |dx ≤ εQ(f, f )+ β(ε)‖f ‖2
L2(D,µ)

+ ‖f ‖2
L2(D,µ)

log ‖f ‖L2(D,µ)(3.6)

with

β(ε) =
{ −c1 log ε + c2 , ε ≤ 1
c1 + c2 , ε > 1

(3.7)

for some constant c1, c2 > 0.

PROOF. If (3.6) is true for f ∈ C1(D) ∩ F with |f | ≤ 1, then (3.6) is true for every
bounded f ∈ C1(D)∩F by applying to f/‖f ‖∞. Thus we will assume that f ∈ C1(D)∩F
with |f | ≤ 1.

We know from (3.1), Lemma 3.1 and Lemma 3.3 that there exists a constant L > 1 such
that

1

L
ϕ2

0 ≤ µ ≤ Lϕ2
0 and

1

L
Q̃(f, f ) ≤ Q(f, f ) ≤ LQ̃(f, f ) .(3.8)
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Since log |f | ≤ 0, from (3.8) we have∫
D

µf 2 log |f |dx ≤ 1

L

∫
D

ϕ2
0f

2 log |f |dx .
Now, applying the previous lemma and (3.8), it follows that the above is bounded by

1

L
εQ̃(f, f )+ 1

L
β(ε)‖f ‖2

L2(D,ϕ2
0 )

+ 1

L
‖f ‖2

L2(D,ϕ2
0 )

log ‖f ‖L2(D,ϕ2
0 )

≤ εQ(f, f )+ (β(ε)+ logL)‖f ‖2
L2(D,µ)

+ ‖f ‖2
L2(D,µ)

log ‖f ‖L2(D,µ) . �

LEMMA 3.6. For any p ∈ (2,∞), ε > 0 and bounded nonnegative g ∈ C1(D) ∩ F ,
we have ∫

D

µ(x)gp(x) log g(x)dx ≤ εQ(g, gp−1)+ 2β(ε)p−1‖g‖pLp(D,µ)
+ ‖g‖pLp(D,µ) log ‖g‖Lp(D,µ) ,∫

D

µ(x)gp(x) log g(x)dx ≤ εQ(gp−1, g)+ 2β(ε)p−1‖g‖pLp(D,µ)
+ ‖g‖pLp(D,µ) log ‖g‖Lp(D,µ) ,

where β(ε) is the function defined in (3.7).

PROOF. It is well-known that if g is a bounded nonnegative function in D(Q̃), then
gp/2 and gp−1 are also in D(Q̃). Thus it follows from Lemma 3.2 that if f is a bounded
nonnegative function in C1(D) ∩ F , then, for p > 2, f p/2 and f p−1 are also in C1(D) ∩ F .
By using elementary calculations, one can check that for any bounded nonnegative function
f ∈ C1(D) ∩ F ,

Q(f p/2, f p/2) = p2

4(p − 1)
Q(f, f p−1) = p2

4(p − 1)
Q(f p−1, f ) ≥ 0 .(3.9)

(See the appendix for a proof.) Putting f = gp/2 in (3.6) we get

p

2

∫
D

µ(x)gp(x) log g(x)dx ≤ εQ(gp/2, gp/2)+ β(ε)‖g‖pLp(D,µ)
+ p

2
‖g‖pLp(D,µ) log ‖g‖Lp(D,µ) .

Therefore we have by (3.9) that∫
D

µ(x)gp(x) log g(x)dx ≤ εp

2(p − 1)
Q(g, gp−1)+ 2β(ε)p−1‖g‖pLp(D,µ)

+ ‖g‖p
Lp(D,µ)

log ‖g‖Lp(D,µ) ,∫
D

µ(x)gp(x) log g(x)dx ≤ εp

2(p − 1)
Q(gp−1, g) + 2β(ε)p−1‖g‖pLp(D,µ)

+ ‖g‖pLp(D,µ) log ‖g‖Lp(D,µ) .
Now the desired assertions follows immediately from the inequalities above. �
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It is clear that for the function β(ε) defined in (3.7)

M(t) = 1

t

∫ t

0
β(ε)dε(3.10)

is finite for all t > 0. Now we can state the main result of this paper.

