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1, Introduction. Let us put

1.1) FO) =D a,exp(—tas) (s=oc+it, 0SM< A< ..o < An> + ).
n=1

Let (1.1) be uniformly convergent in the whole plane, i.e. for any given ¢

(—® < o< +), (1.1) be uniformly convergent for o < %(s). Then (1.1)

defines the integral function, and for any given o, Sfrlp |F(o + it)| has
<40

the finite value M(g). After J.Ritt ([13, pp.18-19) we can define the order
and type of (1.1) as follows:

DEFINITION. The order of(1.1) is defined by
1.2) p = lim( — &)’ log*log*M(c),
where M(c) = _§EP<+JF(” (::;'F)[, log*x = Max(0,log x). If 0< p< 4o, the
type k of (1.1) is defined by

(1.3) k :rlir_n 1/exp(( — o)p) - log*M(q).

J.Ritt [2], S.Izumi [3] and K.Sugimura [4] have given formulas
determining p and %2 in terms of {a,} (# = 1,2,....) under some additional
conditions imposed upon {A,} (% := 1,2, ....). In this note, we shall establish
more general formulas determining p and % in terms of {a,} (n=1,2,....).

2. Theorem. The main theorem reads as follows:

MAIN THEOREM. Let (1.1) be uniformly convergent in the whole plane.
Then we have

2.1 lim (xlog x)~'-log T» = —p}",
X+ oo
| *
where i) T.= Sup > anexp(—iat) ,
Tt i, <z J

(il) Mu(ﬂ') = Sup

—o0 <t <+oo
I=L<+e

k
> an exp( — (o + it))!l’
n=1

(ili) py =lim( — o) '-log*log*M.(c) (=0).

o>—co

* [«) means the greatest integer contained in .
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If furthermore 0 < p, < +oo, then we get

(2.2) lim (x'-log T, + p;*log x) = p~'-log (e pu Fu),
24> 400
where ky = lim 1/exp (( — o)pu) - log* Mu(c).
o>~

ReEMARK. (1) By M. Kuniyeda’s theorem ([57, pp.8-9), the uniform con-

vergence-abscissa ¢, of (1.1) is given by
— 0 = gy = lim x71-log T%.
T->+co

(2) Since M(c) < M.(o), this main theorem can not give the exact value of
p and % in terms of {a,} n=1,2,....).

From this main theorem follow next theorems, whose proof we shall
give later.

THEOREM L. Let (1.1) be uniformly convergent in the whole plane. Then
we have

2.3) —1/p.= —1/p< —1/pu= — 1/pc + lim (x log %)~ - log* N(x)
T->4co
where (i) —1/p; = lim (\s log )" - log | @],
! N->+o0
1 (ii) N@x) = > 1
LriZa, <¢

ReEMARK. By a lemma ({67, p.50) we have

2.9 0<o;,— C=<limx;'-logn,
N>+ o0
where ( @d) os: simple convergence-abscissa of (1.1),
U i) C = lim A7 log lal.
Therefore, by (2.4) and ¢s= —o, we get C = —oo, so that we can put
Pe =0.

TueorREM 1I. Let (1.1) with R(a.) =0 (= 1,2, ....) be uniformly
convergent in ihe whole plane. Then we get

(2 5) - l/Pu + A1 § - l/P é '_]-/Pu;
where Ay = 1im (\» log As)~' - log (Os 64), 6. = arg(ay).

n—>+co

TueoReM III. Let (1.1) be uniformly convergent in the whole plane. If
lim (xlog x)~'-log*N(x) =0, and 0 < p < +oo, then

L->+co
(2.6) ke<k<ki<kexp{p limx'-log*N(x)},
TS+
where (i) p-i.log(ep k) = lim{A;-log |@.| + p~'-log Aal,
N->+oc0
2.7 { ()  p'-log(ep k) = lim{x'-log Ts + p-' - log z}.
TS+ o0

ReMARK. On account of Theorem 1, we obtain p. = p, = p, so that we
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can define k. and k, by (2.7).
THEOREM IV. Let (1.1) with R(a)=0 (n=1,2, ....) be wuniformly
convergent in the whole plane. If A, =0, and 0< p< +oo, then
2.8) Ry, eXp(PA::) <k =< ku,
where A; = lim A1 -log (cOS 6a), On = arg (an).
N>+ o0

ReEMARK. By Theorem 2, we have p, = p. Hence we can define k, by
2.7), (ii).

