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Recently, T. Otsuki and Y. Tashiro [9]° have studied holomorphically
projective correspondences of Kidhlerian manifolds. Further, Y. Tashiro [11]
has introduced the notion of such a correspondence of almost-complex mani-
folds endowed with a symmetric @-connection, i. e. a symmetric affine con-
nection with respect to which the almost-complex structure is covariant con-
stant. He has defined the holomorphically projsctive curvature tensor P,;"
which is invariant under holomorphically projective correspondences, and
characterized a Kihlerian manifold of constant holomorphic sectional curvature
by the condition P,;" = 0. One of the present authors” has introduced the
notion of the holomorphically projective changes of a @-connection of some
type, called a half-symmetric @-connection, and the notion of the infinitesimal
holomorphically projective transformation, which will be briefly called an
HP-transformation.

We shall devote this paper to HP-transformations in Kihlerian mani-
folds of some types. In § 1, we shall give some preliminary facts concerning
Kihlerian manifolds and infinitesimal transformations for the later use. We
shall characterize in § 2 the analytic HP-transformation as an infinitesimal
transformation preserving holomorphically planar curves. In §3, we shall
discuss the properties of analytic HP-transformations.

T. Sumitomo [10] and K. Yano and T.Nagano [13] have recently studied
infinitesimal projective transformations in a Riemannian manifold and obta-
ined valuable results. We shall consider analogous problems concerning HP-
transformations. In § 4, we shall deal with a Kihlerian manifold admitting
an analytic HP-transformation which leaves the covariant derivative of
the holomorp hically projective curvature tensor. We shall prove in §5
that a Kihlerian manifold which satisfies ¥,R;; = 0 and admits a non-trivial
analytic HP-transformation is necessarily an Einstein one.

As will be proved in §5, the existence of a non-trivial analytic HP-
transformation in a Kaihlerian manifold satisfying v, R;; = 0 reduces the
manifold to an Einstein one. So, it might become a problem to investigate

1) The number in brackets [ ] refers to the Bibliography at the end of the paper.
2) Ishibara,S. [2].
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HP-transformations in Kihler-Einstein manifold. We shall prove in § 6 some
theorems on HP-transformations in a Kihler-Einstein manifold, for example,
that in a Kihler-Einstein manifold any analytic HP-transformation is uniquely
decomposed as a sum of a Killing vector and a gradient analytic HP-trans-
formation.

In the last § 7, we shall discuss HP-tranformations in a compact Kihlerian
manifold having the constant holomorphic sectional curvature.

1. Preliminaries. We shall first give preliminary formulas on the Kih-
lerian manifold and the infinitesimal transformation, isometric, affine, or
holomorphically projective. Let us consider an »n (= 2 m>2) real dimensional
Kihlerian manifold with local coordinates {z*}®. Then the (positive definite)
Riemannian metric ¢; and the complex structure @,” satisfy the following
equations.

¢jr¢ri = - Sji: grs¢jr¢is = Gii»
vip" =0, Vidi = 0,
where Vv, denotes the operator of the covariant differentiation with respect
to {fi}.
Let R;;" be the Riemannian curvature tensor and put R;; = R,;;", Ry
= Ryji"9rn» R = R;9’* and
Sji = ¢jTRri,

then the following identities are valid®

(1.1) Rk]'ir¢rh = Rkjrhg)ira Rkjir¢hr = Rkjhr¢ir;
Ryjin = Rlcjlr¢it¢hr’
(1' 2) Rji = er¢jt¢ira
(1 3) S_;'z + Sij - 0, SJ-,; = S¢T¢j[¢ir,
1
S =— 7¢’t Rirsie

The holomorphically projective curvature tensor” P.;;" which will be bri-
efly called HP-curvature tensor, P is given by

3). In the present paper we shall restrict our attention to manifolds which are real repre-
sentations of (complex) Kihlerian manifolds, i. e. pseudo-Kihlerian one. As to the
notations, we follow Yano, K. [12]. We shall represents any quantit es in terms of their
components with respect 10 natural frames 8/ox!. Indices run over 1,2, ...... , n=2m.

4) Yano, K. [12].

5) Tashiro, Y. [11].
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1
Pk‘jin = leh + m(Rmsjh - Rjiskh + Slc1,¢jh - S]’i¢kh + 2 Slcj¢1,h)~

We can obtain easily the following identities.

(1.5) Pup =0, Pup" =0,

(1.6) P, =0,

(1.7 Pyl'e" = Py@,  Pul'ed = Pl
from which we get

(1.8) Py, =0,

(1.9) Plp/ =0, Pulo =0.

