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1. Let F be a closed Riemann surface of genus p=2 spread over the
z-plane. We cut F along p disjoint ring cuts C: (z = 1,2,---, p) and let Fy be the
resulting surface. ~We take infinitely many same samples as Fb and connect
them along the opposite shores of C: as in the well known way, then we obtain
a covering surface F> of F, which is of planar character. Hence by Koebe’s
theorem, we can map F<=> conformally on a schlicht domain ) on the {-plane,
whose boundary E is a ron-dense perfect set, which is the singular set of a
certain linear group of Schottky type. Myrberg" proved:

THEOREM 1. E is of positive logarithmic capacity.

In another paper®, I have proved :

THEOREM 2. Ewvery point of E is a regular point for Dirichlet problem.

Hence F™> is of positive boundary and its Green’s function G(z,20) tends to
zero, when z tends to the ideal boundary of F>. Now instead of cutting F along
p ring cuts, we cut Falong ¢ (1= ¢= p) ring cuts C: (/=1,2,-,g) and let Fuo be
the resulting surface. We take infinitely many same samples as Fo and connect

them along the opposite shores of C:(¢=1,2,--g), then we obtain a covering
surface F{?J of F. Then I have proved in another paper® the following extension

of Theorem 1.
THEOREM 3. F(7} is of null boundary, while if q=2, F{;} is of positive
boundary and there exists a non-constant bounded harmonic funtion on Fy),

whose Dirichlet integral is finite.
In this paper, we shall prove the following extension of Theorem 2.

THEOREM 4. The Greew’s function G(z,2.) of Fzﬁjg (g=2) tends to zero, when
z tends to the ideal boundary of F¢73.

2. Let @ be a non-compact subsurface of F{;3 (¢ =2) whose compact boundary
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consists of one analytic Jordan curve I'n. We exhaust 0 by a sequence of compact

Riemann surfaces:
OhC O, C - COu(->0,

where I'o + I'» is the boundary of @» and I'» consists of a finite number of
analytic Jordan curves. Let #,(z) be harmonic in @, such that #,(z) =1 on
I'o, ux(2) =0 on I'n, then u.(z) increases with #, so that we put

im #.,(2) = us(2).

n>00

Then as I have proved!), wus(z) 5= const., so that 0 <wue(2)<<1 in @ and
us(2) = 1 on I.
It is easily seen that Theorem 4 is equivalent to

THEOREM 5. For any O, us(z) tends to zero, when z tends to the ideal
boundary of 0.

Next we shall prove Theorem 5.

Proor. Let C}, C; be the both shores of Ci. Instead of C{,Cr, -, Cq,C;
we write Iy, I's, -+ ,['s,. In the following, Fjy, Fji,, --- denote the same sample as
Fo, which will be defined as follows.

27-1

We connect Fj (j = 1,2,+,2¢) to Fv along I'; and let I';+ >, 'y be its
i, =1
. 1
boundary. We connect Fin(é =1,2,---,2¢—1) to F; along I'jn and let
27 -1 29-1
T'si,+ T 1,4, be its boundary. Similarly we define Fyi,..t, and let T'si, .int D11yt
ig=1 in+1=1
be its boundary.
We put
l,u-)z’l-'-_l 1y...920 =1
Fj + Z Fin+-+ Z Fiiy iy + = (FE3); @))
i iy
and
1y...929-1 1,4“,27‘_1
On = Fj + Z Fjil + - 4 Z Fjl'\.-»’in) (2)
N LA,
then

0, C02C - C On—> (F&s
The boundary of @ is I'; + Iy, where

15...920 -1

F(n) = Z I'j il (3)

1
i e
i, ,'Ln»l—l

Let #;°(2) be harmonic in @»,, such that %;(z) =1 on I'j,#;(2) =0 on
I'my.  Then #;"(z) increases with #, so that let

4) M.Tsju, loc. cit. 3)
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nl_}gl ui™(2) = ui(2). . NG

