
ON INFINITESIMAL HOLOMORPHICALLY PROJECTIVE

TRANSFORMATIONS IN KAHLERIAN MANIFOLDS

SHUN-ICHI TACHIBANA AND SHIGERU ISHIHARA

(Received August 24,1959)

Recently, T. Otsuki and Y. Tashiro [9]T) have studied holomorphically
projective correspondences of Kahlerian manifolds. Further, Y. Tashiro [11]
has introduced the notion of such a correspondence of almost-complex mani-
folds endowed with a symmetric <p-connection, i. e. a symmetric affine con-
nection with respect to which the almost-complex structure is covariant con-
stant. He has defined the holomorphically projective curvature tensor Pkji

h

which is invariant under holomorphically projective correspondences, and
characterized a Kahlerian manifold of constant holomorphic sectional curvature
by the condition Pkji

h = 0. One of the present authors2) has introduced the
notion of the holomorphically projective changes of a ^-connection of some
type, called a half-symmetric ^-connection, and the notion of the infinitesimal
holomorphically projective transformation, which will be briefly called an
HP- transformation.

We shall devote this paper to HP-transformations in Kahlerian mani-
folds of some types. In § 1, we shall give some preliminary facts concerning
Kahlerian manifolds and infinitesimal transformations for the later use. We
shall characterize in § 2 the analytic HP-transformation as an infinitesimal
transformation preserving holomorphically planar curves. In § 3, we shall
discuss the properties of analytic //P-transformations.

T. Sumitomo [10] and K. Yano and T. Nagano [13] have recently studied
infinitesimal projective transformations in a Riemannian manifold and obta-
ined valuable results. We shall consider analogous problems concerning HP-
transformations. In § 4, we shall deal with a Kahlerian manifold admitting
an analytic /ίP-transformation which leaves the covariant derivative of
the holomorp hically projective curvature tensor. We shall prove in § 5
that a Kahlerian manifold which satisfies γkRji = 0 and admits a non-trivial
analytic ίfP-transformation is necessarily an Einstein one.

As will be proved in § 5, the existence of a non-trivial analytic HP-
transformation in a Kahlerian manifold satisfying V/t Rjί = 0 reduces the
manifold to an Einstein one. So, it might become a problem to investigate

1) The number in brackets [ ] refers to the Bibliography at the end of the paper.
2) Ishibara,S. [2].
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HP-transformations in KahlerΈinstein manifold. We shall prove in § 6 some

theorems on HP- transformations in a Kahler-Einstein manifold, for example,

that in a Kahler-Einstein manifold any analytic HP-transformation is uniquely

decomposed as a sum of a Killing vector and a gradient analytic HP-trans-

formation.

In the last § 7, we shall discuss ίZP-tranformations in a compact Kahlerian

manifold having the constant holomorphic sectional curvature.

1. Preliminaries. We shall first give preliminary formulas on the Kah-

lerian manifold and the infinitesimal transformation, isometric, aίfine, or

holomorphically projective. Let us consider an « ( = 2 w > 2 ) real dimensional

Kahlerian manifold with local coordinates \xl\3). Then the (positive definite)

Riemannian metric gj% and the complex structure ψih satisfy the following

equations.

φjψr = - δ/, gr,ψjψi = gji9

h = 0,

where V/c denotes the operator of the covariant differentiation with respect

t o | Λ 1 .
Let Rkji

h be the Riemannian curvature tensor and put RH = Rrji

r, Rkjih

= Rw9rh, R = Rji9n and

then the following identities are valid4)

(1. 2) Rjt = RtrφfφS,

(1.3) Sji + Su — 0, Sji = Sirψfφΐ,

SH = —φtrRtrji.

The holomorphically projective curvature tensor5) Pkji

h which will be bri-

efly called HP- curvature tensor, P is given by

3). In the present paper we shall restrict our attention to manifolds which are real repre-
sentations of (complex) Kahlerian manifolds, i. e. pseudo-Kahlerian one. As to the
notations, we follow Yano, K. [12]. We shall represents any quantit es in terms of their
components with respect to natural frames d/dx1. Indices run over 1,2, , n = 2m.

4) Yano,K. [12].
5) Tashiro,Y. [11].
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We can obtain easily the following identities,

(l 5) i W " = 0, Pιm

h = 0,

(1. 6) PrH

τ = 0,

(l 7) Pw

rφr

h = PvM
r, Prnhφ: = PruhψJ,

from which we get

(1. 8) iV = 0,

(1.9) p r J i > ; = 0, pkJM
r = 0.

A necessary and sufficient condition for Pkji

h — 0 is that the manifold is

a space of constant holomorphic curvature6), i.e. a space whose curvature

tensor Rkji

h takes the form

(1. 10) Rm

h = *(grMδ/ - gjtSk

h + φkiφ>1 - <pHφk

h + 2 φkiφt

h\

where we put

* = R

n{n + 2) '

For a vector field vι and a tensor field <zt

Λ, the following identities are

known7},

(1.11) £Vi«ι* ~ V,ί>

(i. 12) V**!,*}
υ v V

where ί) denotes the operator of Lie differentiation with respect to v\

A Killing vector or an infinitesimal isometry vι is defined by £ gjt ==•
V

==08). An infinitesimal affine transformation vι is defined by

t\n\ = ViV.wh + Rrii

hvτ = 0.