3. Lemmas. To prove these theorems, we need some lemmas.

LemMmAl. Zet (1.1) be uniformly convergent in the whole plane. Suppose that
(3.1) MJo) < A exp{Bexp(( — o))},
for sufficiently large — o(o < 0), where

f

k 1
@) Mdo)= Sup D anexp(— il +it),
mee bl g I
ISk<+cd
(il) A.a,B: positive constants.
Then we have

lim(xlog)~!-log To < — a7},
3.2) { ke
lim (x~' - log T + @~-log x) S a~'- log (a B e).
L—>+ o0
Proor. Let us denote by {\;.} (m =1,2,...., 7(x)) \.’s contained in
(%] =7 <A< %, and by {a;.} its coefficients. Setting
Sy (o, t) = 2 a, exp( — Ao + it)) (e <0),
AMSASAm

by Abel’s transformation we get

2 a, exp( — ithy) = 2 @;.m €Xp( — 7 Njm)
[e]=Ap <2 m=1

r=1

= 2 Sjm(c,t){exp (oNs,m) — €xXp (onsm+1)}

n=1

+ Sj,r (0’, t) eXp(U')\.j,r) - Sj.()(o-: t) eXD(O‘?\,jJ),

where Sinla,t) = > an exp(— Aalo + it)).

M=Ap<Ap1
Hence ; S g, exp(— ita) =2 Mdo) explon;1) = 2 Mo) exp(aLx]).
CLelsA < : i
Since the right-hand side is independent of £, we get
Tz < 2M.(o) exp(olx]),
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so that, by (3.1), for sufficiently large — o (¢ < 0),

3.3) T: < 2Aexp{Bexp(— o))+ [x]c}.

If we let the righ-hand side of (3.3) take its minimum, we get easily
T, < 2 Aexp{ — [x]/a-log(Lz]/a Be)},

from which (3.2) immediately follows. ’

LeEmwMA II. Let (1.1) be uniformly convergent in the whole plane. Assume
that

3.4 Ty <exp{—(Cx1+ 1)/a-log((x]+1)/aBe)}

for sufficiently large x( >0), where a and 3 are posilive constants. Then,
for sufficiently largzs — o(c < 0) we get

(3.5 Muo)= A exp{Bexp(( —o)a)+ (— o)},

where A is a suitable constant.

Proor. On account of (3.4), we have

(3.6) ; > au exp( — it An)| = T < exp{ — ([a] + 1)/ -log{(Cx] + 1)/y)}
(@IEA, <2

for arbitrary # (— oo < £ < +4-o) and [« > X, where v = aBe and X are

sufficiently large constants. Let us denote hy {\;.} (2 =1.2,....7()) As'S

contained in j <A, < j+ 1, and by a;., its coefficients. Put

Sim®) = 2 @50 exp( — it Niy),  Sio(2) =0.

k=1

Then, by (3.6)

3.7) 1S, m@)| < exp{ — (J+ D/a-log((F+ 1)/7)}
for m=1,2,,....7(j),7 > X.
Putting (A, ] = N, A = Axs, and TA0 = M, Ay = Ax,s, (v < p), by Abel's
transfcrmation, we obtain
1 (N)=1

"
2 @ €Xp( — Ap (o + i) = 2 Sxu(t){exp( — oAxm) — €xp( — oAxm+1 )}
n=v Mm=s1
+ Swvrit) exp( — orx, ) — Sxs-1(t) exp( — OAN,51-1)
M-1 r())-1
+ 2 2 Sim@){exp( — oAjm) — exp ( — oAjm+1)} + Siro(t) expl — ohirei)
J=N+1 m=1
sg-1
+ 2 SM,m(t){eXp( — oAi,m) — exp( - 0'7\.31,,,..,.1) -+ S)I'Sg(t) exp( — o\ 1r,g2).

