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1. Introduction. The theory of integration on a measure space has
been generalized to a W*-algebra by Segal [10] and Dixmier [2] as a non-
commutative extension of it. Applying their theory, some parts of the
probability theory may be described in a certain W*-algebra. In the paper
of Dixmier [2], he has proved the exist&nce of a mapping x—x° defined on a
semi-finite W*-algebra A acting on a Hilbert space H into its W*-subalgebra
A, with the similar properties of the Dixmier’s trace (= natural mapping)
in the finite W*-algebra, A being semi-finite provided every non-zero proje-
ction in A contains a non-zero finite projection in A (cf. [5]). In the previous
paper [11], we have discussed for a o-finite finite W*-algebra A (with the
faithful normal trace g with wu(Z) = 1) that the mapping x— x* is defined on
L'(A) and valued on LYA;) and it has the likewise properties with the
conditional expectation in the usual probability space, and we have also
c.lled it the conditional expectation relative to the W*-subalgebra A,, where
L'(A) being a Banach space of all integrable operators on H in the sense
of Segal (cf. [10]) which coincides with that in the sense of Dixmier (cf.[2])
as Banach space. Nakamura-Turumaru have also given a very simple proof
of the characterization theorem of the conditional expectation in A (cf. [8]).

If A is a commutative W*-algebra with a faithful normal trace w, then
there exists a probability space ({2, B,») such that, considering the space B
of all bounded random variables as the multiplication algebra on a Hilbert
space L*Q, B, v), B is isomorphic with A by the canonical mapping ¢ satis-

liying p(x) = f ($~1(x)) (w)dv(w) for every x € A. Conversely, let (2, B,v)be
Q

a probability space. Then the multiplication algebra B is a W*-algebra on
Ly, B,v) and u, defined by the above equation, is a faithful normal trace
onit. Furthermore, the canonical mapping ¢ defines an isomorphism between
L(A) and L(Q,B,v) as Banach spaces (» = 1), L"(A) being the Banach space
defined by Dixmier (cf.[2]). For any W*-subalgebra A, of A, there corres-
ponds a o-subfield B; of B, and A;, L'(A,;) are isomorphic with B, L'(Q,
B, v) respectively, where B, being the multiplication algebra of the bounded
random variables on ({2, B,,»). The conditional expectation defined for the
commutative algebra A (relative to the A;) is transformed to the one
defined for the corresponding probability space (Q,B,v) (relative to the By)
by the canonical mapping (cf. [7] and [11]).

In the probability theory, the martingales have been investigated by
many authors, particularly by Doob, Lévy and Ville (cf. [3]), which is defined
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by a linear system of the conditional expectations. The concept of the
martingale can be extended to a non-commutative W*-algebra as the gene-
ralized conditional expectation.

In the present paper, we shall begin with a characterization theorem
of the Dixmier mapping in a semi-finite W*-algebra (cf. Theorem 1 of §2).
This is a generalization of the characterization theorem of the conditional
expectation of Moy (cf. Theorem 3 of [7], also cf. Nakamura-Turumaru [8]),
and we shall call the Dixmier mapping to be the conditional expectation (cf.
§2 below). In §3, we shall give the definition of the M-net in a semi-finite
or finite W*-algebra A with respect to a given gage p (cf. [10] or [2], and
cf. §2 below). If A is commutative and p is a faithful normal trace, then
any M-net is transformed to a martingale in the corresponding probability
space ({2, B,v). In Theorem 2 and its Corollary, for a o-finite finite W*-algebra
A with a faithful normal-trace u we shall prove that for an M-net to be
simple (cf. Def. in §3) and to converge in Ll-mean, are equivalent to the
weak* conditional compactness of it, or to the uniform p-integrabilities of the
real and imaginary parts and Z!-uniform boundedness, and moreover that
if an M-net is uniformly bounded then it is simple and converges strongly
to a bounded operator in A. If the directed set D is decreasing (cf. §3),
then any M-net with finite integral in semi-finite A necessarily converges
strongly, and if the M-net belongs to L% A) then it converges in the L*-mean.
These facts can be applied to a convergence of a sequence of bounded
operators (cf. In I.. or Il.-factor, Theorem 6 of [9]), which was introduced
by von Neumann and we can show that it is a simple M-net. I want to thank
Mr. Sakai for his valuable remarks.

2. Let A be a semi-finite W*-algebra on a Hilbert space H with a
regular gage p in the sense of Segal (cf. [10]) which is considered as the
“normale, fidéle, éssentielle et maximale” trace in the sense of Dixmier (cf.
[2]). Let LY A) and L%(A) be the space of all integrable and square integrable
operators with respect to p in the sense of Segal respectively (cf. [10] and
[2]). Denote the set of all u-integrable operators belonging to A by J which
is a two-sided ideal of A and is dense in ZLY(A) and ZL*A) relative to the
respective norm | |; ( = L'-norm) and | |, ( = L*norm). Dixmier has proved
the following theorem (cf. Théoréme 8 of [2]).