A necessary and sufficient condition for P,;" = 0 is that the manifold is
a space of constant holomorphic curvature®, ie. a space whose curvature
tensor R;;;" takes the form

(1.10) Ruyi" = k(98" — 948" + @up” — PP + 2 pei),

where we put

R.—
nn +2)

For a vector field v* and a tensor field a;", the following identities are
known”,

(1.11) ?Vﬂih - Vj;) a" = air_;’ﬁ{]h?‘} —a,"Hiht,

(1.12) V@{}H = vobldl = SR,

where § denotes the operator of Lie differentiation with respect to v’
v
A Killing vector or an infinitesimal isometry v is defined by & g, =
v

v;v; + viv; =0, An infinitesimal affine transformation »* is defined by

Bir = v,viv" + Rrjih'UT = 0.

v
We shall say a vector field v' an infinitesimal holomorphically projective
transformation or, for simplicity, an HP-transformation, if it satisfies
6) Tashiro, Y. [11].
7Y Yano, K. [12].

8) We shall identify a contravariant vector ! with a covariant vector v;=¢gir v". Hence we
shall say v; is a Killing vector, or that p¢ is gradient, for example.
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LX)}

%{jhz} = p;&" + pi8;" — P~j¢’ih _F; Pj s

where p; is a certain vector and P; = @,’p,. In this case, we shall call p, the
associated vector of the transformation. If p;, vanishes, then the HP-transfor-
mation reduces to an affine one.

Contracting the last equation with respect to A and i, we get v;v,v’ =
(n + 2)p;, which shows that the associated vector is gradient.

A vector field v' is called contravariant analytic or, for simplicity,
analytic, if it satisfies

fo' = - 9/v,0" + @/ v = 0.

2. A geometrical interpretation of an analytic HP-transformation.
In a differentiable manifold M, we consider a tensor valued function V de-
pending not only on a point P of M but also on & vectors u,,...... , u; at the point
and denote it by V(P, u,,-..... , uy). We assume that the value of this function
V lies in the tensor space associated to the tangent space of M at P and
that it depends differentiably on all its arguments.

Assuming the manifold M to be affinely connected, we take an arbitrary
curve C: z' = z'(¢) and denote its successive derivatives by

i 2.0
2.1) _d:"iw, Sz S
dt ot
Then if we substitute (2.1) into the function V instead of u,, us,-..--. , Uy, WE

have a family of tensors

1%4(0)] =V<x, 6:; feenens , &z )

along the curve C.

Let v* be an infinitesimal transformation, i.e. a vector field, and "z’ = z*
+ &v; be the infinitesimal point-transformation determined by v', & being an
infinitesimal constant. Given a curve C: z' = z' (), the image 'C of C is
expressed by

xt = z2'(t) + &v'(x(t)).
We shall call the limiting value

£V(C) = lim V(O = V)
v e>0 &

9) The definition of the HP-transformation is d.ffereat from that given in Ishihara,S. [2].
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the Lie derivative of V(C) with respect to o, where we have denoted by
‘V(C) the family of tensors induced from V(C) by the transformation 'z"
=z + €& .

In a Kihlerian manifold, a curve z' = z'(¢) defined by
dth' + {h}_de dxi = dx” n dl‘j

a4 dt T

is, by definition, a holomorphically planar curve'” or an H-plane curve, where

(2.2) + Bop

a and B are certain functions of ¢.

Let v'.be an infinitesimal transformation and assume that for any & the infi-
nitesimal point-transformation ‘z‘ = z' + &' maps any H-plane curve into an
H-plane curve. Then we say that v’ preserves the H-plane curves.

Now we ask for the condition that v’ preserve the H-plane curves. For
such a vector o', taking account of (2.2), we have

2.0 J U h Jj h j

along any H-plane curve, where v and & are certain functions of
Denoting the Lie derivative of the Christoffel’s symbols and the complex
structure @,", respectively, by

ti" = £ A0, a = o/,
we have from (2. 3)
2.9 L2+ ax" + bply — B ald’ =0,
where we have put

a=—(y + j’:;’,a), b= — (8§ + £B), z' =dx'/dt.

Since the relation (2. 4) holds for any H-plane curve C, it must hold
identically for any values of z' and z'

By means of the definition of the H-plane curves, we see further that
the identity (2.4) holds for any value of the coefficient 8.

Taking account of these arguments, we can easily see that the relation

(2.5) a"zr’ = fx" + 9@, 2,
(2.6) t, 'zt = pzt + g’

hold for any values z’ and ', where f, g, p and ¢ are certain functions of
i (A
z' and z'.

10) Ishihara,S. [2], Otsuki, T. and Taskiro,Y. [9], Tashiro, Y. [11].
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If we take account of Lemma 1 given in Appendix I, we obtain by
means of (2.5)
(2. 7) azn = f}¢ih == O.
On the other hand, if we substitute (2.7) and ;" =0 into the identity
Vf%"i’ih - %)Vj‘i’th = (Prhcva{fri} - ¢¢T;§J”r}.~
then we get
(2.8) tip" = ti"py .
From (2.6) and (2.8), taking account of Lemma 2 given in Appendix I,
we have
(2.9) Ly = %h’” = p;8" + p8" — P — f?;¢jh,

where p; is a certain vector field Therefore the infinitesimal transformation
o' is an analytic HP-transformation.