m=1

Hence, by (3.7) and simple computations, we have

M
(3.8) | 2 @, exp( — na(o + il))

'm=v
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PYALS o
<3 2 exp( —jja-log(j|y) — jo) < 33 exp( — jla - log(j]y) — jo)
1A+l )=1

for ¢ < 0 and T\, ] > X.
Now we can easily prove that for « < 0,

{ (1) Max  exp( —j/a-log(j/y) — jo) < exp (exp(( — o)),

1Sj<+»
(ii)  exp(— j/a -log(j/7y) — jo) < exp( — j/a)
for j > j(o) = exp(( — o) + 2).
Accordingly, putting

< (o) oo
I= X exp( —jla-log(jly)—jo)= > + > =hL+1L,
)=1 J=1 J=i@)+1

we get
I, < j(o) exp{exp(( — o))} = @ exp {exp (( — o)) + (— o) + 2},
I < X exp( — jja) = {1 — exp( — jjay}-,
j=0
so that, for sufficiently large — o(o < 0),
I<2aexp{exp(( — o)) + ( — o) + 2}.
Hence, (3.8) yields

LM
(3.9) > auexp( — Aalo + it))| < 6aexp {exp(( — o)) +(— o) +2),

‘n=v
for 0 >v, [AJ > X, where p is arbitrary, but » is fixed.
On the other hand, for sufficiently large — o(oc < 0), we have evidently

v-1

(3.10)0 Dl a, expl — o + z't))é < > lau]exp (— Aao)

n=1 n=1
ISh<v
< exp{exp(( — o)) + (— o)}
Hence, by (3.9) and (3.10)
E

lz a, exp( — Aa(o + it))i < {6ae*+ 1}exp{exp(( — o)) + ( — o)x},

for arbitrary £ 1 S k< +), t( — o0 < t < +) and sufficiently large — o
(o < 0), so that immediately follows

Myo) < Aexp{exp(( — o)) + (— o)}, A =(6ae*+1),
for sufficiently large — o(o < 0), which proves Lemma 2.

4. Proof of Theorems.

Proor oF MAIN THEOREM. By definition of p., for any given &( > 0),
there exist constants A and B depending only on & such that

MJo) < Aexp{exp (pu+ EX — o))}
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for 0 < B < 0. Hence, applying Lemma 1, in which 8 =1,a = p, + & we
get
- l/P“* = - 1/(Du + &),
where —1/p, = a}Elm(x) log x)~*-log T (p, =0). Letting € >0,
(4.1) P = pu
Since — 1/p}, =;1§x°1; {(Cx] +1)-log(Cx]1 + 1)} -log Ty, for any given
&( >0), we have ’
T, < exp{ — (CxJ + 1)/(p, + &) - log (Ca] + 1)}

for [x1 > X(&). Accordingly, by Lemma 2, in which a = p}, + &, aBe =1,
we get

M.(o) = Aexp{l/e(p, + &)-exp(( — o) (o, + &)}
for sufficiently large — o (0 < 0). Therefore, p. < p; + & Letting €50,
4.2) puS Py -
Combining (4.1) with (4 2), we obtain p. = p,, which proves the first part

of main theorem.
Arguing quite similarly, the second part of main theorem is also
proved.