THEOREM D. D Let A, be a W*-subalgebra of A.Then there exist a maximal
central projection p. in A, and a linear mapping x— x° from A into itself
such that the range A° = p,A, and for all x€ A

(D.1) |20 <) %iw, || X being operator bound.

(D.2) x¢ = x* and x*x° < (x*x)°.

1) Dixmier has proved more strict  conditions i.e. (D.8)': |jz¢ |, = | x |j» for = €
J.7 (r=1)and (D.9) : (D.9) holds for x € JUr1and y € (J A A)V"s (1/r+1/rz=1),
where the-power 1/r and the norm | - |, are notations of him (cf.[2]). But we can see
their equivalences such as (D.9) implies (D.8)’, (D.8)' implies (D.9)’ (by (D.5) and by
Holder’s inequality of Dixmier, (cf. [2] and Proposition 5 of [2]), and (D.9)’ implies
(D.9) by (D.7). ’
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(D. 3) x=0 implies x* = 0. (D.3) x*¢ = xt*,

(D.4) x= 0 and x¢ =0 imply p.xp,. = 0.

(D.5) (yxy') = yx¥ and (pu%p.Y = x° for 3,y € A

(D. 6) (xy) = (yx) for every y € AN Al

(D.7) The mapping x— x° is strongest and weakest continuous.

(D.8) |2 =%, and |x, < | x|, for every x € ].

(D.9) p(0*) = u(x°y) for every x€ A and y € J.

It is clear that I* = p,, and the mapping x— #* is extensible uniquely onto
L'(A) and L*A) by (D.8). In the case that the gage u is finite, regular and
normal i.e. u(l) =1 (we shall call such a u to be a faithful normal trace),
the Dixmier’s mapping x— &° satisfies ¢ = 1. In the previous paper [11], we
called such a mapping x— x¢ from ZL}A) into L'(A;) with respect to the
faithful normal trace x to be a conditional expectation relative to A;. If
A is commutative, it coincides with the conditional expectation in the usual
probability sense on the corresponding probability space (Q2,B,»). In the
present paper, we shall also call the Dixmier's mapping x— x* from L(A)
(or L%*(A)) into itself to be a conditional expectation relative to A,, and *°
denotes it.

Firstly we shall prove a characterization theorem of the conditional
expectation in the semi-finite case. Let A be a semi-finite W*-algebra and
let u be a regular gage on A. Then

THEOREM 1. Let x— x° be a linear mapping from A into itself satisfying
the conditions (D.2), (D.3), (D.9) and I'< 1. Then for any x € A, x° coincides
with the conditional expectation x* relative to the W*-subalgebra A, which is
the direct sum of Ac = {x%; x € A} and {MI — I): A complex numbers}.

ProOF. The linearity of x and (D.3) imply obviously (D.3). Since for
any x€ A, 0Zx*x< |x*x |1, by (D.2), (D.3) we have
) O=x*rr=s @) s [2*x)e < (2|5 1

1
and |« < [I°]2 [ %o < %|», SO we have (D.1). Let {x,}p <A be a uni-
formly | |.-bounded directed set converging weakly to x € A, D being a
directed set, then u(xy)— u(xy) for any y € J. By (D.9), Jf<J and
Y

(2) (X559 = p(y) = () = p(xy)
for every y € J. Since {x;} is uniformly | |~-bounded, (2) implies the weak
convergence of x¢ to x* on H by Dixmier’s Theorem (cf. Corollary 2 of [2]).
We shall now prove that A< is a weakly closed self-adjoit subalgebra*)
of A. If x€ A then x** = x* € A¢, i.e. A* and similarly J¢ are self-adjoint.
While, by (D.2), for any x € Je
(3) x*x = x*¥exc < (x*x)e.
As I'< 1, for any x & ]*2)
*) In this paper, by a2 weekly closed self-zdjoint’ algebra we mean a *-algebra which
is closed in the weak operator topology, not necessarily havingthe identity operator;

and by a Wkalgebra we meazn a weakly closed *-zlgebrza which has the identity
operator.
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@ p(x) = p(xI) = p(x).
‘Therefore, putting ¥ = (x*x)° — x*x, since y € J+ and by (3), (4)
0 = u(¥) = p((x*%)°) — u(x*x) < 0.
This implies ¥y = 0 and x*x = (x*x)° which belongs to J.. For any x,% € J¢, xy
4

can be expressed by Ex,zj‘z 5 for some z; € J¢ and complex numbers A; (F =
j=1
1,2,3,4). Consequently,

4 4
() = D)= DNz = 1y

J=1 j=1
and xy € J.. Therefore J¢ is a self-adjoint subalgebra of A. Next we shall
prove Ae =7fz). For x € J, there is {#%y}p» < J¢ such that [%) . <] %]~ and %y
converges weakly to x by a Kaplansky’s Theorem (cf. [6]). Hence %y = x5 con-
verges weakly to x = x¢ and x € A¢, i.e. JF< As. Conversely, since J = A,
for x € Ac we can take {x/}p < J converging weakly to x and [xy /e < | X[,
and obtain that x5 converges weakly to x* = x, i.e. x € J. Therefore A = T,
and A« is a self-adjoint weakly closed subalgebra of A.