We shall say a vector field ?/ an infinitesimal holomorphically projective

transformation or, for simplicity, an HP-transformation, if it satisfies

6) Tashiro,Y. [11].
7) Yano,K. [12].
8) We shall identify a contravariant vector vι with a covariant vector vi—gir vr. Hence we

shall say vt is a Killing vector, or that pι is gradient, for example.
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where ρt is a certain vector and p{ = φJPr- In this case, we shall call pt the

associated vector of the transformation. If pt vanishes, then the HP-transfor-

mation reduces to an affine one.

Contracting the last equation with respect to h and z, we get ^j^/rv
r =

(n + 2)pj, which shows that the associated vector is gradient.

A vector field vι is called contravariant analytic or, for simplicity,

analytic, if it satisfies

V = 0.

2. A geometrical interpretation of an analytic HP-transformation.
In a differentiable manifold M, we consider a tensor valued function V de-

pending not only on a point P of M but also on k vectors uί9 , uk at the point

and denote it by V(P, uu , uk). We assume that the value of this function

V lies in the tensor space associated to the tangent space of M at P and

that it depends differentiably on all its arguments.

Assuming the manifold M to be affinely connected, we take an arbitrary

curve C: x% = x\t) and denote its successive derivatives by

K } dt ' W '

Then if we substitute (2.1) into the function V instead of u,,u2, , uk, we

have a family of tensors

along the curve C.

Let vι be an infinitesimal transformation, i. e. a vector field, and 'x1 — xι

+ Svi be the infinitesimal point-transformation determined by v, 6 being an

infinitesimal constant. Given a curve C: xι = xι 00, the image 'C of C is

expressed by

xι = χ\t) + SvXx(t)).

We shall call the limiting value

= lim TCQ ~

9) The definition of the HP-transformation is different from that given in Ishihara, S. [2].
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the Lie derivative of V(C) with respect to v\ where we have denoted by

'V(C) the family of tensors induced from V(C) by the transformation \τk

= X + C V .

In a Kahlerian manifold, a curve x = x\t) defined by

(2. Z) — — — + Wit — — = a—-— + Pψj _
dt2 dt dt dt dt

is, by definition, a holomorphically planar curve10) or an //-plane curve, where

a and β are certain functions of t.

Let vhe an infinitesimal transformation and assume that for any S the infi-

nitesimal point-transformation 'x — x* + Sv maps any //-plane curve into an

//-plane curve. Then we say that v preserves the //-plane curves.

Now we ask for the condition that v preserve the //-plane curves. For

such a vector v, taking account of (2. 2), we have

(2.3)
dt2 dt dt dt dt J dt dt

along any //-plane curve, where γ and S are certain functions of t.

Denoting the Lie derivative of the ChristoffeΓs symbols and the complex

structure φl\ respectively, by

we have from (2. 3)

(2. 4) tjafx + axh + bφfx3 - β aό

hxj = 0,

where we have put

a = - (y + ±ά), b=-(S + ί/9), x =dx(/dt.
V V

Since the relation (2. 4) holds for any //-plane curve C, it must hold

identically for any values of x and x\

By means of the definition of the //-plane curves, we see further that

the identity (2. 4) holds for any value of the coefficient β.

Taking account of these arguments, we can easily see that the relation

(2.5) afx* =fxh + gq>ihx\

(2. 6) tH

hxjx = pxh + qφjhxj

hold for any values χί and x, where f9 g, p and q are certain functions of

χι and x.

10) Ishihara,S. [2], Otsuki,T. and TasHro,Y. [9], Tashiro, Y. [11].
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If we take account of Lemma 1 given in Appendix I, we obtain by

means of (2. 5)

(2.7) at

h

On the other hand, if we substitute (2. 7) and Vj^iΛ = 0 into the identity

- ί)V^iΛ = Ψrhh\n\ - <PirZ\%},
V V

then we get

(2. 8) tr

μφr

h = t3r

hφt

r.

From (2.6) and (2.8), taking account of Lemma 2 given in Appendix I,

we have

(2.9) tn

h = £ | j ί } = RjBt

h + ftδ/ - £<pt

Λ - Λ9»Λ

where />£ is a certain vector field. Therefore the infinitesimal transformation

v is an analytic HP-transformation.

Conversely, it is obvious that an analytic HP-transformation preserves

the //-plane curves. Thus we have the following

THEOREM 2. 1. In a Kάhlerian manifold, an infinitesimal transfor-

mation preserves the H-plane curves, if and only if it is an analytic HP-

transform ation.

3. Some properties of HP-transformations. Let v be an //P-transfor-

mation, then it holds

(3.1) fj \k] = VNiVh + Rrit
hvr = pAh + ftδ/ - Pj<Pih -P

v

Transvecting (3.1) with gjt, we have

(3. 2) VrVr^ + Rr

hv = 0.