Then as remarked aktove, uj(2) 5= const, so that 0 <#%;(2) <1 in (F?;g)j and
ui(z) =1 on I's.
To prove our theorem, it suffices to prove that

lim #;i(2) = 0, 6))
when z tends to the ideal boundary of (F{3});.
Let
Max wui(2) = A,  Max Aji, = 4, (6)
s€ry; 1=jS20,1=0, =801
then :
0< A< 1. )
We put
1y...527-1 15...920 -1 Ced k
Fii, + Z Fiigig + oo 4 Z Fityin + -+ = (F(q)) Jiy . ®
2 z! y n R

We define u,(2) for (F{33)s, similarly we defined #(z;) for (F (,3);, then by
the maximum principle, we have easily

uj(Z)

= uy (z) in ,, ’
so that
Max ) < Max uy (2.
2€L 44 4 T eer j: iy
12
Since as easily seen from the definition of 4,
MaX ujil (2) g l’

2EF . .
Jiyig
we have '
Max ui(2) =< 2%
#STji i,
Similarly we have .
Max ui(2) < i~ )]
2€ rﬁl...in

From this we conclude that lim #i(z) = 0, when z tends to the ideal boundary of
(F$)s.  Hence our theorem is proved.

3. We shall extend Theorem 3 as follows. Let F be a closed Riemann surface
of genus p =2 spread over the z-plane and Ci, Ci/(Z = 1,2,--- ,p) be conjugate
ring cuts, such that C:;, C/(,j = 1,2, ,p,7 5=7) are disjoint and Ci, C/ have
one common point z: and we connect 2: to a point z» by a curve /;, which are
disjoint each other and if we cut F along C:,C/, I; (i=1,2,---,p), then we obtain
a simply connected surface. Now we cut F along C: (/ = 1,2,-,¢) and Cypy4,
Clavj, livi (G=1,2,,7), 1=qg+7»=p) and let Fo be the resulting surface.
We take infinitely many same samples as Fv and connect them along the
opposite shores of these cuts, then we obtain a covering surface F;), of F.

@r
Then
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THEOREM 5. F&)y and F§Y are of null boundary, while if ¢+ r=2, FG),
is of positive boundary and there exists a non-constant bounded harmonic function
on F )y whose Dirichlet integral is finite.

ProOF. By Theorem 3, F o = F(i3 is of null tourdary and we can prove
similarly as Theorem 3, that if g-+7»=2, then F;), is of positive boundary and
there exists a non-constant bounded harmonic fur.ction on Ff}‘,?o, whose Dirichlet
integral 1s finite. Hence it remains only to prove that F{ ), is of null boundary.
We put C = G, and we assume that C, C’ do not contain z = o and branch points
of F. We cut F along C,C’ and let Fu be the resulting surface. Fo is bounded
by a single closed curve, which consists of C+, C-, C'*, C’~. Hence we can represent
Fy topologically by a square with p-1 handles. We denote C*,C-, C'+, C~/ as the
sides of Fu and call the points of Fu vertices, which correspond to the vertices
of the square. We take infinitely many same samples F; as Fy,. We connect
8 Fi’s to Fy, which have common sides or vertices with Fp and let Gi be the
sum of these 8 Fi’s and put F> = Fu + G;. Next we connect 16 Fi's to F®,
which have common sides or vertices with £ and let G: be the sum of these
16 Fi’s and put F® = Fy + G, + Gs. Similarly we define G», which consists of
8»n Fi’s and put

F™ = Fy+ G, + - + Gn. @))
We take a schlicht circular disc 4, in F»» whose boundary is I'o. Then
HTFOCFDC - CF™ S FSh . [©))

Let I'= be the boundy of F, which consists of one closed curve.

In virtue of the hypothesis on C, C/, we can cover I'= by kn equal schlicht
discs, whose radius is independent of # and %k is a constant independent of # and
any two of these discs overlap at most once.

Hence by Nevanlinna’s theorem ®, F§?, is of null boundary.
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