Further, we prove that I¢ is a self-adjoint unit element in the algebra
Aes. For any x€ JF and y € A¢, sincz xy € J by the above fact,

(5) w(xle) = p((yx)yI) = p(yx).
Hence, for any complex number A and for any y € A,

Wy + ADxE) = (¥ + ADx).
‘This implies p/zxI?) = pzx) for every x € Jc and z€ A,. Therefore we have
x I¢ = x and similarly = I‘x for every x € Je&. Sinc2 I¢* = I* is clear and since
As =], IF is a self-adjoint unit element in A< Consequently A, is the
direct sum of A€ and {A(/ — I¥); A complex numbers}, and I¢is a maximal
central projection in Aj.

Finally, in order to prove x*= x’ for all x € A, ¥ b2ing the conditional
expectation relative to A,, we show J: = J N A,. Eachx &€ J N A, is expressed
by x' + AJ — I*) for some %’ € J: and A, and hencz for every y € J¢

w(xy) = p((&' + ML — I)y) = p(%'y) + ML — I)) = p(xY).
Since x € Jand ¥’ € ], w(x(y + N'1)) = u(x'(y + N'1)) for every y € J and complex
numbers A'. This implies easily u(xz) = u(x’z) for all z € A, and x = &’ which
belongs to J.. Sincz J:J ) A, is clear, we obtain J:=J | A,. Therefore,
for every x€ A and y € J N A, (=F),
wxy) = p(xy) = w(xy) = u(x%y),

i e.xc = x° for all x € A.

Using a method of Nakamura and Turumaru (cf. Cor. of [8]), the

2) For any subset S in A, S denote the weak closure (as operator on H) of S
which coincides with the strong closure when S is convex, S+ denotes the set of all
non-negative operators in S.
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conditional expectation satisfying the condition 1° = I can be charzacterized
as the following:

COROLLARY 1.1. Let x —a< be a linear mapping from A into itself satisfying
(D.2), (D.3), 1¢ = I and

(6) pxy) < u@)< + oo for every x € A*and y € J*.
Then the range A¢ is a W*-subalgebra and x° coincides with the conditional
expectation relative to A-.

Proor. Taking y € J* such that w(y9) = 1 and putting o(x) = u(xy) for
x & A, then by (6) and (D.2) ou(x) < oy(x) for every ¥ € A*. Since IF=
and oy(I) = w(y) = 1, by the proof of the Nakamura-Turumaru's Theorem
we have that oy(x) = oy(x) for every x € A. This implies that u(xy) = u(xy*)
for every y € J* and hence for every y € J. Further, since the strong con-
tinuity of x¢ (on bounded part) is followed from (b) (cf. Remark 1.2 below),
and since (D.9) holds for x, ¥y € J (by(6)), we obtain (4) and complete the
proof.

REMARK 1.1. We shall give in the last section (cf. § 4) an example of the
conditonal expectation satisfying 1= I in a semi-finite W*-algebra. When
p is a faithful normal trace, i.e. A is a o-finite, finite W*-algebra, Theorem
1 holds and Corollary 1.1 also characterizes the conditional expectation.
These characterizations are analytical and somewhat simple when compared
with the Theorem 2 in the preceding paper (cf.[11])».

REMARK 1.2. In Corollary 1.1, if I < I then x— x< is strongly continuous
on the unit sphere of A and Ac is a self-adjoint weakly closed subalgebra of A.
The first part will follow from the fact that Jc— J (by (6)) and for every
x€Aandye]
(7 T2y |3 = p*a*xy) < Y (x*x)) = w((F*2)9y*) = u((F*2)W* ).
The second part follows by the similar way of the proof of Theorem 1.
Further we remark that if u is a faithful normal trace and the mapping x — x¢
satisfies I+ = I and a weaker condition than (6):
8 () < () for every x € A+,
then A< is a W*-subalgebra of A. Indeed, for the present A and u, /= A
and

faely = p(a*exe) < p((x*x)e) < u(x*x) =[x 3 for every x € A.

This implies the strong continuity of x— x¢ on the unit sphere, and hence
by the similar way of the first part in this Remark, we obtain the required
ones.

Let A be again a semi-finite W*-algebra and let u be a regular gage on
A. For any W*-subalgebra A; of A, we shall also denote the contracted
gage on A; by u. Then the space ZL"(A;) is considered as a closed
subspace of L'(A), r = 1,2. For any self-adjoint operator x in L"(A) (r =1,

3) In this case we have assumed (D.3)’ and (D. 5) but not (D. 3).
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2), let x= f AdE\(x) be the spectral resolution of x.- Then each E\(x)

belongs to A. Denote by W{(x) the W+*-subalgebra of A generated by
{Exx); A}. If x is not self-adjoint, then it can be uniquely expressed by x =
x4+ 7 where x and x® are the real and -imaginary parts respectively.
Then there correspond the W+*-subalgebras W{(x®") and W(x®) to x> and
x® respectively. Let W(x) be the W#*-subalgebra generated by W(x") and
W(x®). Then W(x) is a minimal W*-subalgebra of A containing the reso-
lutions of identities E\(x®) and E\(x®) of ¥ and x® respectively. Under
these notations we have

PROPOSITION. For any subset S of L'(A) (r = 1 or 2 resp. ) there corresponds
uniquely -a minimal W*-subalgebra W(S) of A such that S < L'(W(S)). The
operation S — WI(S) has the properties that, W(L'(W(S))) = W(S); S < A implies
W(S) = S"; S, < S, implies W(S,) < W(S.); and further for S, and S; having
the same closed linear hull in L'(A) (r =1, or 2 resp.), W(S)) = W(S.).