Hence, by virtue of the well known theorem on an analytic vectors,U) we

have the following

THEOREM 3.1. In a compact Kάhlerian manifold, an HP-transformation

is analytic.

In a compact Kahlerian manifold M, it holds that Γ (RHvjv() dσ > 0 for

an analytic vector v\ where d<r denoted the volume element of M and the

equality holds when and only when v is parallel. Therefore, if the Ricci's

11) Lichϊierowicz, A. [4], Yano,K. [12].
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form Rjtζ1^ is negative definite, then there exists no non-trivial ίZP-transfor-

mation provided that the manifold is compact.

Taking account of the identity (1.11), we have for a vector field v4

which implies

because of Vĵ t* = 0. If the vector field v is an ίίP-transformation, it is

easily verified that the right-hand side of the last equation vanishes. Thus

we have the following theorem by virtue of Obata's theorem12).

THEOREM 3.2. In an irreducible Kάhlerian manifold admitting no

quaternion structure, any HP-transformation is analytic.

It is known that in a Kahlerian manifold admitting a quaternion structure

the Ricci tensor vanishes identically13). Thus we have

THEOREM 3. 3. In an irreducible Kahlerian manifold having non-vani-

shing Ricci tensor, any HP-transformation is analytic.

COROLLARY 3.4. In an irreducible Kάhler-Einstein manifold if its

scalar curvature is non-vanishing, any HP-transformation is analytic.

In the following part of this section we shall give some formulas on

analytic HP-transformations which will be useful in the later sections.

Let v be an HP- transform at ion. Substituting (3.1) into the identity

we find

(3. 3) Vk£9π = Pj9ki + Pi9u ~
V

which will be used in § 5.

If we substitute (3. 1) into (1. 12), then we have

(3. 4)

Contracting the last equation with respect to h and k, we find

(3. 5) £RH = - n VΛ ~ 2 ψ-ψ ^rPt*

12) Obata,M. [8].
13) Obata.M. [8].
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Now we shall assume that v is an analytic HP-transformation. Then

we have £,RJt = £(Rnφjr<Pit) by virtue of (1. 2). Hence from (3. 5) it follows
V V

(3. 6)

since n > 2. The last equation also is written in the form

pT = 0 ,
p

p* iswhich shows that p* is analytic. Moreover, according to (3. 6) we have

(3. 7) Vj?i + ViPj = <Pir(VjPr - <p/<PrSVtPs) = 0,

which means that p( is a Killing vector. Thus we get the following

THEOREM 3. 5. If a vector pi is the associated vector of an analytic

HP-transformation, then pι is analytic and pι is a Killing vector.

From (3. 5) and (3. 6) it follows

(3. 8) tRjt = - (n +
V

from which we have

(3. 9) £,Sit = (n
V

On the other hand, from (3. 4) and (3. 7) we get

(3.10)

If we substitute (3. 8) and (3. 9) into (3.10), then we can verify

(3. Π) £ P ω ί

f t = O.I4>

In the next place, substituting (3. 1) and (3. 8) into the identity

we have

(3.12) £ v Λ i = - (« + 2)v*Vift - #«Λ - ^wΛ + 5Mft + Sk^ - 2 RHpk.
V

Hence if we put

(3. 13) PkH = l^(VkRH - VjRki\
n + 2

14) Ishihara,S. [2].
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it holds

(3.14) £PkH = Pw

rpr.
V

4. An analytic ίίP-transformation which leaves invariant the co-
variant derivative of the HP-curvature tensor. In this section we shall
show an analogous theorem to the one obtained by T. Sumitomo for an
infinitesimal projective transformation in a Riemannian space15).

Let v be an analytic HP-transformation. If we substitute (3. 1) and
(3. 11) into the identity

ftp ( r\

then we obtain

where we have put

Ύmi

h = SL

hPkH

rpr - 2 ftiV - pkPm

h - pfuϊ - ptPkjι

h

- φΐPmΊr + φΐfaPrH + pjP*πh + PiP*^)-

Now we shall assume that $LVιPκHh = 0. Then we have

(4.1) Tιm

h = 0.

Contracting this equation with respect to h and /, we can verify

P*HPT = 0,

by virtue of (l. 5 ) ~ ( 1 . 9).
Substituting the last equation into (4.1) and taking account of P^iPr = 0,

we obtain the equation

+ PkPUih + PjPmh + PiPicπ

Transvecting this equation with pιPkji

h = pιPrsth ffr1cgsjgH and taking account
of (1. 5) ~ (1. 9), we obtain

UίhXPrPr)ίh) + <J>ιPmτXpJ*iir) = 0,

after some complicated calculation.

15) Sumitomo, T. [10], Yano,K. and Nagano, T. [13].
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Since the each term in the left-hand side of the last equation is non-
negative, it must hold PLPkji

h = 0? from which we get the following

THEOREM 4.1. If a Kάhlerian manifold admits an analytic non-affine
HP-transformation which leaves invariant the covariant derivative of the
HP-curvature tensor, then the manifold is a space of constant holomorpic
curvature.