ProOF OF THEOREM 1. Since M(c) < Mu(c), we get immediately
4.3 P = Pu.
By definition of p., for any given & > 0), there exists X(€) such that
(@] < exp (— Aulog Xe/(pe + €)) for An > X(&).
Hence
T.s 2 laa] < Nx) exp{ — [x]log [x1/(pc + &)}

[xl=A, <z
for [x] > X(€). Accordingly, by (2.1)
—1/pu < — 1/(pe + &) + lim (x log %)~ - log* N(x),
T->+oo
Letting € > 0,
4.4) —1/pu =< — 1/p. + lim (x log %)~ - log* N(x).
T+
Taking account of Hadamard's theorem (C71,p.15) and the uniform
convergence in the whole plane of (1.1),
T
a, =Tlim T"‘f Flo + it) exp(\a(c + it))dt n=12 ...,
>0
0

so that
(4.5) |@a.] = M(o) exp(ata) n=12....).
By definition of p, we have, for any given & > 0),
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M(o) < exp{exp((p + &) ( — o))}
for sufficiently large — o(c < 0). Therefore, by (4.5),
(4.6) lau] < exp{exp((p+ & (—oa)—(—au} =12, ....)

for sufficiently large — o. If we make minimum the right-hand side of
(4.6), we get easily

lan| < exp{ —tu/(p + &)-log (\u/(p + E)e)}
for sufficiently large 7, so that
—1/p. < —1/(p + &).
Letting &€ > 0,
4.7) —1/pe. =< — 1/p.
On account of (4.3),(4.4) and (4.7), we get (2.3).

Proor or THEOREM II. Let us put

(4.8) £(s) = 2N (an) exp( — Ans), R(an) =0,

which is evidently absolutely convergent in the whole plane. Since
M(s) = Sup |Flo + it)| Z | Fo)| = f(o) = Sup|f(c + it)] = Mo),
—o00 <t <+ —o0 <l <+oo
we have
(4.9) P =pr
where p, = lim( — o)~ - log*log*M,(s). Since, by N(a,) =0,
TDeo
Sup

—oo b 4oe
1Sk <+

applying main theorem to f(s), we obtain

S R(a.) exp( — alo + it))l = Mio),

n=1

(4.10) —1/pr = lim(xlogx)~’- log{ Sup
T +eo

— <l <+oo

2 N(an) exp( — it)u.)‘ }

[@I=N, <t
= lim (xlogx)'j-log{ > ﬁ?(a,.)}.
Hyhoo [X1=A, <z

On the other hand, we get easily

> @) = 2 |@xlcoS0n=COSOutr: X |@n] = cOSOnenr - T,

e LIS, < ZI=A, <

where c0S @ny = Min{cos 0.}, T== Sup
TSN, <z —o0 << 400

Hence, by (4.10) and (2.1), we obtain
- 1/{31 —>_- - l/PLL -+ lil_gv(x log x)‘] . log {COS 01;(,'3)}

L+ oo

2 a, exp( — ith,) [

[riSAy <z

= — 1/Pu + li_m(y\»7t log )\'n)-] ° lOg {COS en}:

N+
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so that, by (4.9)
4.11) —1/p=—1/pp= —1/pu+ Au
By (4.3) and (4.11), we have (2.5).

Proor oF THEOREM III. Taking account of Iim (xlog x)~1-log*N(x) = 0

Z>+eo
and Theorem 1, we have
1/p = —1/p. = —1/ps = lim (Ay log An)~" - log|an] .
N +c0

Hence, by (2.2), we can define k. and k. by (2.7). Since M(c) < M), p=
Pu, We get immediately

(4.12) k< k.
By definition of k., there exists X(€) for any given & > 0), such that
lan] < exp{— \a/p-log(\a/ep(ke + €))} for na > X(&).
Accordingly

To< 2 laa] < N(x) exp{ —[x1/p - log([x]/ep (k. + &)Y}

@A, <2

for [x7 > X(€), so that

im (x‘l -log Ty + p~*-log x) = p~"log(epku)

Z->+co
<p~'-loglep (k. + &)) + lim x~* - log* N(x).
2>+ oo
Letting &€ >,
p~t-loglepks) < p~'-loglep k) + lim- x~1. log*N(x), i.e.