Conversely, it is obvious that an analytic HP-transformation preserves
the H-plane curves. Thus we have the following

THEOREM 2.1. In a Kdihlerian manifold, an infinitesimal transfor-
mation preserves the H-plane curves, if and only if it is an analytic HP-
transformation.

3. Some properties of HP-transformations. Let v’ be an HP-transfor-
mation, then it holds

3.1) ig {fif= Vivit" + R0 = pdt + pidt — P —pipi"
Transvecting (3. 1) with ¢, we have
3.2) v'v,o" + R = 0.

Hence, by. virtue of the well known theorem on an analytic vectors,’”® we
have the following
THEOREM 3. 1. In a compact Kidhlerian manifold, an HP-transformation

is analytic.

In a compact Kihlerian manifold M, it holds that [ (R;v’v") do = 0 for
Ju

an analytic vector v°, where do denoted the volume element of M and the
equality holds when and only when v’ is parallel. Therefore, if the Ricci’s

11) Lichnerowicz, A. [4], Yano,K. [12].
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form R;£'¢ is negative definite, then there exists no non-trivial HP-transfor-
mation provided that the manifold is compact.
Taking account of the identity (1.11), we have for a vector field v*

Svied — vibe! = %'@{}';} — o, Blnl
which implies
| Vil = 9 i} — @ BIM,

because of y,@;" = 0. If the vector field v' is an HP-transformation, it is

easily verified that the right-hand side of the last equation vanishes. Thus

we have the following theorem by virtue of Obata’s theorem'™.

THEOREM 3.2. In an irreducible Kdihlerian manifold admitting no
quaternion structure, any HP-transformation is analytic.

It is known that in a Kihlerian manifold admitting a quaternion structure

the Ricci tensor vanishes identically™®. Thus we have

THEOREM 3.3. In an irreducible Kihlerian manifold having non-vani-
shing Ricci tensor, any HP-transformation is analytic.

COROLLARY 3.4. In an irreducible Kihler-Einstein manifold if its
scalar curvature is mon-vanishing, any HP-transformation is analytic.

In the following part of this section we shall give some formulas on
analytic HP-transformations which will be useful in the later sections.
Let v* be an HP-transformation. Substituting (3. 1) into the identity

kav/gn — %ngn = gri:%/{’:j} + gjrag/{/:t},
we find
(3.3) ka;!]ji = P9 + Pifwi — P1Pui — Pi®u;i T 2 Puiis

which will be used in §5.
If we substitute (3.1) into (1.12), then we have

(3.4) %Rkiih = 8" Vips — &' ViPs — @"ViPi T 2P — (ViP; *,Vjﬁk)¢th-
Contracting the last equation with respect to 2 and &, we find

(3.5) E£Ru= —nvViPi — 29, P/'V.P.

12) Obata, M. [8].
13) Obata, M. [8].
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Now we shall assume that v' is an analytic HP-transformation. Then
we have £R,, = £(R,@; @) by virtue of (1.2). Hence from (3.5) it follows

(3.6) ViPi = @) PP,

since # > 2. The last equation also is written in the form
Lol=— @'V, + @ vip" =0,
P

which shows that p' is analytic. Moreover, according to (3.6) we have

@.7) VP + vib; = @ (VP — 2P vips) = 0,
which means that 7;' is a Killing vector. Thus we get the following
THEOREM 3.5. If a wector p; is the associated vector ‘of an analytic
HP-transformation, then p' is analytic and ;’ is a Killing wvector.
From (3.5) and (3. 6) it follows
(3.8) %/Rji = — (n + 2)v,pi,
from which we have
3.9 %Sﬁ = (n + 2)v,p..
On the other hand, from (3.4) and (3.7) we get
(B.10)  £Ru" = 8'Vips — &'ViPi — @'ViPi T @ViPL — 29/ Vi
If we substitute (3.8) and (3.9) into (3.10), then we can verify
(3.11) %th = 0¥
In the next place, substituting (3.1) and (3. 8) into the identity
%VkRji - ka;Rn = - th%{krj} - Rirfv/{lcri},
we have

(3.12) %/VkRjt = — (n + 2)viviPi — Rups — Risps + SuPs + SuPi — 2 Ry

Hence if we put

1
n+ 2

(3.13) Py = (ViR — ViRw),

14) Ishihara,S. [2].
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it holds
(3.14) ;J?iji = PP
4. An analytic HP-transformation which leaves invariant the co-

variant derivative of the HP-curvature tensor. In this section we shall

show an analogous theorem to the one obtained by T. Sumitomo for an

infinitesimal projective transformation in a Riemannian space'®.