In a symmetric Kahlerian manifold, i.e. in a Kahlerian manifold satisfy-
ing VιRkH

h = 0, the equation j t v Λ j / — 0 trivially holds, so we have

COROLLARY 4. 2. If a symmetric Kahlerian manifold admits an analytic
non-affine HP-transformation, then the manifold is a space of constant
holomorphic curvature.

5. An analytic ί/P-transformation in a Kahlerian manifold satisfying
VJCRH

 = 0. In this section we shall obtain a theorem on an analytic HP-
transformation in a Kahlerian manifold satisfying VkRjί = 0. The method used
here is analogous to the one used by T. Sumitomo [10] for an infinitesimal
projactive transformation in a Riemannian space.

At the first place, we have a well known16)

LEMMA 5. 1. A necessary and sufficient condition for a Riemannian
manifold to be an Einstein one is that the following equation holds :

7} 75 ii _ R"

This follows from the identity ZjtZ
ji = RjίRjί — — — , where ZH = RH

n
-(R/n)gH.

Now consider a Kahlerian manifold such that VkRπ = 0 and let v be
an analytic HP-transformation. Then, from (3. 12) we have

(5.1) (n 4- 2)v*Vjft = ~ R*iPj ~ RiaPi + Skί?j + Skjpt - 2 RHρk.

Transvecting this equation with gkj, we get

(5.2) VVrPi = ~ * (2 Rt

rpr + Rpt).
n + 2

On the other hand, since ρι is analytic, we have

WrPi + RiTpr = 0.

16) For example, Sumitomo, T. [10].
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Compairing the last two equations, we find

(5.3) Rirft=-ft,
n

which shows that p* is a Ricci's direction. Thus it follows

(5.4) R *

LEMMA 5. 2. If a Kάhlerian manifold satisfying TjkR3i = 0 is not an

Einstein manifold, then the associated vector ρι of an analytic HP-transf-

ormation satisfies Vί/9 = 0

PROOF. By applying the Ricci's identity to RH, we find

(5. 5) RmRπ + RiuRjr = 0.

Transvecting this with gk\ we have

(5. 6) RUrjR
ίr = R,rRir.

From (5. 5) it follows

τ)R>r + Rtu£Rjr = 0.

If we trans vect this equation with Rikgn, then we get

by virtue of (5. 6).

Now let v be an analytic HP-transformation. If we substitute (3.10)

into the last equation, then we can verify

(5.7) (vrpΊRnR11 - RRHV1? = o,

after some calculation.

From (5. 4) and (5. 7) it follows

which implies together with Lemma 5. 1 the lemma. q. e. d.

THEOREM 5. 3. If a Kάhlerian manifold satisfying V A i = 0 admits

an analytic non-affine HP-transformation, it is a Kdhler-Einstein manifold.

PROOF. Since v A i = 0, RHRH is constant, and so we have

0 = URπRji) = (tRπ)Rji + R
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= 2 ( ) μ r " l

where v is a vector field.
Now let v be an analytic non-affine HP-transformation. If we substitute

(3. 8) and (5. 4) into the last equation, then we find

_ _ n ± 2 _ Λ 7 r / + R/Rrttg» = 0.
n v

If we assume that our manifold is not an Einstein one, then we have

(5.8) R}

rRrthgil = o,
v

by virtue of Lemma 5. 2. By means of $L(g}tgtί) = 0, (5. 8) can be written in
V

the form

RirRrιt9it = o.
V

Operating Vi t o the both sides and then substituting (3. 3), we get

^ R ' l + (RirήiRJp1) = 0.

Since the each term of the left-hand side is non-negative, we have piRjr — 0,
which contradicts to our assumption. q. e. d.

6. A Kahler-Einstein manifold with non-vanishing scalar curvature.
We have given in the last section that the existence of an analytic non-aίfine
HP-transformation in a Kahlerian manifold satisfying V*Λjt = 0 reduces the
manifold to an Einstein one. In this section we shall devote ourselves to
discuss such a transformation in a Kahler-Einstein manifold with R 4 s 0.

We shall first prove the following

LEMMA 6. 1. In a Kahlerian manifold with positive (or negative)
definite Riccis form, any infinitesimal affine transformation is analytic and
hence so is any Killing vector field.

PROOF. When the given, manifold V is irreducible, the Ricci tensor
being non-zero, the manifold admits no quaternion structure. Thus, taking
account of Obata's theorem17), we see that in V any affine transformation is
analytic.

When the given manifold is reducible, for any point there exists a neigh-
bourhood U of the point which is a Pythagorean product of irreducible Kahle-
rian manifolds, say Vu V2, , Vp. In each of these Kahlerian manifolds

17) Obata,M. [8].
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Vi, , Vp its Ricci's form is positive (or negative) definite, because of the

assumption on the Ricci's form of V. Then, each of these manifolds VΊ, ~9

Vp admits no quaternion structure.