ProoF. Let ST L(A)(r = 1 or 2 resp.) and let W(S) be a W*-subalgebra
of A generated by {W(x); x € S}. Since for any x € S @, x® € L(A) and
the projections E\(xW),. E\(x®) belongs to W(S), x> and x* are measurable
with respect to W(S) in tha sanse of Segal (cf. [10]) and hence they belong
to Z(W(S)). For a W*-subalgebra W of A such that Sc L(W), W(S)< W
follows from [10]. Hence W({(S) is minimal and uniquely determined by S.
Now we prove W(L'(W(S))) = W(S). Since S < L (W(S)), W(S) < W(L(W(S)))
(because S, < S, implies clearly W(S,) < W(S.)). Conversely, for x = x* in
L'(W(S)), Exx) € W(S) and hence W(L'(W(S))) < W(S). The other parts in this
proposition will easily follow from these facts.

The following corollary contains a generaliziation of a half part of a
theorem of Bahadur (cf. [1]).

COROLLARY 1.2. (1°) Let A bz a semi-finite W*-algebra with a regular
gagz w, and put L = L¥(A). Lot x— x¢ bz a projection in L such that x*c = x°*.
Then the following conditions are equivalent :

1') x—x: coincides with a conditional expectation x* (on L) relative to a
certain W*-subalgebra A, of A.

(2) Le = LYW(L)). , ;

(2°) If p is a faithful normal trace, then (1') and (2') are equivalent to the
Jollowing each condition :

(8) L¢ contains a self-adjoint subalgebra B of A such that 1 € B and B is
L2-dense in Le.

&) As = W(Lo).

ProoF. (1°). (1’)—(2'): Sincz L¢ = L*(A,) and J¢ is dense in ZL°, by Theorem
1L, P=JNADJN W) DF and =] 1 W(F). Further, by the preceding

Proposition, W(J¥) = W(L°). Hence we obtain ZL° = L*W(L*) and (2’) holds.

4) For any subset .S of bounded operators or. /, S’ denotes the set of all bounded
operators on H which with all operators in e S. S’’ derotes (S')’. S' is a W+-algebra
generated by S.




92 H. UMEGAKI

(27— (1): <, > denotes the inner product in L. Since x— x*is a proje-
ction in L, for x,y€ L

wxY) = <x59% > = < x,y* > = < x,9* > = u(x)).

Let x° be the conditional expectation relative to W(ZL¢). Then, for every x €
L, x¢= % and x*¢ = x°, and for every y &€ J

9) wxY) = pu(xy) = pw(xY°) = u(xy*) = w(xy’) = P(x’y).

This implies that x* = x¢ for every x € L. (2°) will be followed immediately
from (1°) as its corollary.

By a slight modification of the proof of Cor. 1. 2 it also holds that :.In Cor.
1.2,(1°), put L =ILYA), and let x— x° be a bounded linear mapping from
L into itself satisfying x° = x°and (D.9) for every x,y € J. Then the condition
(1’) is equivalent to

(2") Le = LY(W(L¢)) and J: < A.

3. As the preceding section we shall consider a semi-finite W*-algebra
A on a Hilbert space H, with a regular gage u. Let {xs, @ € D} be a family
of operators in A (or L(A) or L% A) resp.), D being directed set. Let Ax
be W*-subalgebra of A generated by {W(xy); v < a}, W(x,) being the W*-
subalgebra given in the Proposition in §2. Then Az & Agif andonly if a <
B. If {xs, @ € D} satisfies the conditions x« = x;* for every a, B€ D (@ =
B), where x°» denotes the conditional expectation relative to A., then we
shall call the family of operators {%¥s, &« € D} to be an M-net (with respect
to the gage p), and {A., a € D} thz family of W*-subalgebras associated to
the M-net. We shall call an M-net to be increasing or decreasing, whenever :
for any a, 8 € D there exists vy € D such that «,3 =<7y or vy < a,3 respe-
ctively.

An example of M-net is given such as: Let {Bs, @ € D} be a family of
W*-subalgebras of A and suppose that By < Bg if and only if « < 3. Let
{*s, & € D} be a family of operators in L(A) or L A) such that
(10) Ko = X§* for every a,B € D (ax = B)
where x°« denotes the conditional expectation relative to Bs. Then {xs, a €
D} is an M-net®, We denote such an M-net by {x., Ba«, a € D}. Further,
for any x € LY(A) or L*A) putting %, = x¢ (¢ €D), {x«, Bs, @ € D} is also
an M-net. Such an M-net {x«, B,, @ € D} is called to be simple. Any finite M-
net is clearly simple. The sequence of bounded operators in I.. or Il.-factor
given by von Neumann (cf. p. 118 of [9] and cf. §4 in this paper) is an example
of simple M-net.