T->+oc0

(4.13) ku < ks exp {p-lim 2~ - log* N(x)}.
Ty -oo

By definition of k2, we have, for any given &( > 0),

M(o) < exp {(% + &) exp(( — o)p)}

for sufficiently large — o(oc < 0). Therefore, by (4.5)
(4.14) las] < exp{(k + &) exp(( —o)p) — ( — o )\u} =12 ...

for sufficiently large — o. If we make minimum the right-hand side of
(4.14), we have

lan] < exp{ —An/p-log(\a/e p(k + &)}
for sufficiently large z, so that

nljrf(x,;l -loglan| + p~'-loga) = p~'-logle p k) < p~*log(ep (k + &)).

Letting € >0, p~*-log(ep k) < p~’-log(e p k). Hence,
(4.15) k=<Fk
By virtue of (4.12),(4.13) and (4.15), we obtain (2. 6).
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Proor oF THEOREM IV. On account of A; = 0 and Theorem 2, we get
—1/p = —1/pu =£i§ (xlog x)~' - log T..
Hence, by (2.2), we can put
(4.16) p~'-log(e p ku) =11§—£11(x‘1 -log T\, + p~* - log x),
where ko =0T_i>§°1 Jexp (( — a)p)-log*Mus). Accordingly, on account of

M(o) < MJo), p = ps we have easily
4.17) k=< ke

Using the same notations as in the proof of Theorem 2, and A; = 0 and
(4.11), we have p = p, = p,. Therefore, applying the main theorem to f(s)

= Zﬂ?(an) exp( — \xs) with J(a,) = 0, we get

n=1
(4.18) p~'-logle p k) = lim {x"] . log( Z iR(a,,)) + p~'-log x},
Foke \@1SEay, <
where (i) kr = lim 1/exp (( — o)p)- log*M(o),

(ii) M(o) Z_Smlg)l,{e(na +it)| = f(o).
Hence, by M,(c)= M(s), p = p,, We have

(4.19) =<k
In the proof of Theorem 2, we have proved that

> R(@u) = coS Oniry - T

[risA, <2

where coS 6wy = Min {cos 6,}. Hence, by (4.18) and (4.16),

[Xl=A, <t

p~'-log(e p ky) = lim (x7*-log Ty, + p~* - log %) + lim 27" - 10g{COS Gncr}
Z>+oo

€=ptoo

= pt-log(ep ku) + limA;" - log {cos 6.}

ST
= p~'-loglepky) + A,
so that
(4. 20) k. = kuexp (pA.).
By virtue of (4.17) (4.19) and (4. 20), the required question (2. 8)is completely
established.
5. Corollaries. From Theorem 1, we get immediately

CoroLLARY 1. Let (1.1) be uniformly convergent in the whole plane. If

lim (x log x)~* - log* N(x) = 0, Mzx) = 2 1, then its order p is given by

T +oo (@], <2

(5.1) —1/p = ilm (Anlog )7’ - log |aa|.
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As its special case, we obtain

CoroLLary II. (J.Ritt.[23) Let (1.1) be simply convergent in the whole
plane. If lzm A -log n < 4o, then (5.1) holds.

Remark. J. Ritt supposed the absolute convergence in the whole plane,

but it is a consequence of &, = — oo and lim A;'-logn < +oco.
N->+oo

Proor. By the similar arguments as a lemma in 767 p.50, we get
(5.2) 0<0s—0os=<lim x'-log"N(x) < lim A;'log n,
1400 N +oo
where oo{os) is the absolute (simple) convergence-abscissa of (1.1). Hence,
on account of ¢ = —o and lim A rlogn< 4+ 00, o= — 0. A fortiori,
n->+oo

(1.1) is uniformly convergent in the whole plane. By (5.2) and lim A;l - log

n—>+eco

n < +oo, we get evidently lim (xlog x)~*-log*Mx) = 0, so that Corollary 2

>+
is a special case of Corollary 1.