Let v* be an analytic HP-transformation. If we substitute (3.1) and
(3.11) into the identity

fv/Vszh - Vzasfpzmh
= PR Ib} = Pul 1) — Pul£ 15} — Poe L,
then we obtain

f”/VzPImh = Tu",
where we have put
Ty = 8Py Pr — 2 pPrsi" — PuPus" — PiPrui" — PPy
- q)thkjiTFr + ¢LT(Fkth + F:’Pmth + pth'rh)-
Now we shall assume that £v,P:;" = 0. Then we have
(4. 1) T;kjth = O.
Contracting this equation with respect to h and /, we can verify
Pk:firpr = 0’

by virtue .of (1.5)~ (1.9).
Substituting the last equation into (4.1) and taking account of P;;,’p, =0,
we obtain the equation

2P P + PP + PiPui” + PP
= @/ (PePri" + plEkrth + PiPis")-

Transvecting this equation with p'P*%, = p'P,,,, ¢*¢*¢"* and taking account
of (1.5)~(1.9), we obtain

(PP XP'P ) + 2(p'PjinXp, P7™) + (P' Py, P P'") = 0,

after some complicated calculation.

15) Sumitomo, T. [10], Yano,K. and Nagano, T. [131.
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Since the each term in the left-hand side of the last equation is non-
negative, it must hold p,P;;" = 0, from which we get the following

THEOREM 4. 1. If a Kidhlerian manifold admits an analytic non-affine
HP-transformation which leaves invariant the covariant derivative of the
HP-curvature tensor, then the manifold is a space of constant holomorpic
curvature.

In a symmetric Kdhlerian manifold, i.e. in a Kihlerian manifold satisfy-
ing V,Ri;;* = 0, the equation £v,P;;" = 0 trivially holds, so we have

COROLLARY 4., 2. If a symmetric Kihlerian manifold admits an analytic
non-affine HP-transformation, then the manifold is a space of constant
holomorphic curvature.

5. An analytic HP-transformation in a Kahlerian manifold satisfying
viRj; = 0. In this section we shall obtain a theorem on an analytic HP-
transformation in a Kéhlerian manifold satisfying VyR;; = 0. The method used
here is analogous to the one used by T. Sumitomo [10] for an infinitesimal
projactive transformation in a Riemannian space.

At the first place, we have a well known'®

LEMMA 5.1. A necessary and sufficient condition for a Riemannian
manifold to be an Einstein one is that the following equation holds:

RuR* =2
! n
2
This follows from the identity Z,,2"* = R;R" ——R—~, where Z;; = R;,
n

— (R/n)9y.
Now consider a Kihlerian manifold such that V,R;; =0 and let o' be
an analytic HP-transformation. Then, from (3.12) we have

(5. 1) (n + 2)ViViPs = — Rup; — Ripi + SuPs + SiiPi — 2 Ry

Transvecting this equation with ¢*/, we get

(5.2) V'V = — ‘—"1—(2 Ri'p, + Rpy).
n+2

Oa the other hand, since p' is analytic, we have

V'v.pi + Rp, = 0.

16) For example, Sumitomo,T. [10].
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Compairing the last two equations, we find

R
(5.3) R/p, =—p,

n
which shows that p’ is a Ricci’s direction. Thus it follows

R

(5.4) R'vip, = - - T

LEMMA 5.2. If a Kdahlerian manifold satisfying viR;, = 0 is not an
Einstein manifold, then the associated wvector p' of an analytic HP-transf-

ormation satisfies v.p' = O.
PROOF. By applying the Ricci’s identity to Rj;, we find
(5.5) Ru/R, + Ru'R,, = 0.
Transvecting this with ¢*’, we have
(5.6) RuR" = R'R,,
From (5.5) it follows
(&S.Rzkjr)Rn + Rmin«Rn + (%,RLMT)R;,T + leird'%/Rjr = 0.

If we transvect this equation with R’*¢*,

(R/RY + Rmeg“‘)%Rknh =0

then we get

by virtue of (5.6).
Now let v’ be an analytic HP-transformation. If we substitute (3.10)

into the last equation, then we can verify
(5.7) (v:p)RuR"* — RR;v’p = 0,

after some calculation.
From (5.4) and (5.7) it follows

2
(R.M,Rji - _R;l >VTPT = O’

which implies together with Lemma 5.1 the lemma. q. e. d.

THEOREM 5.3. If a Kdahlerian manifold satisfying V.R; =0 admits
an analytic non-affine HP-transformation, it is a Kdhler-Einstein manifold.

PROOF. Since yR;; = 0, R;R’" is constant, and so we have

0= fv«(RﬂRﬂ) = (%Rit)Rn + Rﬁif/(Rng”.‘]”)
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=2 [(aﬁan)Rﬂ + Rerrz%/!ljt],

where v' is a vector field.
Now let v’ bs an analytic non-affine HP-transformation. If we substitute
(3.8) and (5.4) into the last equation, then we find

- _niierpr + RjTthﬁgjt = U.

If we assume that our manifold is not an Einstein one, then we have

(5.8) R/R, 29" =0,

by virtuz of Lemma 5.2. By means of £(¢°g,;) = 0, (5.8) can be written in

the form
R"R,'£.9;, = 0.
Operating v, to the both sides and then substituting (3. 3), we get

%(pi/fxmrm + (Rup )R = 0.

Since the each term of the left-hand side is non-negative, we have p;R;. = 0,
which contradicts to our assumption. q. e. d.