If A is a o-finite commutative W*-algebra with faithful normal trace u,
then any M-net {x., a € D} in L}(A)is transformed to a martingale on the
corresponding probability space by the canonical mapping.

By the definition of M-net and the properties of the conditional expec-
tations the following conditions are equivalent for a given family of operators

5) That is, taking the correspording family of W*-subzalgebras {44, @ € D}, it
satisfies that Za=2%0 for every «,8 € D (a < B).
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{%, @ € D} in L'(A) or L¥A):

(i) {%s, @ € D} is an M-net.

(1) p(V%a) = w(yxg) for every o, B € D (¢ =< B)and y € J | Aa, As being
the W*-subalgebra given at the first paragraph in this section.

(iii) xw = xz»® for every a, B, ¥ € D such that v < a <3, where ¢(7, @)
denotes the conditional expectation relative to the W*-subalgebra W(xy, %«).

If {%x, As, & € D} and {¥s, As, & € D} are M-nets, then {x*, A., a € D},
{Ats, Aw, @ € D} and {%s + Y, As, @ € D} are also M-nets, A being any com-
plex number. We shall say an M-net {x., « € D} to be real or positive
if x¥ = x, for every @« € D or %, =0 for every &« € D. Any M-net {xs, a €
D} can be decomposed into two real M-nets in an obvious way, that is,

{4, € Dy and {9, @ € D} where 2 =  (xa + x) and 2 = - (va — 23,

In an M-net {x., @ € D}, for any directed subset D' of D, {%s, « € D'} is
also an M-net.

Besides, we shall define a subset S< L(A) to be wuniformly p-integrable
if for any & > 0O there is a positive number & > 0 such that w(®) < 8 (p being
projection in Z!(A)) implies u(p|x|) < & for all x € S;

With these terminologies, we shall prove

THEOREM 2.9 Let A be a o-finite, finite W*-algebra on a Hilbert space H
with a faithful normal trace pu, and let D be an increasing directed set. Then,
for a given M-net {x., a € D}, the following conditions are equivalent :

(2.1) Both {x{", a € D}, and {2, a € D} are uniformly u-integrable and
uniformly bounded in L'-norm.

(2.2) {xs, @ € D} is weakly* conditional compact in L'(A).

2.3) {x%x, @ € D} is simple.

(2.4) There exists x € L\(A) such that | %, — x |, — 0.

Proor. If the M-net {x., « € D} is finite, the proof is trivial. Hence we
consider the case that it is infinite. Let {A., & € D} be the family of the

W+-subalgebras of A associated to {x., « € D}. Let A= UAw and let
®eD

A, be the weak closure of A,. Let z¢* be the conditional expectation of z €
L(A) relative to A~

Firstly we prove that (2.1)—(2.2): Each x{’ is uniquely expressed by
x,.— x., such that %, x; € L'(A), x;, x,; =0 and x,x, =0 for every a € D.
Since {x{), @ € D} is uniformly p-integrable and [x{’| = x, + x,/, for any
& >0 there exists a 8 > 0 such that u(p) < & implies for all &« € D

an wbx,) + pdxy) = wb(x, + %)) = pb|xa]) < E/2.

Since u(px,), w(dx,) =0, both < &/2 for all « € D, and hence {x,, « € D}
and {x;, a € D} are uniformly p-integrable. Putting o,(y) = w(¥x,) and o, ()
= u(yx,) for all y€ A and a € D, o, and o, belong to the conjugate

6) This theorem contairs a generalization of Ll-mean convergence of a martingale
in a probability space (cf. Theorem 1.4 of [3]).
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Banach space A~ of A. Let T" and T” be the weak closures of {o,, a € D}
and {o,, @ € D} as functional on A respectively. Let o € 7" be a limiting
point of {o,, @ € D} which is a positive linear functional on A. We take

a sequence of projections {p;,7=1,2,....}in A such that p;Lp; (f = k). For

& >0, taking & > 0 as (11), there exists an integer %, > 0 such that w <2 Dy )
J=ko

< 8, and since 2 bp; is a projection in A, by (11)

j=ko

(Do) =u((Z o)) <er2
Jj=ko J=ko
Choosing o, such that

’G(ﬁl p1> —a;(é p,,)

J=ko j=ko

< &/2,

then for anyiinteger k= &,
0'(§ P}) = G'(Jéo PJ) = } a’ (1;2“; P.f) - 0‘;(20 P.;) } + 0;(&?;)

J=ko
< &2+ &/2 =&,

Therefore o is countably additive and by Dye-Radon-Nikodym’s Theorem
(cf.[4]), there exists x' € L!(A) such that ¥ =0 and

(12) a'(y) = u(yx’) for all y € A.
Hence every o’ in 7T’ (and similarily every o” in T") are represented as
(12) (and o”'(¥) = u(yx’) for some x” € L(A)). x' and x” are uniquely deter-
mined by ¢’ and o” in L}(A) respectively. Therefore the weak* closures of
{#%s, & € D} and {x,, a € D} in L(A) are weak* compact in L}(A) and so is
the weak* closure of {x, —x,, & € D},i.e. {x{°, a € D} is weakly* conditio-
nally compact. Since for {x{?, & € D} the same fact can be proved by the
same way and x, = x) + ix?, {¥s, « € D} is weakly* conditionally compact.