Let v be an infinitesimal affine transformation in the given V. In the
P

neighbourhood U, v is decomposed in such a way that v = X ] ^ ( a ) , where
Λ - l

V{a) is an infinitesimal affine transformation in the Kahlerian manifold V' a
{a = 1, , />). Since the manifold Va is irreducible and has no quaternion

structure, by means of Obata's theorem, v^Λ)

ι is analytic. Accordingly, it is

obvious that the given v is analytic in U. This proves the lemma, q. e. d.

This lemma implies immediately the following

LEMMA 6. 2. In a Kάhler-Einstein manifold, if its scalar curvature does

not vanish, any Killing vector is analytic.

We notice here that in an Einstein manifold with R 4= 0 any infinitesimal

affine transformation is a Killing vector. In fact, for an infinitesimal affine

transformation v we have jLi?^ = 0. The manifold being Einsteinian, it
V

follows t9,i = (n/R)tRH = 0.
V V

By virtue of these lemmas we have the following

THEOREM 6.3. In a Kάhler-Einstein manifold with non-vanishing

scalar curvature, an HP-transformation is analytic if and only if its as-

sociated vector is analytic.

PROOF. The associated vector of an analytic HP-transformation is ana-

lytic by means of Theorem 3. 5. Conversely, we suppose that the associated

vector Pi of an HP-transformation v is analytic. Then, it follows from

(3. 5) and (3. 6)

= - (n

The manifold being an Einstein one, this implies

(6.1) £& ?
k

Taking account of (6. 1), if we put

(6. 2) pt = vt - Z k

we have ^Φi + VίA? = 0> which means that the vector p* is a Killing one.

According to Lemma 6, 2, the vector pι is analytic. Therefore the given HP-
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transformation vι is analytic. q. e. d.

Let vι be an analytic HP-transformation in a Kahler-Einstein manifold.
Then from (3.8) we have (6.1). If we define a vector field pι by (6.2),

we see that p* is a Killing vector. Next, if we put q = (l/2k)pι = — (1/2 k)

φr pr, then we have

(6.3) ?--T '̂

(6. 4) Ό=ρ' + <pr'q
r.

Thus we have, taking account of Theorem 3. 5, the following

THEOREM 6. 418). In a Kahler-Einstein manifold with R 4= 0, an ana-
lytic HP-transformation v is uniquely decomposed in the form

v = pι + <pr*qr,

where p and q are Killing vectors.

On Theorem 6. 4 we remark the following fact. The equation lt<Pih = 0 is
u

equivalent to

Hence, in a Kahlerian manifold, a necessary and sufficient condition in order

that an analytic vector u% is gradient is that u is a Killing vector.

Now, if q is a Killing vector, taking account of Lemma 6. 2, it is ana-

lytic, and hence so is q . If we put u = q in the above arguments, we get

V;#ί — Vt^i Thus φr q in Theorem 6. 4 is gradient analytic.

Thus the uniqueness follows from the fact that an Einstein manifold
with R 4= 0 can not admit a non-trivial parallel vector field.

Next we have from (6. 4)

If we substitute (3. 1) and (6. 3) into the last equation, we find

(6. 5) ViViPh + RrnY = 2 *0>AΛ + PiSf

Thus we have the following

18) In the compact case, this theorem is trivially contained in Matsushima's theorem on analytic
vectors. [5].
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COROLLARY 6. 5. In a Kdhler-Einstein manifold with R 4= 0, the as-

sociated vector of an analytic HP-transformation is a {gradient analytic) HP-

tra nsform atio n.

Let LH, LI and L' be the Lie algebra consisting of all analytic HP-

transformations, the Lie algebra consisting of all Killing vector fields and the

vector space of all analytic gradient HP-transformations, respectively. Then

Theorem 6. 4 asserts that a direct sum LH = Lj + L holds good. After some

computation, we can verify the following

COROLLARY 6. 6. In a Kάhler-Einstein manifold with R 4= 0, the fol-

lowing relations hold:

LH = Li + L {direct sum),

[LΓ, Li] C Ll9 [Li, L'] C L\ [L', Z/] C LI.

From (6. 5) we have

(6. 6) VNiPh + RtuhP1 = 2 k(gjhpt + gihρό - φihp% - φihpj).

Let ^ be non-afHne and consider a geodesic x = ^(5) at a point on

which Pi{dx /ds) 4= 0, where 5 is the arc lengh. If we define a function f{s)

along the geodesic by f{s) = p%{dx /ds)> then we have f\s) — 4 k f{s) because

of (6. 6). Now we assume that R < 0. Then we find f{s) = Aew*" + Be~2κ/*s,

where A and B are constant. Thus we obtain

THEOREM 6. 7. In a complete Kάhler-Einstein manifold τuith R < 0,

the length of the associated vector of an analytic non-affine HP-transfor-

mation is not bounded.