6. A Kahler-Einstein manifold with non-vanishing scalar curvature.
We have given in the last section that the existence of an analytic non-affine
HP-transformation in a Kihlerian manifold satisfying V.R;; = 0 reduces the
manifold to an Einstein one. In this section we shall devote ourselves to
discuss such a transformation in a Kéihler-Einstein manifold with R == 0.

We shall first prove the following

LEMMA 6.1. In a Kihlerian manifold with positive (or negative)
definite Ricci’s form, any infinitesimal affine transformation is analytic and
hence so is any Killing vector field.

PROOF. When the given manifold V is irreducible, the Ricci tensor
being non-zero, the manifold admits no quaternion structure. Thus, taking
account of Obata’s theorem'”, we see that in V any affine transformation is
analytic.

When the given manifold is reducible, for any point there exists a neigh-
bourhood U of the point which is a Pythagorean product of irreducible Kihle-
rian manifolds, say V,, V,,...... , V,. In each of these Kihlerian manifolds

17) Obata, M. [8].
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Vipeennns , V, its Ricci’s form is positive (or negative) definite, because of the
assumption on the Ricci’s form of V. Then, each of these manifolds V,,--,
V, admits no quaternion structure.

Let v' be an infinitesimal affine transformation in the given V. In the

»
neighbourhood U, v’ is decomposed in such a way that v' = wvw,, where
a=1

V@' is an infinitesimal affine transformation in the Kihlerian manifold V,
(a=1,...... , p). Since the manifold V, is irreducible and has no quaternion
structure, by means of Obata’s theorem, v, is analytic. Accordingly, it is
obvious that the given v’ is analytic in U. This proves the lemma. q. e. d.

This lemma implies immediately the following

LEMMA 6.2. Ina Kihler-Einstein manifold, if its scalar curvature does
not vanish, any Killing vector is analytic.

We notice here that in an Einstein manifold with R 4= 0 any infinitesimal
affine transformation is a Killing vector. In fact, for an infinitesimal affine
transformation »' we have £R;; = 0. The manifold being Einsteinian, it

v

follows £9,; = (n/R)&R; = 0.
By virtue of these lemmas we have the following

THEOREM 6.3. In a Kahler-Einstein manifold with non-vanishing
scalar curvature, an HP-transformation is analytic if and only if its as-
sociated wvector is analytic.

PROOF. The associated vector of an analytic HP-transformation is ana-
Iytic by means of Theorem 3.5. Conversely, we suppose that the associated

vector p; of an HP-transformation v' is analytic. Then, it follows from
(3.5) and (3.6)

%Rn = — (n + 2)v,p;.
The manifold being an Einstein one, this implies
1 R
6.1 = —— s k= ———.
6.1) %gz Z ViPs n(n + 2)

Taking account of (6.1), if we put

1
6.2 =9, — ——p,,
( ) 20 i sz

we have V;p; + vip; = 0, which means that the vector p' is a Killing one.
According to Lemma 6,2, the vector ' is analytic. Therefore the given HP-
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transformation v’ is analytic. q. e. d.

Let ©' be an analytic HP-transformation in a Kéihler-Einstein manifold.
Then from (3.8) we have (6.1). If we define a vector field p' by (6.2),

we see that p' is a Killing vector. Next, if we put ¢' = (1/2 k)f;\i‘ = —(1/2k)
@,'p’, then we have

~ 1 ¢
6.3 =L
) q 5z P

(6.4) o=+ @q.
Thus we have, taking account of Theorem 3.5, the following

THEOREM 6.4"®. In a Kihler-Einstein manifold with R==0, an ana-
lytic HP-transformation v' is uniquely decomposed in the form

ot = pt + %‘qr,
where p' and q' are Killing vectors.
On Theorem 6.4 we remark the following fact. The equation £¢," = 0 is
w

equivalent to

Vius — Viu; = @5 (Vs + Vidn)-
Hence, in a Kédhlerian manifold, a necessary and sufficient condition in order

that an analytic vector #; is gradient is that «' is a Killing vector.
Now, if ¢' is a Killing vector, taking account of Lemma 6.2, it is ana-

lytic, and hence so is ¢'. If we put u' = ¢' in the above arguments, we get

V;ii = Vt;;. Thus @,’q" in Theorem 6.4 is gradient analytic.

Thus the uniqueness follows from the fact that an Einstein manifold
with R==0 can not admit a non-trivial parallel vector field.

Next we have from (6. 4)

£ == £13.
If we substitute (3.1) and (6.3) into the last equation, we find

(6.5) viviP" + R,i"p" = 2 k(p,8" + pi8" — pip" — Pip").

Thus we have the following

18) In the compact case, this theorem is trivially contained in Matsushima’s theorem on analytic
vectors. '[5].
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COROLLARY 6.5. In a Kahler-Einstein manifold with R <=0, the as-
sociated vector of an analytic HP-transformation is a (gradient analytic) HP-
transformation.