Secondly we prove that (2.2) —(2.3): Put S = {os, & € D} ca(y) = w(¥%a),
and S and S’ the weak* closures in Ap of S with respect to A; and A,
respectively, that is, the closures with respect to the weak* topologies on
L'(A,) defined by the neighborhoods:

Ui 21, 20, E>0)={x € LN (A); |l —x)2)| < &, 7=1,2,...., n},
z; belonging to A, or A, respectively. Then by (2.2) S is weakly* compact.
Since the weak* topology on L!'(A,) with respect to A, is stronger than the
one with respect to A,, the canonical mapping from S” to S’ is continuous,
and it is also one-to-one. For, since A, is strongly dense in A, (as operator
on H), w(x1z) = u(x2) for x1, x; € L(A;) and for all z € A, thus a fortiori, for
all z € A,. Therefore S is compact (and hence closed) in S, and S < S”
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mplies St < S0 = S, Further, by the definition of the M-net, ligl W Yxa)

( = o(¥) say) always exists for every ¥ € A,, which belongs to S’ and hence
S, Consequently, there is an x € LY(A,) such that «(») = uw(yx) for every
» € A,. Since u(yx)=lim u(yx.) for every y € A;, for any fixed « € D and
for any y € A,,

wyx) = liBm w(yxg) = liE’n nEie) (a = B) = m(yxa).
Hence we obtain x, = x’¢ for every a € D.

Next we shall show the equivalence of (2.3) and (2.4). Assume (2. 3).
For any z € A, putting 2, = 2%« for all ¢ € D and z, =29, {z.,, «a € D} is a
simple M-net satisfying |z%* |, < |2}, and
14 20 — 21 2= p(Efz) — w(Z¥2.) — 0

and hence !zo —2; | < (20 —21 b —0. Let x € LY(A) be %s = x% (a € D) and
take {2.} < A; such that |x2 —z, ;< 1/32 (n=1,2,....). Moreover for each
n taking a, € D such that 'z, —zj#|, < 1/3n for all « € D, (a» =),

(21 — % | )X — 201+ 20— 250 |+ [ (@ — 2|1 < 1/
and 'x® — x4 ; — 0. This implies (2. 4). Conversely, assuming (2. 4), ]igl WYXa)

= u(yx) for all y € A, and if ¥y € Aq, then w(¥x,) = w(yxs) for alla € D(ay =
«). These facts imply that u(yxe,) = u(yx) for all y € Aq,.

Finally we shall prove that (2.3) and (2.4) imply (2.1). Let x € LY(A) be

Xo = x'= and | x4 — x; l—: 0. The expressions x = x® + ix® and xV = x' — x” (¥,

%' =0 and x'x” = 0) are unique. Putting x, = % and x, = 5% (a € D), x{’

=x, —x, and {x,, a € D} and {x,, « € D} are positive simple M-sets
satisfying | x, — %' 1, | 2, — 2" |, —0. If {x°, « € D} is not uniformly u-inte-
grable, then so is at least one {x,, « € D} or {x,, a € D}. Indeed, if both
are uniformly p-integrable, then let |xx| = v.x being canonical decomposition,
vs being partially isometric operator,

pD12P]) = pdvaxd) = w(pvax,) — wbvax, )

= DY a0 plvivany)

=20 b)) + | 7 [0 w(Bx )
because x, = ¥’ and %, = x"%s. This implies the uniformly u-integrability
of {%x, @ € D}. Now if {x,, @ € D} is not uniformly u-integrable, then there
exist an € > 0, sequences of projections {.} = A and indices {a,} = D such
that w(p.) < 1/n, wP«x') and &w < o+ (=1,2,....). Let B be a W*-subal-
gebra of A generated by {A.,, »=1,2,....} and let x be the conditional
expectation of x’ relative to B. Then |x, — x’¢[1—0 (#— c0). Therefore

&< p(Pax™) < | plbn(F g m — £ + (Pax’) S || ¥'w, — 2 [y + p(Pnx')—0(1n — ).

This is a contradiction. The uniform g-integrability of {x?, &« € D} also

follows in the same way as for case of {x{°, ¢ € D}. Q.E.D.
For the M-ets in L% A) and A we have the following :

CoOROLLARY 2.1. Let A and p have the same meanings as Theorem 2. Let
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{xx, @ € D} be an increasing M-net in L (A) (in A, resp.). Then the following
three conditions are equivalent :

(2.1Y {x«, @ € D} is uniformly bounded in L*-norm ( - |--norm resp.).

(2.3) {%xs, @ € D} is simple for x € L A) (for x € A resp.).

