
ON A WEAKLY CENTRAL OPERATOR ALGEBRA

YOSINAO MlSONOU

(Received May 1,1952)

In the previous paper [7], we have defined the weak centrality of an
operator algebra modifying I. Kaplansky's definition of the (strong) centrality
[61 Although we have assumed an additional condition in the previous
occasion, here we shall study the weak centrality as itself. It will be seen
in the below, that a weak central C*-algebra can be decomposed into C*-
algebras each of which is factorial C*-algebra. The other purpose of this
paper is to prove that any T^*-algebra is weakly central.

1. Definitions and notations. We shall assume in this papar that
any algebra which we consider has a unit element. A self-adjoint algebra
A of bounded linear operators on a Hubert space will be called a C*-algebra
(W*-algebra), according to I.E.Segal, provided that A is uniformly (weakly)
closed in the sense of J. von Neumann [9].

Let Ω be the set of all maximal ideals in the C*-algebra A. In simple
case we shall consider the 0-ideal as its maximal ideal. If S is a nonvacuous
subset of Ω, we define MQ is contained in the closure of S if and only if
Mo ZD Π M. This topological space Ω will be called the spectrum of A,

MeS

according to I. E. Segal [10J The spectrum Ω becomes, in general, a compact
TΊ-space. In the commutative case, it is known that the spectrum becomes
a T2-space.

A C*-algebra A is called weakly central provided that two maximal ideals
Mi and M2 coincide if and only if

M1f]Z=M2f]Z

where Z means the center of A. It will be seen that A is weakly central
if it has at most one maximal ideal. Conversely, if the center of a weakly
central algebra A is a field, then A contains at most one maximal ideal.
It is not difficult to see that the spectrum of a weakly central C*-algebra is
homeomorphic in its natural mapping to the spectrum of the center, whence
it is a compact T2-space.

In the terminology of N. Jacobson [4], an ideal P of A is called primitive
if there exists a maximal right ideal M such that

M: A - {x € A\ ax € Λf for all a e A} = P.

It is known that a C*-algebra is semi-simple in the sense of Jacobson [4],
i. e., the intersection of all primitive ideals in a C*-algebra vanishes. The
set of all primitive ideals is called the structure space of the algebra with
the Stone topogy. A C*-algebra is central if and only if the definitive property
of the weak centrality is held for primitive ideals in stead of maximals
ideals.
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By σ(x) we mean the set of all complex numbers λ * 0 such that x — \1
have not inverses and we insert 0 € σ{x) unless x has an inverse.

When 7 is a closed ideal of a C*-algebra A, we can consider a factor
algebra A/I in the usual way and define

where xθ is the class of A/1 which contains x. It is known that A/1 is a
C*-algebra too.

An algebra will be called factorial if its center contains only scalar
multiples of the identity.

2. The decomposition of a weakly central C*-algebra. Firstly we
shall prove a following lemma.

LEMMA 1. Let Z be the center of a weakly central C*-algebra A and let
I be a closed ideal A. If the intersection of Z and I is a maximal ideal in Z,
then the factor algebra A/1 is a factorial C*-algebra.

PROOF. Let MΊ and M2 be two maximal ideals in A which contain I,
then by N. Jacobson [4Γ\ Mt [\ Z are maximal ideals in Z Because of Mi ZDI,
we have Mi Π ZZD I f] Z for / = 1,2. Since / Π Z is a maximal ideal inZ,
we have

Mi n z = M2 n z = i n z.
This implies Mi = M2 by weak centrality of A. Thus, there is a unique
maximal ideal which contains 7. In other words A/1 has a unique maximal
ideal.

Let Zθ be the center of A/1 and let Mθ be the unique maximal ideal
of A11. We shall assume that All is not factorial, then any maximal ideal
of Z is not the 0-ideal. Thus Mθ f] Zθ is a nontrivial maximal ideal of Zθ.
Let Pθ be any primitive ideal of A/7, then Pθ (] Zθ is a maximal ideal of
Z e [4]. On the other hand PθdMθ and hence we have

PΘ n z = M Θ n z
for any primitive ideal 7^ of A/7. Since A/7 is a C*-algebra, the intersection
of all primitive ideals of A/7 vanishes. This contradicts to non-triviality of
Mθ Π Z. That is, A/7 is a factorial C*-algebra.

LEMMA 2. Let ί l be the spectrum of the center Z of a weakly central C*-
algebra A. For any ξ € Ω, W£ ίfe/zwe 7̂  as £/i£ intersection of all closed ideals
in A which contain ζ. Then

n iζ •= o.

