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1. Introduction. Suppose that a function/(ΛΓ) is of period 2π. Denoting
by sm(x) the ra-th partial sum of the Fourier series of / (#) , a classical
problem of Zalcwasser reads as follows [5] :

Let {pk} be a strictly increasing sequence of positive integers. If a function
f(x) is squarely integrable over the period, then is it true that

for almost all x?

Concerning this problem various results were obtained under some
additional conditions of the sequence {pk} (cf. [7]). On the other hand we
proved the following theorem in which we imposed an additional condition
on the function f(x) but did not on the sequence {pk} [4].

THEOREM. Let f(x) be continuous and of modulus of continuity
0(l/log logCl/1 h I )) as h -* 0. // ίpk] is a strictly increasing sequence of positive
integers, then we have the conclusion (1) for almost all x.

In this paper we shall improve the above theorem in two points, namely,
we shall treat an integrable function instead of continuous function, and we
shall add an exponent in the summand of the relation (1). Incidentally the
similar method of the proof of our theorem will work to prove a theorem
of R. Salem concerning a convergence criterion of Fourier series (Theorem
2 below).

In what follows we suppose that a function /(#) is of period 2π and we
denote the n-th partial sum of its Fourier series by the usual notation sn(x)
= sn(f; x) and its conjugate by sn(x) = sn(f x).

2. The improved form of the above theorem is this:

THEOREM 1. Let f(x) be an integrable function on (0, 2π) and let {pk}
be a strictly increasing sequence of positive integers. If

(2) f{f(x + t) -f (x -t)}dt = o(\h\/log
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as h^O uniformly for x, 0 <La <^x <Lb <L2π, then for any positive number
a we have

n

(3) lim - j - 2 I SptCx) - / C*J> |α = 0

and

(4) lim -~ 2 I 5^CΛ) - /OO IΛ = 0

/or almost all x in (a, b), where f(x) is conjugate to f(x).

The proof will be done in the next sections.

THEOREM 2 (R. Salem [3]). Let f(x) be an integrable function on
(0, 2π). If

(5) f {f(x + t)-f(x-t)}dt^o(\h\/log(l/\h\))
b

as h -* 0 uniformly for x, 0 <La<Lx <Lb <^2π, then the Fourier series of the
function f(x) converges almost everywhere in (a,b).

R. Salem proved further the uniform convergence of the Fourier series
in the case of continuous functions.

For the Fourier series of a function Lp(0, 2π) (p>l)t the sequence
[Snk(x)} of partial sums with the Hadamard gaps converges almost every-
where by the well known Littlewood and Paley theorem, but as Zygmund
pointed out [8] this result does not remain true in the case p = 1. We shall
furnish a sufficient condition for this conclusion:

THEOREM 3. In the assumption of Theorem 2, if we replace the condition
(5) by the weaker condition (2) uniformly for x, 0 <La <Lx^b <L2π, then
for any sequence of positive integers with the Hadamard gaps {nk}, wfc/nfc_i
> q> 1 (k = 1, 2, . . . . ) , the sequence {snk(x)} converges almost everywhere in

3. For the proof of theorems we need some preliminary lemmas.

LEMMA 1. Let f(x) be an integrable function on (0, 2π) and let F(x)
be the periodic part of the primitive of fix). Let ω^d) be an increasing
function of δ > 0 such that δω^δ) and δ/ω}(δ) are also monotone increasing
and that δω^d^^O, ω1(^/J) = O(ω,(fl)) as <5~>0. //
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uniformly for all x, then there exists a trigonometric polynomial Pn(x) of
order n such that

Pn(x) - F(X)

uniformly for all x and that

lim
ίi->oo

-/(*)} =

for almost all x.

For example, we may take ω^d) = l/log(l/<5) or I/log log(l/d). This
lemma is essentially known ([10], [3]). By the assumption we get

F(x + h) + F(x - h) - 2F(x) = o( | h \ ωt( | h | ))

uniformly. Using the kernel

(£\ 1 ί sin mt \4

m3 ^ sin t )

which is a trigonometric polynomial of order 2m — 2 in 2/, we define

where

mu

r sin

-τc/2

The function Im(x) is a trigonometric polynomial of order 2m — 2 and
A/Λ is greater than a positive constant independent of m. We have

I Im(x) - 2ιθ

-°«ίl/l+l/
τt/m

* / 8

= 0 ( i ω i (_L)) + 0 (JL ω j (J_
x m κ mIJ \m ^ m

that is, I /mθ) — F(ΛΓ) | = o ( — ω1 (—)) uniformly.
rrί mOn the other hand, since f(x) = F'(Λ:) almost everywhere, we get
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for almost all Λ;, and the kernel (6) is a positive kernel we conclude by the
well known theorem that
(7) lim {Im\x) -f(x)} -0

m +oc

Λ

if f \ f (x + 2u) + f (x - 2u) - 2 f (x) \ du = o (\ h\ ) , t h a t is, (7) subsists for
0

almost all x.
n 1

To complete the proof for any n, we take m equal to -s- + 1 or -^ (n -f 1)

according as n is even or odd, and put Pn(x) = Im(x).