(2.4) There exists an x € L*(A) (x € A resp.) such that x. converges to x
in the L*mean (in the strong operator topology on H resp.).

In the proof of this corollary, we shall use the notations in the proof of
Theorem 1.

PROOF FOR THE L*A)-CASE. (2.1) —(2.3Y: Since /%52 = 2D |2+ xP|2
(e € D) and for any projection p € A

p@15P]) = p@Y P> D) < wp) 2P 2 (G=1,2),

Theorem 1 (2.1) is satisfied. Hence {x$", &« € D} are simple in L!(A),i.e.
2P = x0% and  x{) — x| >0 for some x¥’ € L'(A), and

|pOxD)] < p(P ) (PP S T 2D 2 [ 3
for every y € A. Consequenly, [u(yx¥)| <sup (2P [,|y[: and xV € LA(A)
(-2

(G=1,2). (2.3y —(2.4): As in the proof of Theorem 2 (cf. the part (2.3)—
(2.4)), taking {2+, « € D} A and z; € A, (2.4) holds (see (14)). Since A is
dense in L* A), we can show | x, — x° |, — 0 by the same method of the proof
of Theorem 1, if we take the L*-norm instead of L!*-norm. (2.4) —(2.3) and
(2.3 —(2.1y are obvious by Theorem 1 and by the fact that the x belonging
to L¥(A).

PROOF FOR THE A-CASE. (2.1) —(2.3): Since m(%'%.) <| %%, (2.1) holds
for L?norm and (2.3) holds for x € Z*(A). Hence, by Cor.2.1.(2.4), for every
ye A

12y (3= pla*x3y*) = lim p(a*x3y*) < sup | %a || Y3

and x € A. (2.3Y —(2.4): We can assume that x € A satisfies x, = x} and
[ %z — %2] —0. Whence for any y € A ||(%s — %)y |2 —0. Since |[%s]. < [%|. and
A is dense in L% A), x» — x strongly on the Hilbert space L%* A). This fact
implies the strong convergence of x, to x on H. Itis clear that (2.4)Y —(2.3)
and (2.3Y — (2.1) for A.

REMARK 2.1. In Theorem 1, the condition (2.1) implies (2.2) for arbitrary
set S in L'(A) and the converse case holds for S consisting of positive
operators in LZ}(A). Indeed, the former follows from the proof of Theorem 1,
and the latter will be obtained by the last part of its proof, because we
can take the weak* convergence in the place of the L!-mean convergence in
that part of the proof.

As the final part in this section, we shall discuss a decreasing M-nets
in a semi-finite W*-algebra A on H with a regular gage p:

THEOREM 3. Let {xs, a« € D} be a decreasing M-net in L*(A) (in L*(A) N
A resp.). Then %« converges to an operator x € LX(A) (inL¥A) N A resp.) in
L2-mean (strongly as operator on H resp.). In particular, if A is o-finite finite
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and p is a faithful normal trace and {%«, a € D} < L'(A), then x, converges
to an x € LY(A) in L'-mean.

ProoF. Let {Aw, & € D} be the family of the W*-subalgebras associated
to {%«, @ € D} (cf. The first paragraph of §3). Let A; = Nxo» A« which isa
W+-subalgebra of A and let ¥ be the conditional expectation of y relative
to A;.

L#-casE: Since forany a, 8 € D (a = B), 0 = x5%a = x5 5% < (x3%5)°,
0 = p(xg%a) < p((xf%a)) < p(%3%s)
and lim u(xkrs.) exists (uniquely, = A say). Therefore
Xy — %g |z = p((¥a — %p)*(Xa — %5)) = p(x}x3) — p(X%%a) > A — A =0,
and there exists an x € L¥ A) such that |x, — %y — 0.

L:N A-casE: Since {#s, « € D} < L*(A), it converges to x € L*A) ih the
Lzmean. While for any y € J and any fixed ap € D, |u(xy)| = llism (%)

< %2 « |¥|1, which implies x € A. Hence x € LZX(A) N A and | (% — 2y (2 =
(¥ % —xiy—0 for every y & J, and |[(xs — %)y 2 — 0 for every y € L¥A),
because J is dense in L% A). Therefore x. converges strongly to x on H.
Finally we prove the last part. For fixed oy € D, taking {y.} = A., such

that | yn — Xz, | = 0 (7 — ),

[ ype =381 = V2 — Y8 e —0
and

‘\yfﬂ -—xw\1§ﬁyn—xwoﬁl—>0 (n— o0, a < ay).
Therefore for any & > 0 there are a and # such that for every «, B < a., a,

(% — %1 = Xa =Y+ yfe — Yl + [ Y — 23 1 < €

and x, converges to some x € L'(A) in the L!-mean.

ReEMARK 2.2. In the above proof, each limit operator belongs to ZL(A,),
L:(A) N A, or LY{A,) respectively. For, let x be the limit operator, then by
the above proof, we find u(yx) = u(yx.) for every y € J A, and for every
a € D.