Next, if we take the alternating part of (6. 6) with respect to i and h,

we get

(6. 7) Rtiihp
% = k{gtigjh - & t&A + p ί 4 ^ Λ - ψόiφth + 2 φtjφih)p\

from which, taking account of the theorem given in Appendix II, we obtain

THEOREM 6. 8. If a Kάhler-Einstein manifold with R 4= 0 admits an

analytic non-affine HP-transformation, then its local homogeneous holonomy

group at any point is the full unitary group U{n/2).

Let p be an analytic gradient HP-transformation, then (β. 7) is valid.

Hence if L' is transitive19) at each point of the manifold, then (1. 10) holds

19) Let L be a vector space of vector fields in an n dimensional manifold. Denoting bv
v(P) the value of a vector field v at P f we consider the vector space Lp={v(P) \vζL}
of vectors at P. When dim Lp=n, we say that the vector space L is transitive at P.
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good. Therefore we get the following

THEOREM 6.9. In a Kάhler-Einstein manifold with R H= 0, if the

vector space consisting of all analytic gradient HP-transformations is tran-

sitive at each point, then the manifold is a space of constant holomorphic

curvature.

This theorem can also be proved in the following way. We consider a

KahlerΈinstein manifold, then it holds Pkji = 0, where the tensor Pkji is de-

fined by (3. 13). Let vι be a non-afifine analytic HP-transformation and p% be

its associated vector. Then, from (3. 14) it follows Pkjιρr = 0. If the vector

space L is transitive at each point of the manifold, then we have Pkji
h = 0.

This proves that the manifold has constant holomorphic curvature.

COROLLARY 6. 1. If a homogeneous Kάhler-Einstein manifold with i?4=0

admits an analytic non-affine HP-transformation, and if its linear isotropy

group is irreducible, then it is a space of constant holomorphic curvature.

PROOF. Since the linear isotropy group of the manifold is irreducible,

taking account of the formula [L7> L'] d L' which is given in Corollary 6. 6,

we see that the vector space L is transitive at any point. Accordingly,

Theorem 6.9 implies that the given manifold is of constant holomorphic

curvature. q. e. d.

7. An //^-transformation in a compact space of constant holomor-
phic curvature. Let us consider a compact space of constant holomorphic

curvature with R > 020). Then the manifold being an Einstein one, an analy-

tic vector v is decomposed uniquely in the form

f ' ^ + ̂ V21',

where p* and q are Killing vectors. Hence we have

(7.1) £{%} = - L{%] = - (

Since q is a Killing vector, we have

VjVtf* + RTHW = o.

Substituting the last equation into (7. 1), we find

Next if we substitute (1. 10) into the last equation, then we get

20) In a compact Kahler-Einstem manifold with i?<0 there exists no non trivial analytic vector.
21) Matsushima, Y. [5].
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£ I Jil = PA" + PtK ~ P3Ψih ~ Pi<P3

h, Pi= - 2 kg,,
V

from which we see that vι is an HP-transformation. Thus on taking account
of Theorem 3. 1, we have

THEOREM 7.1. In a compact space of constant holomorphic curvature
with R > 0, a necessary and sufficient condition for a vector field to be
analytic is that it is an HP-transformation.

This theorem can be also proved in the following way. Let LH and A
be the Lie algebras of all HP-transformations and of all analytic vector fields
respectively. Then it follows LH d A from Theorem 3. 1 and

A = Li + Li, (direct sum),

from Matsushima's theorem225 where LΣ denotes the Lie algebra of all Killing

vector fields in the manifold and Lτ is defined by Lτ— [p^p1 € LΓ}.
It is known that dim Li = m2 + 2 m2^, which implies

dim A = 2 (m2 + 2 m).

On the other hand, it is known24}

dim LH = 2(m2 + 2 m).

Consequently, we have dim LH = dim A, hence we get LH = A.

APPENDIX I

Consider an n{= 2m > 2) dimensional real vector space V and let e1?...
..., en be a fixed base. We shall represent any quantities on V in terms of
their components with respect to the base et. Since n is even, V admits a
complex structure, i.e. a tensor φt

h such that φ?φr

h = ~~ δ/. In the following
we shall consider a fixed complex structure.

LEMMA 1. Let a5

% be a tensor on V such that

(1) φ,W + a/φS = 0.

Moreover, if it satisfies the equation

(2) β/y = ay1 + bφ/yj

for any vector y\ then a/ must be a zero tensor, where a and b are real-
valued functions of yι.

22) Matsushima, Y. [5].
23) Ishihara,S. [2].
24) Ishihara,S. [3].
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PROOF. At the first place, we notice that a/ satisfies the relations

a/ = 0, afφΐ = 0

by virtue of (1). Next, for convenience, we shall introduce an Hermitian

metric g ^ . Then the equation grsφjψi — 9a holds true and φ^ = φ3

rgri is

skew-symmetric with respect to j and i.