Let Ly, L; and L’ be the Lie algebra consisting of all analytic HP-
transformations, the Lie algebra consisting of all Killing vector fields and the
vector space of all analytic gradient HP-transformations, respectively. Then
Theorem 6.4 asserts that a direct sum Ly = L; + L’ holds good. After some
computation, we can verify the following

COROLLARY 6.6. In a Kahler-Einstein manifold with R +=0, the fol-
lowing relations hold :
L, = L, + L' (direct sum),
[L;, L/]C L, (L, L'lc L, [L, L']c L.
From (6.5) we have

(6.6) ViViPr + Ry’ = 2 k(g5Pi + 9iPs — PinPi — PinPs)-

Let v' be non-affine and consider a geodesic z' = z(s) at a point on
which p;(dz'/ds) 4 0, where s is the arc lengh. If we define a function f(s)
along the geodesic by f(s) = p,(dz'/ds), then we have £ (s) = 4 k f(s) because
of (6.6). Now we assume that R < 0. Then we find f(s) = Ae*® + Be-2v%,
where A and B are constant. Thus we obtain

THEOREM 6.7. In a complete Kihler-Einstein manifold with R <0,
the length of the associated vector of an analytic non-affine HP-transfor-
mation is not bounded.

Next, if we take the alternating part of (6.6) with respect to ¢ and &,
we get

6.7) RmnPt = k(9u9in — 959 + PuPin — PiPun T 2 Py@in)e’,
from which, taking account of the theorem given in Appendix II, we obtain

THEOREM 6.8. If a Kahler-Einstein manifold with R==0 admits an
analytic non-affine HP-transformation, then its local homogeneous holonomy
group at any point is the full unitary group U(n/2).

Let p' be an analytic gradient HP-transformation, then (6.7) is valid.
Hence if L’ is transitive'” at each point of the manifold, then (1.10) holds

19) Let L be a vector space of vector fields in an # dimensional manifold. Denoting bv
v(P) the value of a vector field v at P, we consider the vector space Lp={v(P)|veL}
of vectors at P. When dim Lp=n, we say that the vector space L is transitive at P.
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good. Therefore we get the following

THEOREM 6.9. In a Kihler-Einstein manifold with R=0, if the
vector space consisting of all analytic gradient HP-transformations is tran-
sitive at each point, then the manifold is a space of constant holomorphic
curvature.

This theorem can also be proved in the following way. We consider a
Kihler-Einstein manifold, then it holds P,; = 0, where the tensor Py is de-
fined by (3.13). Let v* be a non-affine analytic HP-transformation and p; be
its associated vector. Then, from (3. 14) it follows P;'p, = 0. If the vector
space L is transitive at each point of the manifold, then we have P;;" = 0.
This proves that the manifold has constant holomorphic curvature.

COROLLARY 6. 1. If a homogeneous Kihler-Einstein manifold with R==0
admits an analytic non-affine HP-transformation, and if its linear isotropy
group is irreducible, then it is a space of constant holomorphic curvature.

PROOF. Since the linear isotropy group of the manifold is irreducible,
taking account of the formula [L;, L] < L’ which is given in Corollary 6.6,
we see that the vector space L’ is transitive at any point. Accordingly,
Theorem 6.9 implies that the given manifold is of constant holomorphic
curvature. q. e d.

7. An HP-transformation in a compact space of constant holomor-
phic curvature. Let us consider a compact space of constant holomorphic
curvature with R > 0. Then the manifold being an Einstein one, an analy-
tic vector v is decomposed uniquely in the form

v ="+ @/'qg"",
where ' and ¢' are Killing vectors. Hence we have

(7.1) %/{’;i} = — £{il = —(Vivig" + Ri"Q).

q
Since ¢' is a Killing vector, we have
vivi¢" + R,;"q" = 0.
Substituting the last equation into (7.1), we find

f/{j':} = (— ‘chRmt + <Prthj£h)qT-

v

Next if we substitute (1.10) into the last equation, then we get

20) In a compact Kihler-Einstein manifold with R<0 there exists no non trivial analytic vector.
21) Matsushima, Y. [5].
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£iht = P + P8 — 13;¢tn - pips, pi = — 2 kq,
v
from which we see that v' is an HP-transformation. Thus on taking account

of Theorem 3.1, we have

THEOREM 7.1. In a compact space of constant holomorphic curvature
with R > 0, a necessary and sufficient condition for a wvector field to be
analytic 1s that it is an HP-transformation.

This theorem can be also proved in the following way. Let Ly and A
be the Lie algebras of all HP-transformations and of all analytic vector fields
respectively. Then it follows Ly C A from Theorem 3.1 and

A=1L;+ ZI, (direct sum),
from Matsushima’s theorem™ where L; denotes the Lie algebra of all Killing

vector fields in the manifold and L; is dafined by L= {;’Ipi € L;}.
It is known that dim L; = m? + 2 m™, which implies
dim A =2(m? + 2m).
On the other hand, it is known™
dim Ly = 2(m® + 2 m).

Consequantly, we have dim Ly = dim A, hence we get L, = A.