PROOF. Let P be any primitive ideal of A, then P fl Z is a maximal
ideal of Z. We shall denote this maximal ideal ξV By definition of Iζ, we
have PZD Iζ. This shows that Π It * s contained in the intersection of all

primitive ideals of A. This proves the lemma.
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THEOREM 1. Let A be a weakly central C*-algebra. Then there exist a
compact Hausdorff space Ω and a factorial C*-algebra Aζ for each ξ € ί l such
that for all xζ A there exists a function x(ζ) which is defined on Ω and x(ζ)
€ Aζ for all ζ € Ω {we denote this correspondence by x~x(ζ)) and satisfy
following conditions:

(1) x = Q if and only if x(ζ) = 0 for all ζ £ Ω,
(2) ax + βy ~ {ax + βy){ζ) = <**(£) + βy(?) /or aw y complex numbers a

and β}

(3) Λ*

(4) ay
(5) || # II = sup |) x(ζ) \\ζ ivhere \\ \\ζ is the norm on Aζ,

(6) || x{ζ) \\ζ is a continuous function on Ω.
Furthermore, let 5ί be a normed algebra of functions θ{ζ) which are defined on
Ω and θ(ζ) € Aζ for all ζ e Ω and satisfies (1) - (6). // % contains all x^x{ζ)
where x € A, then 3ί coincides with A.

PROOF. Let Ω be the spectrum of A, then Ω is a compact Hausdorff
space. For each ζ € Ω we define a closed ideal Tζ as Lemma 2. If we define

Aζ=A/Iζ,

then Aζ is a factorial C*-algebra by Lemma 2.
Let x(ζ) be the image of the natural mapping of x € A in A^

We shall denote this correspondence by x ~ #(£). Then each function
is defined on Ω and

x{ζ) € Aζ for all ζ € Ω.

It is obvious that # — *(£; satisfies (2), (3) and (4). For any ζ € Ω, x(ζ)
= 0 is equivalent to ΛΓ € /^. It follows that x{ζ) = 0 for all ζ € Ω implies

that is, Λ: = 0. Conversely, it is clear that x = 0 implies that #(£) = 0 for
all ζ € Ω. This proves (1).

Now we shall prove (5). Clearly || x(ζ)\\ζ 2 II * II for all ζ € Ω and we have

11*11 ^ sup l\x{ζ)fζ.
ζeίl

We shall show that supremum attains for some ζ € Ω. Because of the
identity || xx* || = || x ||2, one needs to prove this only in case x > 0, and we
may assume | |#| | = 1. To say that \\x(ζ)\\ζ is less than 1 is equivalent to say
that σ{x(ζ)) does not contain 1, that is, 1 — x{ζ) has an inverse. This is
equivalent to 1 — x has an inverse modulo Iζ. If || x{ζ) lζ is less than 1 for
all ζ € Ω, then 1 — x has an inverse modulo every 1̂ . As we showed above,
any primitive ideal contains some Iζ, this implies 1 — x has an inverse
modulo every primitive ideal. It is known that this means that 1 — x has an
inverse in A (cf.[5]). This contradicts to \\x\\ = 1.

Next we shall prove (6). In the first place, we shall show that || x{ζ) \\ζ
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is continuous at 0, that is, if x(ζ0) = 0 then for any £ > 0 there exists a
neighborhood V of ζ0 such that

\\x(ζ)k<S for all ζeV.

Let / be the set of all y £ A such that the corresponding function y(ζ)
vanishes in a neighborhood of ξΌ Clearly / is an ideal of A. Let 7 be the
closure of /. Obviously /d/^ 0. Since Z is represented by all continuous
numerical valued function on ίl, / Π Z is maximal in Z. Therefore,

7nz=iζ0 (\z,
since Iζ0 Π Z is a maximal in Z. By the definition of Iζo, we have Iζ0 c Z
Thus we have IζQ = /. Obviously x 6 /$,, then for any £ > 0 there exists
y £ / such that

! | * - : v j | < £ .

This implies that

\\*tt)-yiξ)\\ζ<£ for all ζen.
By the definition of I, there exists a neighborhood V of f0 such that

y(£) = 0 for all ζζV.

By the above, we have

i| x(ζ)\\ζ < £ for all ζeV.

We pass the general proof of continuity. We assume that

||*(?o)$.ll=r4=O.

One needs to show that for any £ > 0 there exists a neighborhood V of ζ0

such that
r - £ < ί| *(?) )I < r + £ for all ζ e V.

We may assume the Λ^Oas previous. Let S be the set of all ζ €Ξ Ω such
that II #(f) ||f <S r — £ and let ξΊ be an element of the closure of S.