Transvecting (2) with yt = gίry
r

9 we have a*yjyi — ayιyί9 and with φΐyt,

we get φtyt(ijy5 — ~ byyi. Making use of these equations, we can eliminate

a and b in (2) and we have

(3) *»,yyy = o,
where

Since (3) holds for arbitrary y9 it follows tυhr) = 0. If we write down this

explicitely, it becomes the following equation:

(4) 2 {a ghr + aigr3 + ar

fgJh)

— (ajhδr* + ΛΛrδ/ + arβj! + a w 8 r ' + α r Λ 8/ + ajrSh )

+ Ψv5ahψr + ψvhβrψi + ψvr^ψh

By contraction with respect to z and 7 we have (n — 2) (czΛr + arh) = 0,

which implies

(5) aj( + Λ^ = 0.

On the other hand, transvecting (4) with ghrgit, we have najt — 2 al3 — 0,

after some calculation. Hence we obtain aJ{ = 0 on taking account of (5).

This implies as = 0. q. e. d.

LEMMA 2. Let tJt

h be a tensor on V such that

(a\ f h = t h

/rτ\ r It , h r

\ι) tji (pr

 == tjr <Pι .

Moreover, if it satisfies the equation

(8) tjtyy* = ayh + bφfy*

for any vector y, a and b being functions of y\ then t# takes the follow-

ing form :

25) It is always possible to introduce an Hermitian metric. See, Frδlicher, A. [1].
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(9) t/ = ctjδS + a(Sjh - aw? - cuφs\

where at is a certain vector and at = φlar-

PROOF. In the same manner as in the proof of Lemma 1, we shall

introduce an Hermitian metric gJt.

From (6) and (7) it follows

*» + *c> W = 0,

from which we obtain the equation

(10) / * / = o>

because of g3ίφ/φ(

b = gcb.

From (8) we can easily obtain the relations

t/yhy'y = ayyry tiϊφϊy<ysy = ~ byryr.

Making use of these relations, we can eliminate a and b in (8) and get

(11) tjiM'yy = 0,

where

tjirv1 = tjt grp — tJtrSph + tjϊφirφv

h

9 tjir = tj(

sgsr.

Since (11) holds for arbitrary y\ it follows tjirP)
h = 0. Transvecting this

with grp and taking account of (6), (7) and (10), we can obtain

(12) t/ = afith + ath3

h + βsφt

h + βtφ3\

where

1 . r r\ l s r

n ΊΓ Δ n + Δ

In the last place, substituting (12) into (7), we get βs — — a*. q. e. d.

We can generalize Lemma 2 in the following form.

LEMMA 3. Let tj(

h be a tensor on V such that tH

h ~ t{j

h. If it satisfies

(13) ί/yy = ayh + bφfy1

for any vector y1, then tH

h takes the following form :

t/ = aAh + a(Sjh + βlΨt

h + βiΨ}\

where a and b are real-valued functions of y and ai9 βt are certain

vectors.
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Lemma 2 is a direct consequence of Lemma 3, but the proof of the lat-

ter is very complicated, so we shall only give the outline of it.

Multiplying the both sides of (13) with y^ψcy0, we have

tXyWy = (aΨc

ιKV + bφWKWyV,
where

Iff be — tji 0b <pc .

If we take the alternating part with respect to h, k and I of the above

equation, we have

which implies

t(jibc) — V.

By contraction, we get

(14) 4S = 0,

where the left-hand side is the sum of 72 terms because of the symmetry

with respect to i and j.

Transvecting (14) with φk

b and putting t3 = tjr

r, p5 — tjt

kφk\ we obtain

after a complicated calculation

(15) (n2 + 2 n)t/ - 8 Φ3 Φ2t/ = Afit

h + AtSjh + B5φt

h + Btφs\

where

Aj = pj + (n + ϊ)tj, Bj = }j-(n + ί)pj9

Pj = ψJpr, Tj = ψUr-

and Φ2, Φ3 are the operators defined by

(16)

Φ3A/ =~(A/ - ArΐΨ;Ψϊ\

These operators Φ2 and Φ3 satisfy the following identities27^

* 1 1
26) If we put o\* = —($irtith+g>irg>th), oγt= — (Bf^ — φfφi1), (16) is written in the following

form :

=*o

27) Obata,M. [7].
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(17) Φ 2 Φ 2 = Φ 2 , Φ 3 Φ 3 = Φ3> Φ 2 Φ 3 = Φ 3 Φ 2 .

After some calculation we get easily

Φ3 Φ2(A A" + AtSjh + B5φt

h + Btφjh) =• 0.

Therefore, if we operate Φ3 Φ2 to the both sides of (15), we get

(n2 + 2/z)Φ3 Φ2 tjt

h - 8Φ3 Φ2 Φ3 Φ 2 * / = 0,

from which we obtain

(n + 4) (Λ - 2)Φ,.φ,*/ - 0

by virtue of (17). Consequently, Φ3 Φ2tji
h = 0 holds. Thus if we substitute

the last equation into (15), we find

where

CL, = , \ oλ Aj = \ \PJ + (n + ϊ)tj\,
n(n + 2) n(n + 2)

βj = , \ 9v Bj = \ [tj - (n + ί)Pj}. q. e. d.
n(n + 2) n(n + 2)

We can also prove the following lemma according to Lemma 2. 1 given

in Ishihara, S. [2] and Lemma 3.