LEMMA 2. 7/ /(*) e Z/(0,2τr) (rl>2),
lit 2,τt

o

The factor 3r on the right may be made smaller, but this is irrelevant
to our purpose. This lemma is well known in a slightly different form ([9]
p. 153).

LEMMA 3. // tn(x) is a trigonometric polynomial of order n, and r^\}

then
2Λ 2τt

/1 /,'(*) r dxg,nr /1 tu(x) | r dx.
0 0

This is also known (cf. [9] p. 155).

LEMMA 4. // F(x) is continuous and

(8) F(x + 0 + F(x - t) - 2F(x) =o(\t\)

uniformly for x, then the conjugate F(x) is continuous and satisfies the similar
relation as (8) uniformly.

If F(x) is continuous and

(9) F(x + /) + F(x - t) - 2F(x) =o(\t\ /log log(l/ (t \ ))

uniformly, then F(x) satisfies the similar relation as (9) uniformly.

The first part of Lemma 4 is due to Zygmund ([10]) Theorem 7), and
the second will be proved along the same line as the above Zygmund proof,
and so we may omit the proof to avoid the repeated complication.
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4. We are now in a position to prove Theorem 1. Without loss of
generality we may suppose (a, b) = (0, 2π). In fact, if 0 <a <b <2π, we
put

fix) for

for

b — a

that is, in the intervals (0, a) and (b, 2π) the function / i θ ) is similar to
f(x) in (a, b). As we see easily, fi(x) satisfies uniformly for x in (0, 2π)
the condition (2) replaced / by /i. Evidently /(ΛΓ) —fi(x) = 0 for a<Lx<Lb,
hence by the localization theorem sn(f — fi',x) converges to zero uniformly
in any closed interval contained in the open interval (a, b) and from the
identity

Sn(f; X) = Sn(fi ', X) + Sn(f —fi \ X)

the theorem will be proved immdiately if the theorem is proved for fi(x)
instead of f(x).

Supposing that the equality (2) holds uniformly in (0, 2π), let Pn(x) be
the polynomial of order n which is determined by Lemma 1 taking ωχ(δ)
= I/log log(l/d), and we write for the simplicity

Qk(x) - Ppk(x), qΛ(x) = Q'k(x).

Hence QkW - F(x) = o (l/(pk log log pk)) uniformly, and qh{x) -fix) =
almost everywhere as k ->• oo. Since g^O) is of order at most />Λ we write

Spk(f; x) Λ A

To prove (3) it is sufficient then to show that

(10) Urn ~^\
»->«

almost everywhere. If (10) is true for some a > 0, it is also true for β,
0 < β < a hence we may suppose that a is an integer not smaller than 2.

Now we shall show that, for any positive number c, if n is large enough,
we have

(11) J exp { c (log ή) (-Tp- 2 I Spk(f - Qk\x) \*) } dx < M«,

where MΛy c is a constant independent of n.
To prove this, the left hand side of (11) is equal to
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J ; 1 «-..«• - * •• •> r/ J 1

say. The sum # is, by the Minkowski inequality, not greater than

In virtue of Lemma 3 this is not greater than

^ \*/rΛr/Λ

By Lemma 1 we can take an integer N =N(c) sufficiently large such that

(12) I F(x) - Qk(x) I < d/dpk log log pk) for all k > N,

where we put δ = l/(12ce). Hence if n is large enough

β < ~ (clogn)r / C,1 / δ γ, % I KF-Qk)pk\og\ogPk. \| r

 dχ)"/r\ r/Λ

(c log ny I 2 ^ ( δ yί3rrr
2rdχ\«/r)r/*

γ\ 2nr/« [ Zά MOglOg/ίfc7 \ J t I

by Lemma 2 and (12). Since pk^>k we get easily

~ (c log
r\ 2nr'a t (log log 2ny ί

and using the Stirling formula n\ = nne-"*S2πn e»/<12Iλ>(0 < 5 < 1) we have

if n is large enough.
On the other hand, by the Holder inequality,

Λ ^ ^ ^C l o g n ^ 2f ( 2^V I ' (F -O \*)r/"/J

Applying Lemmas 2 and 3 again we get
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^ %ll (c log n)r / 2

 a

 2 ί π r\ J \r/a

A ^ 2J ~^VO^W~ \ 21 Pk \ \ spk^
F ~ ^k > *) γdx\ (

)'*}{. ί(F-Qk)Pk\og\ogPk.χγdχ\

S^1 (clog nγ(2πy-r/« I ^ d«3aa«(2π)«γ'*
2J r\ 2nrfΛ \ 2J (log log 2")*'
r=0 k=*n+t