We assume that there exists rΛ 6 σ(x{ζι)) such that rΊ > r — £. Now we
shall define a continuous function f(t) which is denned on (0, 00) such that

1 = 1 if ί = n

We consider the commutative C*-algebra Ax which is generated by x. Ax

can be represented as a ring of all continuous numerical functions on σ{x)
(vanishing at origin if 0 € σ(x)) by a theorem due to I.Gelfand. If we
restrict f{t) on σ(x), we have a continuous function on σ(x) and so we have
a corresponding element of Ax. We shall denote this element by f{x).
Analogously, we can define f(x(ζ)) and we have an identity:

which was proved in [6]. If ζ € S then
r - £ ;> λ for all λ € σ(*)
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by the definition of S. Therefore

/(*X?) = f(x(O) = 0 for ζ € S.

By the continuity of ί| x(ζ) fζ at 0, this implies that f(x(ζd) = 0, On the other
hand/(Λ:(ξΊ)) Φ 0 since/(ί) does not vanish at n € σ(x(ζi)). This is a con-
tradiction, that is

r - £ > λ for all λ € <r(*(£i)).
This implies that |[ x{ζι) \\ζl ^ r - £, that is, ξΊ € S. Thus, the closedness of
S was proved. If we denote the complement of S by F.τ, VΊ is a neighbor-
hood of ζ0 such that

\\x(£)k>r-S for all ? € Vi-
It was proved in [6, Lemma 3.3] that there exists a neighborhood V2 of

ζo such that

\\<ζ)k<r + 6 for all ζe F2.
It is clear that V = F] f] V2 has our property. This proves (6).

Finally we shall prove the remainder part of the theorem. Let 51 be a
normed algebra of functions θ(ζ) which are defined on ίl and β(ζ) € Aζ for
all ζ € ί l and satisfies (l)-<6). Furthermore we assume that 3ί containes Λ.
Take any fixed element θ(ζ) of 21, then by definition of Aζ there exists an
element x(ζ) <Z Aζ such that θ{ζ) = Λ(?) for a fixed f € Ω. From (6), this
implies that for any £ > 0 there exists a neighborhood U(ζ) of ζ such that

(*) I! θ(ζΊ - *(Γ) It < £ for all f € £/(f)•
If we correspond such neighborhood U(ξ) for each ζ € ίl, then the family
{^(?) I ? € O} is an open covering of ίl. From the compactness of ίl, there
exists a finite covering

It is known that there exist non negative continuous functions/Kf),/^),
fn{ζ) such that

and fi(ζ) vanishes outside of U(ζt) for each i (cf.[l]). For each i, let xt be
the element which is determined by (*). Since each fi(ζ) determines an
element of Z, x(ζ) determines an element of A if we define

χ(ζ) -
ί = l

From the definition of U{ζι)
\\θ{ζ)-Xί{ζ)\\ζ<£ for ζ €

Thus we have a following inequality:
n n

ii β{ζ) -
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From (5), this proves that every element of 91 is a limit of elements of A,
that is, 3ί c A since A is complete.

Thus Theorem 1 was proved completely.
Theorem 1 and Theorem 3.1 of [6] imply the following theorem.

THEOREM 2. Under the notation of Theorem 1, any closed (right, left)
ideal L in A has the following from: for each ζ € ί l a closed (right, left)
ideal Lζ in Aζ is given, and L consists of all x € A with x (ζ) € Lζ for all

3. The w e a k centrality of TF*-algebras. In this section we shall prove
the following theorem:

THEOREM 3. A W*-algebra is a weakly central C*-algebra.

To prove this theorem we shall use the following:
LEMMA 3 (J.Dixmier [2]). Let x be an element of a W*-algebra A.

Consider the linear combination

n

where ut are unitary elements of A and λ« ̂  ϋ and\%?\ι = 1. Let K* be the
ί=.l

set of their uniform limits. Then the intersection of Kx and the center Zof A
is not empty. Moreover, for any positive S and a pair x} y of A there exist
xf € Kx Π Z, y € Kv Π Z and unitary [elements uh — , un of A and λ* > 0

λ« = J) s u c h t h a t

PROOF OF THEOREM 2. Let Mi, M2 be two distinct maximal ideals in
A. One needs only to prove Mx Π Z Φ Mt f| Z. From the maximality of Mi,
M2, we have

So, there exi st xt € JSf,(i = 1, 2) such that

1 = xi + x>,.