4. In this section we shall show that a sequence of bounded operators
defined by von Neumann (cf. p. 118 of [9]) is a simple M-set, and apply the
preceding consideration to the convergence theorem of it (cf. Theorem 6
of [9]). Firstly, we show a lemma:

LeMmMmA 1. (Misonou). Let W be a W*-algebra on H and let p be a projection
in W. For any x€ W, put
(15) 2 = pxp + (1 — p)x(l — p).

Then the range W'? of the mapping x — x'? is a W*-subalgebra of W and
the mapping is linear and satisfies the conditions (D.1) —(D.5), (D.7) (in

7) These notations were introduced by von Neumann (cf. [9;p.118]).
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Theorem D) and I = I.

ProoF. We prove only (D.5), since the others are almost obvious. For
any x, ye W
(16)  (x'*9)* = ((pxp + (1 — p)x(1 — P))'* = pxpyp + (1 — P)x(1 — pY(1 — p)
and x'2y'? = (pxp + (1 — p)x(1 — p)) (pyp + (1 — pY(1 — p)) which equals to the
right side of (16). This implies (x!7y)!? = x!?y!? and similarly = (xy!?)/*. Since
y? =y for every y € W'*, (yxy)? = W(xy)\? = yx'7y’ for 3,5 € W'*.

For any projections in W of finite number p,, ....,p., we denote
(x\P1)\ 72 ((x171)IP3)I7s and ((....((x'P1)Ps)lrs) . )I#a by xlP1lP2 xiPrivalss and x!71193... 12
respectively. ‘

LEMMA 2 (von Neumann [9]). If the projections pn, ....pn tn W commute
with each others, then for any permutation (1,2, ....,7') of (1,2, ....,n)

xIPV1P2 Py — gyl P1 D2l 1Py

This lemma was proved by von Neumann for the Il. or Il. factor (cf.
[9]), which is valid for the present case.

Let W = A be a semi-finite W*-algebra on H and let u be a regular
gage. Let {p,} be a finite or infinite sequence of projections in S commuting
with each others. For any x € A, put
(17) xn = xlPlPz..19n n= 1, 2....

Under these notations we obtain

THEOREM 4. A_, = {xn; x & A} is a W*-subalgebra of A for each n =

1,2, ...., and the mapping x — x» transforms A onto A_. and is the condi-
tional expectation relative to A ., satisfying I'n = I. Putting %_, = x*» for each
n, {%—n, n=12,....} is a decreasing simple M-net.

ProorF. By Lemmas 1 and 2, each A_, is obviously a W*-subalgebra

satisfying
(18) A DA D...DAD.....

For any fixed projection p&€ A and for x €], x'? belongs to J A and
satisfying
(19) w(x?) = ypxp + (1 — Pyl — P)) = pu(dx) + w((1 — p)x) = w(x).
Hence by Lemma 1 u(3'%x) = w((3'2x)1?) = w((¥x'?)1?) = u(yx!?) for every y € A
and x € J, and by Theorem 1 the mapping x—x!? is the conditional ex-
pectation relative to A'#. Similarly, u(x'#11#3) = w(x) and by Lemmas 1 and 2
(x\PiPay)imiza = glminylnie holds. Hence by the same way for xi?, the mapping
x—>x\P1l7r is the conditional expectation relative to A'"in( = A_,). By the
inductive method and by (18) these facts hold for every & It follows from
the definition of M-net and I~ = I that {x_.s, = 1,2, ....} is a decreasing
simple, M-set.

For x€ LZX(A)N A andeach n=12,....,

XL Ln) = px¥*onxen) < p((x*2)n) = pl(2*%)
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and hence x_-, € LY A) 1 A-n. Then by Theorems 3 and 4, x_, converges
strongly to an operator x_. in L*(A) (1 A-. which is also a limit in Z*mean,

where A-.. = nA-n. This implies the Theorem of von Neumann :
n=1

THEOREM 5. For any x € L(A) N A, {x} belongs to L(A)( A-n, and
converges strongly as operator on H and in L?*-mean to an operator %-. in

LA N A-..

Put x* = x_.. for x € L(A) N A. Since (x|, = [x-, < |x s, we have

(20) Nxel, <l xy for every x € L}(A) N A.
‘While for every x, y € LX(A) N A, x* = lim x*» = lim x** = x* and
Nyoo n->eo

(xy)e = lim (x%)» = lim x°yn = x%° = lim xy° = (x9°),
n->ee N-yoo N>e0

where the limit is that with respect to the weak operator topology, and
for every x, y € J
plxey) = lim plxy) = lim w(zy) = wl2")

The linearity and idempotency (x< = x¥) of the mapping x—x< (defined on
L:(A) N A) are clear. Since LZ¥A) | A is dense in L% A), by (20) it is uniquely
extended on the whole space L% A). Further, 'since x¢ = x for every x € L A)
N A_., x— x¢ satisfies the condition (2’) in Corollary 1.2. Therefore, we
-obtain

COROLLARY 5.1 The mapping x— %-- (¥ € L}(A) N A) is uniquely extended
to the conditional expectation x— x° relative to A-..

From Theorem 5 and this Corollary it follows that for every x € A, I’x_n
converges weakly to the x°, I° being the maximal central projection in the
W+-subalgebra A_.. of A.
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