^ 2u T\ < °*'c

r = o

where C<*, c is independent of n, if n is large enough. Thus we obtained the
inequality (11).

Now we shall be able to complete the proof quite easily. For any posi-
tive ε we denote by En the set of all points x e CO, 2π) such that

Then we get from (11), taking c = 2/ε,

Ma,c > Jexp {-|(log n) (~ ^ I ^f - Qh\ x) \* Y*) dx
0

j exp I — log n el dx
En

if n is large enough. Therefore ^\ En\ < °o, that is

almost everywhere. Since ε > 0 is arbitrary we conclude that

almost everywhere. For arbitrary large A/*, we take n such that
2n+1, then
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~^^2ι o (I) =
1=0

which is the same as (10), and the first part of Theorem 1 was proved.
The second part of Theorem 1 is an immediate consequence of the first

part and Lemma 4.
Theorem 1 was proved completely.

THEOREM 4. // fix) is a bounded function, there exists a constant c> 0
such that, for any sequence of positive integers {pk} and positive number a,

f(13) fexp {c(~ 2 \sPk(x)\«)ί/a}dx<M«yC,

? e x p {cί± 2 \~sPkCx)
o k=ι

o

04) ?
o

where M*> G is a constant independent of n.

In the case a = n = 1, Theorem 4 is known ([6] Theorem 5).
Since the proof will be done by the similar way to the proof of the

inequality (11), we shall give only a sketch of the proof. We may suppose
that a is an integer greater than 2. The left hand side of (13) is equal to

0 0 2 r/ΰύ

say. Suppose that \f(x) \ <K for all x. By the Holder inequality and by
Lemma 2 we have

n \r/Λ

]3*α* £ K«dx) (2πy~r/«

where M ' does not depend on w. By the Minkowski inequality and by Lemma
2 we get

B^^/jff
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in virtue of the Stirling formula. The last series is convergent if c <
(3/fe)"1, with a bound independent of n. We get therefore the inequality (13;.

To prove (14) we need only to repeat the same argument, but we must
use the following inequality in place of Lemma 2.

(15) j I sn(f; x) \r dx ̂  10r rr j | / (*) \rdx for r ̂  2.
0 0

This being known essentially, we give a sketch of the proof. As we
know,

2τf aw

sn(x) = - — flS*±12 ( 1 - cosnt)dt + ~ f f(i) sin n(x -t)dt
π 0 2tany 2 π 5f

c o s nΛΓ Γ / U + QcosnQc + Q ^^
= fCχ) -f

2 tan A
2

sin n(X + t) rf< + ^ | / ω s i n n(χ _ t ) d L

Hence

+ \g*(χ)\ + 4=
0

where gi(x) is conjugate to f(x) cos nx and £200 to / 0 0 sin nx. Therefore
by the Minkowski inequality, if r 2> 1

(16) (f\sn(x)\rdx) £3(f\7(x)\rdx) +f\fCx)\dx.
0 *o 0

By the well known Riesz inequality
2-7t 1/7* ^7ί- l/τ*

(17) ( j 17oo Î JΛ:) ^2r(f\ f(x) \rdx) for r ̂ 2 ,
0 0

we get, combining (16) and (17),

( / I Sn(x) \rdx) ^6r(f\ /(*) \rdx) + (2ττ)1'1/r( J | /(AT)
0 0 0

^ lOr ( J I /(AT) \rdx) for r ̂  2.
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THEOREM 5. Let f(x) be an integrable function on (0,2π). //
h

f {/(* + 0 - / ( * - 0} Λ = o (I A |)

as A-»0, uniformly for x in (a,b),and if {pk} is any sequence of intergέrs,
then we have

~~ 2 I sPk(x) - / ( * ) I* = o ((log log

= * (dog log

2

almost everywhere.