From Ljemma 3 for any S > 0 there exist x{ ζ Kxκ(] Z, x'2 € Kx* (1 Z, unitary
n

elements m € A and λ« S 0 ( 2 λ « = 1 ) such that
Ί ' = i ••



n

2
. 1 - 1

In. other w>rds

On the other hand, i ζ ^ e M ( ί = 1,2) by the definition of /ζ^ aAd the
closedness of Mu since they are maximal. If

Mi (]Z= M2(]Z,
then

The closedness of Mi f] Z implies that

This is a contradiction. Therefore Aft ft.-Z* Afa Π £• This proves the
theorem.

It may be somewhat interesting to observe that Theorem 3 implies a
result due to J. W. Calkin ([3], since the full operator algebra on a Hilbert
space is wsakly central fey th$ abc^e theorem^ that fo> w§ have the next.

COROLLARY (J.W.Caίkii*). A full operator algebra on a Hilbert space has
a unique maximal Meal.

REMARK 1. Above Corollary is valid for any factor m the sease of J.
von Neumann.

REMARK 2. If the structure spac$ of a TF*-algebra is Ti-space, then an
ideal is primitive if and only if it is maximal. Therefore this structure
space is necessary Hausdorff space.

4. Some applications, Ijχ this section we shall consider wly W*-algefrra.
A W-algebra is weakly central, thus it can be decomposed in the sease of
Theorem 1. The purpose of this section is to give some remarks on the
•components. We shall use notations in Theorem 1 in the below.

PROPOSITION 1. Let £(ζo) € A^ be a projection, then there exist a projection
4 € A such that the value of e at ζ0 is ^|Ό)

PROOF. Cίearίy we can take xx C A sαe&'tftat XMQ) =* etξoy. If we put
, then

ζoy* = e(ζo)e(ξQr = e(ζQ).
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That is, there exists a ^e^aSjeftrft mnd fioή-tiegatSve IK^C A fcϋdh Ifett ff

Let S be the set of all ζ € & for ^hich (Γ^(?)||^> 1. Define a function
on 12 as following:

i f

Then it is clear that f{ζ) is continuous on Ω. and hence /(f) determines an
element / of Z. If we define x = fxz then

that is, x is self adjoint and | |# | | ^ 1 and moreover x(ζ0) = £(£Ό)

From [6, Lemma 3.3] there exists a neighborhood U of £0 such that
σ(x{ζ)) does not contain λ such that 1/3 g λ $ 2/3 for all £ € £/. It is known
that Ω, is totally disconnected and there exists a closed V czϋ of f0. Now
let f(ζ) be the characteristic function of V and the corresponding central
element be /. If we put x! = fx, then A:r(f) = Λr(ξ ) for all ζ € F. In particular

Obviously λ € <r(^(?)) for all ζ € ί l and for all λ such that l / 3 g λ S 2/3.

Hence we can prove λ €V(#') by an analogous way to the proof of Theorem
1.

Now we consider the commutative C*-subalgebra A& which is generated
by xr. Then Ax> is represented as a ring of all continuous functions on
σ{x!) (vanishing at 0 when xr has not an inverse). Let f{t) be a function on
(0, oo) such that

\ = 0 otherwise,

then g{t) is continuous on σ{x'). Thus g(t) is determines an element β = g{xf)
ζAX'. Obviously e is projection. By the identity

g(x')(ζo) - 9(x'(ζo)) = ^(^ίro)),

the value of e at ξ0 is «(?o) This proves the Proposition.

PROPOSITION 2. Lei e{ζ), f(ζ) € A^ ^^ two projections for which there
exists an element x{ζ) € Aζ such that

e(X)^x{ζWζ)* and f<£) = 4£f**£).

Then there exist two prjections e, f and a partially isometric element x such
that

e = xx* and f =

PROOF. Let xL £ A be any element of A taking x{ζ) as its value at ζ
and xΊ = xy be the canonical decomposition in usual sense. By a Lemma of
F.J.Murray and J. von Neumann [10], x any y belong to A. We shall show
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that x(ζ) as...its value at ζ. By the definition of canonical decomposition,

y2 = XjX*, then

Since y(ζ) is positive, we have y(ζ) - e(ζ). The initial set of partially

isometric operator x is the range of y. That is, # = xh, where ft is the

projection on the range of y. Obviously hξ A. From above we have

Then we have

*(ζ) - x(ζ)h(ζ) = χ(ζ)y(ζ)

On the other hand

xλ(ζ) ~ x(ζ)y(ζ).

Hence *(?) = x(ζ).

If we define £ = xx* and /.= Λ̂ ΛΓ, then it is obviously that e and / satisfy

our properties.
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