Cororrary III. (K. Sugimura 47) Let (1.1) be simply convergent in the

whole plane. If Z 1 = O(x%) for any given § >0, and 0 < p. < + oo, where

Ap <z

—1/pe = lim (Axlog Aw)~' - log |a,|, then (5.1) holds.
N->+oco

ReEMARK. K. Sugimura have not assumed 0 =< p.< + oo explicitly, but
he assumed it implicitly.

Proor. By hypothesis, we get easily

(5.3) Nx= > 1< > 1=0([x]+ 1pw=n),
[ZIEN, <0 A <fm+11
Hence 0 < lim (x log )~ - log*N(x) < §. Letting § > 0.
T+ oo
(5.4) lim (xlog x)~'- log*N(x) = 0.
+

T->4 o
On account of hypothesis, we can determine X(&) for any given &( >0).
such that, for A, > X(&)

@] < exp{ — A log na/(p: + E)}.
Hence, by (5. 3),
> lau] < M=) exp { — ([x] + 1)- log(({{#] + 1)/(pe + €))}
Lz]=A, <x
< O((Ca] + 1% +D) . exp{ — (CaJ + 1) - log((Cx] + 1)/(pc + EN},
for Ux] > X(&). Therefore,

Tim 5 log | > la,.l} < lim log (C#1 + 1) {8 — 1/(p + &)
£>+00

I >4o0 [11S Ay <
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Since 0 < p. < -+ oo, taking sufficiently small § >0), we can assume that
8 —1/(p. + €) < 0. Hence,

lim x‘*-log{ 2 |anl }§ —x,

Lyt oo (1= Ay <
which proves g4 = — o. A fortiori, (1.1) is uniformly convergent in the
whole plane. Thus, by (5.4) and Corollary 1, Corollary 3 is established.
From Theorem 2 immediately follows

CoROLLARY IV. Let (1.1) be uniformly convergent in the whole plane. If
R(an) =0 and lim (A, logAy)~' - log (cos 8,) =0, 8, = argla,), then its order p

N>+oo

is given by
—1/p = lim (xlog x)~* - log T..
=>4 00

As a corollary of Theorem 3, we get a generalization of S. Izumi's
theorem [37.

CoroLLARY V. (S.Izumi) Let (1.1) with lim x~'-log*N(x) =0 be simply

r-y+co

(necessary absolutely) convergent in the whole plane. If 0 < p < +oo, then its
type k is given by

p~'-loglep k) = lim {\;'-log |a.| + p~* - log A}

Proor. By (5.2) and hypothesis, we have gs = g;= — oo. A fortiori,

(1.1) converges uniformly in the whole plane. From lim x~!-log*N(x) = 0 we

r—y+4ce

get evidently lim (xlog x)~'-log*N'x) = 0. Hence, by Theorem 2, k. =k =

1=> 00
k., which proves Corollary 5.
As a special case of Theorem 4, we have

CoroLLARY IV. Let (1.1) with R(a,) =0, lim A;'-log(cosB,) =0, fu =
Rardadod

arg(a,) be simply (necessarily absolutely) convergent in the whole plane. If
0< p< + oo, then its type k is determined by

p~'-loglep k) =lim (x~'-log T, + p~*- log x).
Proor. We have easily

> a, ;_1 > ‘Ji(an)é = > |au|cosfa=cos b 2 laal,

LIsA<e {risa, <v LEISA, < [B)SA, <2
where cos @.a, = Min{cos 8,}. Hence, by T.Kojima's theorem 8]
1= <0
|
(5.5) — o =g,= limx'-log| > @ |
ke (TN, <o

= lim x! - log{cos @uc} -'r'1>ir‘ix“ . log{ 2 Idnl}

Tk [T1=A, <1
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= lim £~ - log{cos Oux)} + aa.
TS5 Feo

On the other hand, from lim;'-log(cos@,) =0, we have easily
N>+

lim x~' - log{cos Op )} =0,

T>+oo
so that, by (56.5), o= — . A fortiori, (1.1) converges uniformly in the
whole plane. Thus, by Theorem 4 and lim;*-log(cosd,) =0, we get easily

[

k = k,, which proves Corollary 4.
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