THEOREM 3.7. For any t > 0, we have

max{‖Qt‖L∞(D,µ),L2(D,µ), ‖Q̂t‖L∞(D,µ),L2(D,µ)} ≤ eM(t) ,

where M(t) is the function defined in (3.10).

PROOF. For any t > 0 and p > 2, put

ε(p) = 2t

p
, Γ (p) = 2β(ε(p))

p
,

where β(ε) is the function defined in (3.7). Then we have

M(t) =
∫ ∞

2

2β(ε(p))

p2
dp =

∫ ∞

2

Γ (p)

p
dp .

It follows from Lemma 3.6 that for all p ∈ (2,∞) and all bounded nonnegative functions
f ∈ C1(D) ∩ F we have∫

D

µ(x)f p(x) logf (x)dx

≤ ε(p)Q(f, f p−1)+ Γ (p)‖f ‖pLp(D,µ) + ‖f ‖pLp(D,µ) log ‖f ‖Lp(D,µ) ,
(3.11)

∫
D

µ(x)f p(x) logf (x)dx

≤ ε(p)Q(f p−1 , f )+ Γ (p)‖f ‖p
Lp(D,µ)

+ ‖f ‖p
Lp(D,µ)

log ‖f ‖Lp(D,µ) .
(3.12)

Note that for any bounded function f , we have

∇(ψ0Qtf ) = e−λ0t∇
(
ψ0

φ0
Pt (φ0f )

)

= e−λ0t
ψ0

φ0
∇(Pt (φ0f ))+ (Qtf ) · ∇ψ0 − (Qtf ) · ψ0

φ0
∇φ0 ,

and

∇(φ0(x)Q̂tf ) = e−λ0t∇
(
φ0

ψ0
P̂t (ψ0f )

)

= e−λ0t
φ0

ψ0
∇(P̂t (ψ0f ))+ (Q̂tf ) · ∇φ0 − (Q̂tf ) · φ0

ψ0
∇ψ0 .

Thus one can easily see that for any bounded nonnegative function f , Qtf , Q̂tf are both
bounded nonnegative functions in F . It is well-known that if g is a bounded nonnegative func-
tion in D(Q̃), then gp−1 is also in D(Q̃). Now, using Lemma 3.2, we can see that (Qtf )

p−1

and (Q̂tf )p−1 are both bounded nonnegative functions in F . From the fact that ai,j (x), bi(x)
and c(x) are smooth, we have Qtf , Q̂tf are in C1(D). Moreover, Qtf and Q̂tf are in the
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domains of the generators of {Qt } and {Q̂t }, respectively. Thus φ0Qtf and ψ0Q̂tf are in
the domains of the generators of {Pt } and {P̂t }, respectively. Now we can repeat the proof of
Theorem 2.2.7 of [9] (both forQtf and Q̂tf ) to arrive at the desired conclusion. We omit the
details. �

REMARK 3.8. The observation that one can easily modify the argument in the sym-
metric case to get hypercontractivity from the inequalities (3.11) and (3.12) was first pointed
out in [19].

Now we arrive at the main result of this paper.

THEOREM 3.9. The semigroups {Pt } and {P̂t } are intrinsically ultracontractive.

PROOF. This follows easily from Theorem 3.7 and the observation made after Defini-
tion 2.4. �

4. Appendix. In this section, we give the proofs of (3.2) and (3.9). Note that, unlike
[19], we use no integration by parts argument in the proofs of lemmas below.

LEMMA 4.1. For any bounded nonnegative f ∈ C1(D) ∩ F and p ≥ 2,

d∑
i,j=1

∫
D

aij

[
f p−1

(
φ0
∂f

∂xi

∂ψ0

∂xj
+ (p − 1)ψ0

∂φ0

∂xi

∂f

∂xj

)
+ f p

∂φ0

∂xi

∂ψ0

∂xj

]
dx

+
d∑
i=1

∫
D

bi

(
f p−1ψ0φ0

∂f

∂xi
+ f pψ0

∂φ0

∂xi

)
dx +

∫
D

cφ0ψ0f
pdx

+ λ0

∫
D

φ0ψ0f
pdx = 0 .