APPENDIX I

Consider an n (= 2m > 2) dimensional real vector space V and let e,,...
..., e, be a fixed base. We shall represent any quantities on V in terms of
their components with respect to the base ¢;. Since n is even, V admits a
complex structure, i.e. a tensor @," such that @,/ = — §;". In the following
we shall consider a fixed complex structure.

LEMMA 1. Let a;' be a tensor on V such that
1 ¢’jrari + a/p, = 0.
Moreover, if it satisfies the equation
@ a;'y’ = ay' + bp,'y’
for any vector ', then a;' must be a zero tensor, where a and b are real-
valued functions of y'.

22) Matsushima, Y. [5].
23) Ishihara,S. [2].
24) Ishibara,S. [3].
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PROOF. At the first place, we notice that a;’ satisfies the relations
arr = 0’ ari‘Pir =0

by virtue of (1). Next, for convenience, we shall introduce an Hermitian
metric ¢;*. Then the equation g¢,,@;'®;" = ¢;; holds true and @;; = @,’g,; is
skew-symmetric with respect to j and i.

Transvecting (2) with y, = ¢;,9", we have a;'y’y; = ay'y;, and with @,'y,,

we get @;'y,a;'y’ = — by'y,. Making use of these equations, we can eliminate
a and b in (2) and we have
(3) tjnrlsijy”y' =0,
where
L' = @' — and,' + Ppjar’ P, a4 = aj Grn-

Since (3) holds for arbitrary y', it follows g, = 0. If we write down this
explicitely, it becomes the following equation :

4 2(a'gnr + ai'ges + ;')
— (@8, + and, + a8 + and, + a8, + a;8.)
+ ppal e, + P P; + Porapr
+ Pnal e, + pnale) + @y ap) = 0.

By contraction with respect to i and j we have (n — 2) (an + am) =0,
which implies
(5) ay + a;; = 0.

On the other hand, transvecting (4) with ¢""¢;,, we have na;, — 2a,; = 0,
after some calculation. Hence we obtain a, = 0 on taking account of (5).
This implies a,’ = 0. q. e. d.

LEMMA 2. Let t," be a tensor on V such that
6) ' =ty
(M ti e = t,"p/.
Moreover, if it satisfies the equation
8 t'yy' = ay" + boy

for any vector y', a and b being functions of y', then t," takes the follow-
ing form :

25) It is always possible to introduce an Hermitian metric. See, Frolicher, A. [1].
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no__ h n ~ ~
(9) ty = a;d;" + atsj - a_;¢¢h - dz¢jh,
where a; is a certain vector and a; = @, a,.

PROOF. In the same manner as in the proof of Lemma 1, we shall
introduce an Hermitian metric g,.
From (6) and (7) it follows

ti" + e e =0,
from which we obtain the equation
(10) 9t =0,

bacause of ¢''p, @, = .
From (8) we can easily obtain the relations

t'yiy’y' = ayy, t'p v’y = — byyn.
Making use of these relations, we can eliminate a and & in (8) and get
(11) tur'y'y Yy =0,
where
Lurp' = Ly Grp — Ly + L PP, Lir = ty s

Since (11) holds for arbitrary y', it follows # s = 0. Transvecting this
with ¢7 and taking account of (6), (7) and (10), we can obtain

(12) ti" = ad + ad + Bip + BipS,
where
1 r - 1 s r
a; = ————1j, B =1y P .
T axe2 ¢ T re ?
In the last place, substituting (12) into (7), we get B, = — a.. q. e. d.

We can generalize Lemma 2 in the following form.
LEMMA 3. Let t," be a tensor on V such that t," = t,". If it satisfies
(13) ti'yy' = ay" + bo,"y’
for any wvector y', then t," takes the following form :
ti" = ad” + ad) + B + B,

. i .
where a and b are real-valued functions of y' and a,, B, are certain
vectors.
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Lemma 2 is a direct consequence of Lemma 3, but the proof of the lat-
ter is very complicated, so we shall only give the outline of it.
Multiplying the both sides of (13) with y°@.'y°, we have

hkl j

L y'y'y'y" = (a@.'8,"8," + b, ®.'8," )yy"y,
where

hkl

Liive = Ly abk¢cl-

If we take the alternating part with respect to h, 2 and Z of the above
equation, we have

£

L y’y'y’y" =0,
which implies
tl'}f“b'c') =

By contraction, we get
(149 87 = 0,
where the left-hand side is the sum of 72 terms because of the symmetry
with respect to 7 and j.

Transvecting (14) with @,° and putting ¢, = ¢;,/, p; = t,/ @', we obtain
after a complicated calculation

(15) (n® + 2n)t," — 8D, Dyt = A" + A8 + B,p" + Bip),
where
A;=p,+ (n+ 1)y, B, =% —(n+ 1)p,
Py = @/ Prs 5= sty
and ®,, ®, are the operators defined by
1 » ”

D, A" = 7(Aﬂh + Aylel 9,
(16) 1

q)3Aj£h = 7(141:” - Arth‘l’jr‘Ptl)-

These operators ®, and P, satisfy the following identities™.