Since the proof is also done, mutatis mutandis, along the line of the
proof of Theorem 1, we shall only mention some points. Let (a,b) = (0,2π).
The periodic part F(x) of the primitive of /(#) satisfies that

F(x + O + i^(* - 0 - 2FOO - o (I /1)

uniformly, and so F(x) satisfies the similar condition by Lemma 4. There
exists a trigonometric polynomial Pn(x) of order n such that

F(x) - PnOO = o (1/Λ)
uniformly for Λ: (cf. [10] Theorem 8), and lim {/(*) - Pή(x)} = 0 almost

il-*oo

everywhere.
We remark that obviously we can remove —f(x) and —f(x) in the

summands of the conclusion.

5. We shall now prove Theorem 2. We may suppose again that («, b)
= (0,2π). Let F(x) be the periodic part of the primitive of f(x), then

F ( * +/) + F ( * - / ) - 2 F ( * ) = o ( | / | / l o g (1/|*D)
as / -~>Ό uniformly for #. By Lemma 1 we can find a trigonometric polynomial
PnOO of order n such that

FCx) - Pn(x) - o (l/Oi log Λ))

uniformly for Λ:, and

lim {/(Λ:) - Pn'OOl = 0

almost everywhere. Hence, by the relation

sn(f; x) -f(χ) = s»(/ - Pn' ΛΓ) + {PΛ'θrt -/(*)}

= s/(F - Pn JC) + {P»#(x) - /GO},

it is sufficient to prove that

(18) lim Sn'CF -Pn;x)=0

almost everywhere. We shall evaluate the integral
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/ = f exp (c log n \ sn'(F - Pn x)f
where c is any positive constant. By the above approximation, we have

(19) I F(x) - Pndx) I < d/(n log »)

for large w, where δ = l/(6c£). As £α < £α + £~α = 2 cosh #, we get

/ ^ 2 J cosh (c Clog Λ) I SnCF - P» x) \ )dx

(by Lemma 3)

r " x * (by Lemma 2 and (19))
°° i

+ 2 s/π 2 9 2 r " / - (by the Stirling formula)
r = l ^ *

which is an absolute constant, say M. Therefore / < M if n is large enough.
Let En be the set of all x e (0, 2τr) for which

I s»'(F - O« x) I > ε.

Taking c == 2/e we have

M>I> / e x p (ec log Λ)JΛ: = w21 En |,

hence | 2?» | < M/w2 for large n, or 2 I En I < oo. We obtain then

lim sup I sn'(F -Pn;x)\^e

almost everywhere. Since ε > 0 is arbitrary we get (18) almost everywhere,
q.e.d.

6. For the proof of Theorem 3, it is enough to use the same pattern as
before. And then we may leave it to the reader with the proof of the
following

THEOREM 6. Let f(x) be an integrable function on (0,2π) and let {pk}
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be a sequence of positive integers. If

(20) f {fix + 0 - / (x - t)} dt= o (I h I )
0

as h-^0 uniformly for x e (α, b)y then

(21) * sPk(x) = o (log k) and sPk(x) = o (log A)

almost everywhere in (a, b).

We can replace o's in (20) and (21) by O's simultaneously.

7. Our argument just employed will be available to some problems of
interpolation.

Suppose that f(x) is a continuous function. Let ί/»(/; ΛΓ) be a trigono-
metric polynomial of order n defined by

9' 7Γ

where #* = / 2 n + 1 (* = ,̂ 1, 2, , 2w). Then, as we know, putting

^ • W - ' S I T Ί
 for J ' 2 i t τ ^ / < C ί ' + 1 ) 2lτΊ (/ = 0'1 2w)

we have

Un(f; X)=^~ ff(t)Dn(X - t)dφn(t)

where Dn(t) is the Dirichlet kernel.
By the Marcinkiewicz theorem ([2] proof of Theorem 11)

2τc

(22) f I £/„(/; x) \rdx^(6πAry max \f(x) \r (r^2).
0

From (22) and a suitable approximation of the function as in Lemma 1,
we can prove the following theorems by the argument in the preceding
sections. The details may be left to the reader.

THEOREM 7. If f(x) is a continuous functions, and if {pic) is a sequence
of positive integerst then for any a > 0,

4 " S I u*k(f'> xϊ\*=<> (dog log nγ \

almost everywhere.

THEOREM 8. // f(x) is a continuous function of modulus of continuity
0(1/log log (1/|A|)) as &->0, and if {pk} is strictly increasing sequence of
positive integers, then for any a > 0
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Ί n

lim ^ I Upkίf'1 x^

for almost all x.

These theorems are generalizations of the theorems of Erdos [1] in
which α = l o r 2 and pk = k (k = 1,2, . . . . ) (cf. also [4]).
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