PROOF. Note that we have

Q(1, f p) = 1

M
E(φ0, f

pψ0)+ λ0

∫
D

µf pdx = −λ0

M

∫
D

φ0f
pψ0dx + λ0

∫
D

µf pdx = 0

and

Q(f p, 1) = 1

M
E(f pφ0, ψ0)+ λ0

∫
D

µf pdx = −λ0

M

∫
D

f pφ0ψ0dx + λ0

∫
D

µf pdx = 0 .

Thus

0 =MQ(f p, 1)+M(p − 1)Q(1, f p)
= E(f pφ0, ψ0)+ (p − 1)E(φ0, f

pψ0)+Mpλ0

∫
D

µf pdx

=
d∑

i,j=1

∫
D

aij
∂

∂xi
(f pφ0)

∂ψ0

∂xj
dx + (p − 1)

d∑
i,j=1

∫
D

aij
∂φ0

∂xi

∂

∂xj
(f pψ0)dx
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+
d∑
i=1

∫
D

biψ0
∂

∂xi
(f pφ0)dx + (p − 1)

d∑
i=1

∫
D

bif
pψ0

∂φ0

∂xi
dx

+p
∫
D

cφ0ψ0f
pdx +Mpλ0

∫
D

µf pdx

=
d∑

i,j=1

∫
D

aij

[
f p−1

(
pφ0

∂f

∂xi

∂ψ0

∂xj
+ (p − 1)pψ0

∂φ0

∂xi

∂f

∂xj

)
+ pf p

∂φ0

∂xi

∂ψ0

∂xj

]
dx

+
d∑
i=1

∫
D

bi

(
pf p−1ψ0φ0

∂f

∂xi
+ pf pψ0

∂φ0

∂xi

)
dx

+p
∫
D

cφ0ψ0f
pdx + pλ0

∫
D

φ0ψ0f
pdx . �

LEMMA 4.2. For any bounded nonnegative f ∈ C1(D) ∩ F and p ≥ 2,

Q(f, f p−1) =
∫
D

µ(x)

d∑
i,j=1

∂f (x)

∂xi
aij (x)

∂

∂xj
(f p−1(x))dx

= (p − 1)
∫
D

µ(x)f p−2(x)

d∑
i,j=1

∂f (x)

∂xi
aij (x)

∂f (x)

∂xj
dx .

(4.1)

PROOF. We have

Q(f, f p−1) = 1

M
E(f φ0, f

p−1ψ0)+ λ0

∫
D

µ(x)f p(x)dx

= 1

M

d∑
i,j=1

∫
D

aij
∂

∂xi
(f φ0)

∂

∂xj
(f p−1ψ0)dx + 1

M

d∑
i=1

∫
D

bif
p−1ψ0

∂

∂xi
(f φ0)dx

+ 1

M

∫
D

cφ0ψ0f
pdx + λ0

∫
D

µf pdx.

Now, using the product rule, we get

Q(f, f p−1) =
d∑

i,j=1

∫
D

aij
∂f

∂xi

∂

∂xj
(f p−1)µ(x)dx

+ 1

M

d∑
i,j=1

∫
D

aij

[
φ0f

p−1 ∂f

∂xi

∂ψ0

∂xj
+ (p − 1)f p−1ψ0

∂φ0

∂xi

∂f

∂xj
+ f p

∂φ0

∂xi

∂ψ0

∂xj

]
dx

+ 1

M

d∑
i=1

∫
D

bi

(
f p−1ψ0φ0

∂f

∂xi
+ f pψ0

∂φ0

∂xi

)
dx + 1

M

∫
D

cφ0ψ0f
pdx

+λ0

M

∫
D

φ0ψ0f
pdx .

Applying Lemma 4.1 to the above equation, we arrive at the conclusion of the lemma. �
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It is easy to see that for p = 2 the proofs of Lemma 4.1 and Lemma 4.2 work for any
bounded f ∈ C1(D) ∩ F and in this way we arrive at (3.2). By taking f = gp/2 in (3.2), we
get the first equality in (3.9) from (4.1). The proof of the other equality in (3.9) is similar.
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