LEMMA 4. Let t3i

h be a tensor on V such that

Φ2t/ = 028>, Φs Φ / * / - tti

h) = 0.

If t/ satisfies

for any vector y\ then it takes the following form :

where p5 and crf are certain vectors and operator Φx defined by

φ . * / = ~-(t/ - tjr

ι

φ;φt

h)-

In an almost-complex manifold, an afRne connection Γ^ is called a φ-

connection, if the almost-complex structure φ^ is covariant constant with

respect to Γ*f, i. e. ^5φt

h = 0, where Vj is defined by τjjVh = djVh + Γfrv
r for

28) This equation is equivalent to (7).
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a vector field vι, for example. A ^-connection is said to be half-symmetric29*,

if its torsion tensor SJt

h satisfies Φ^Φ^j^ = 0.

By trie same arguments as in §2, we can prove the following

THEOREM. In an almost-complex manifold endowed with a half-sym-

metric φ-connection Γ), in order that an infinitesimal transformation v

preserves the H-plane curves*1, it is necessary and sufficient that it satisfies

the following equations :

t = 0,

PjBch + P(B/ - p/p* - ~pt<Pjh + * A f t

V

where ps and <Tj are certain vector fields.

APPENDIX II

Let V be an n ( = 2 m) dimensional real vector space and (gJi9 ψih) an

Hermitian structure on it. Then gjt = grsφjrφ(

s holds, and so φjt = φjgrt is

skew-symmetric.

Consider a tensor RhJ of type (1, 3) on V and suppose that there exists

a non-zero vector pι satisfying

(1) (tRt3i

h = (gHSjh - gHSt

h + φtiφjh - φsiφt

h + 2 φ^φ^p1.

For a vector σ , we denote by i?(σ") the matrix whose (z, Λ)-element

is R(σ)t

h = p^Rt/. Then we have

(2) R(σY = Piσ
h - σiP

h + p^ - σ(p
h + 2 Vi

hplat9

where ρ{ = ψtPr and σ = — <pr

(σ'.

We shall prove the following

LEMMA. If we choose a suitable base in V9 the Lie algebra generated

by the matrices R(<r), σ € V, contains all matrices of the following form :

where A is a skew-symmetric (m, m)-matrix and B is a symmetric (m, rri)~
matrix.

PROOF. Since we can change the length of pl without loss of generality,

29) Ishibara,S. [2].
30) The definition of -£f-plane curves in an almost-complex manifold with a ^-connection have

given in [2] and [11].
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it is possible to choose a base such that

where indices a and β run over 1, 2, , m and a = m -f cc*

In the following, we shall only use the lower indices, because the base

in consideration is orthogonal. If we take m — 1 vectors

σi = (β*y, δiγ), 7 = 2, , m,
y

then we have

y

It is easily seen that 2 m vectors ft, ft, σt and σt are linearly independent.
y y

We shall now put

y y ' Y 7 '

and use the following notations on (m9 m)-matrixes :

Aβa, = (aμ\) : aβΛ = — aaβ = 1, αμ λ = 0 for (μ9 λ) =4= (oί, β), (β, ct)

BβΛ = (bμκ) : έpa = baβ = 1, έμ λ = 0 for (μ, λ) 4= (oc, /β), (/?, Λ)

C = (cμλ) : ctl = 2, cee = 1 for 5 = 2, , m, £:μλ = 0 for μ 4= λ

A = W/iλ): - (in = c/yy = 1, ^ λ = 0 for O, λ) φ (1, 1), (7, 7),

where <x9 β, λ and μ run over 1, 2, , m and 7 = 2, , m.
Using this notation, we can obtain

.,--„ 0 \ _. / 0 Bιy\ _. / 0

By some calculation we get for β, y = 2, , m

(4, [*»,*,] =

(5) [ΛS, ΛJ = 4( ° f"Λ for
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Hence we find

(6) P=Rΐ-~r
Δ γ=2

from which it follows

(7) P + ^ ^ l

According to (3) —- (7), we see that the lemma is true. q. e. d.

By means of the above lemma, we have the following

THEOREM. In a Kάhlerian manifold of n dimensions, if its curvature

tensor R^f satisfies at a point the relation

P κtji = {gtiόj — gHot H- ψuψj — ψjiψt + ^ ΨaΨi)?

for a non-vanishing vector p\ then the local homogeneous holonomy group

of the manifold at any point coincides with the full unitary group U(n/2).

PROOF. We suppose that the relation (1) holds at a point P. We con-

sider for fixed indices j and k a matrix R(kj P) whose (ί, Λ)-element is

given by the value of RkJt

h at the point P. Then, it follows from the above

lemma that the Lie algebra generated by all the matrices R(kj P) is equi-

valent to the Lie algebra of the full unitary group U(n/2). Therefore, taking

account of Nijenhuis' theorem31), we see that the local homogeneous holonomy

group of the manifold at the point P contains the unitary group U(n/2). The

manifold being Kahlerian, it follows thus that the local homogeneous holo-

nomy group of the manifold at P coincides with U(n/2). q. e. d.
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