26) If we put or" = *(8,’51’”—%@ o), o"— — (8;751 —oj i), (16) is written in the following
form :
®,Aji n:; ?L"Ajrt, 45Aﬁ":o’ﬁA,~;”.
27) Obata, M. [7].
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an Oy, = D, Dy, = P, Do D; = Do D,.
After some calculation we get easily
DD, (AS" + A3, + Byp," + Bip,") = 0.
Therefore, if we operate ®,*®, to the both sides of (15), we get
(7 + 2 )Py ®, t," — 8Dye®, DDyt ," = 0,
from which we obtain
(n 4+ 4) (n — 2)Pye®yt,," =0

by virtue of (17). Consequently, ®;+®,t,," = 0 holds. Thus if we substitute
the last equation into (15), we find

tjth = a18¢h + atsjh + B/?gh + ﬂi¢]h’

where
1 1 -
= A= + (n + 1y,
% nin+2) 7 aln+ 2) Py + (= ]
By = L B; = L {£; — (n + 1p,}. q.ed.

T an+2 7 nn+2)

We can also prove the following lemma according to Lemma 2.1 given
in Ishihara, S. [2] and Lemma 3.

LEMMA 4. Let t," be a tensor on V such that
q)zt/th = 028), q)a'q)l(tjch - tuh) = 0.
If t," satisfies
t"y'y = ay" + by’
Sfor amy wvector y', then it takes the following form :
t/th = P18¢h + Plsjh - Fj¢th - ﬁt?’jh + a'jsth + Ej¢ih’
where p; and o, are certain vectors and operator ®, defined by
1
D2, = —2‘(t1th — ti'pl @)
In an almost-complex manifold, an affine connection I'}; is called a o-

connection, if the almost-complex structure ;" is covariant constant with
respect to I'j, i. e. v,p," = 0, where v, is defined by y,o" = 90" + I'jv" for

28) This equation is equivalent to (7).
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a vector field v’, for example. A @-connection is said to be half-symmetric®,
if its torsion tensor S," satisfies ®,®,S," = 0.
By the same arguments as in §2, we can prove the following

THEOREM. In an almost-complex manifold endowed with a half-sym-
metric @-connection T, in order that an infinitesimal transformation v'
preserves the H-plane curves®’, it is necessary and sufficient that it satisfies
the following equations :

%¢’ch =0,
%Frfli =pd" + pd — Py — Pipy" + 08" + o0/,
where p; and o; are certain vector fields.

APPENDIX II

Let V be an n (= 2 m) dimensional real vector space and (g,, @) an
Hermitian structure on it. Then ¢, = ¢,,@,®," holds, and so @, = @, ¢, is
skew-symmetric.

Consider a tensor R;; of type (1,3) on V and suppose that there exists
a non-zero vector p' satisfying

¢)) PR, = (9.8 — 9:8" + @up," — @u@ + 2 p,p/ )P

For a vector o', we denote by R(¢) the matrix whose (7, h)-element
is R(a),* = p'e’R,;". Then we have

2) R(o)" = po" — ap" + po" — ap" + 2 9/'p'7,,

where p, = @,/p, and & = — @,'d".
We shall prove the following

LEMMA. If we choose a suitable base in V, the Lie algebra generated
by the matrices R(c), ¢ € V, contains all matrices of the following form :

(s o

— B A

where A is a skew-symmetric (m, m)-matrix and B is a symmetric (m, m)-
matrix.

PROOF. Since we can change the length of p' without loss of generality,

29) Ishibara,S. [2].
30) The definition of H-plane curves in an almost-complex manifold with a p-connection bave
given in [2] and [11].
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it is possible to choose a base such that
Pl = (8.1, 87 I = 8y,
Pus = Pap = 0, Pap = — aps Pas = Oap-
where indices @ and @ run over 1, 2,...... ,mand a=m + a.

In the following, we shall only use the lower indices, because the base
in consideration is orthogonal. If we take m — 1 vectors

‘::i = (8, 3:3)s v =2,...... , m,

then we have
0;', = (_ Bw'y’ 85&‘7)& P = (__ Bab 8127)'

It is easily seen that 2 m vectors p,, p;, 0, and o, are linearly independent.
Y Y

We shall now put
Rt=Rp,  R=R@),  Ri=R@)
and use the following notations on (m, m)-matrixes :
Apg = (au): apa = — aap =1, @ = 0 for (u, M) ==(a, B), B, a);
Bgy = (b,0): bps = bag =1, b = 0 for (p, ) +=(a, B), (B, a);
C =(n:cni=2,c.=1for €=2,.... , M, cur =0 for w 4=
Dy =(dn): —di =dy =1, du =0 for (g, A) = 1, 1), (v, v,

where a, 8, M and @ run over 1, 2,...... ,mand v =2,...... , m.
Using this notation, we can obtain

A4, O 0 By, 0 C
5 R=2( ), Ri=2 ), Rt=4( ).
® Y 0 Ay Y (—Bw 0 ' -C 0
By some calculation we get for B, v = 2,...... , m
Apg,y 0
4 Ry, R,] = 4( ,
@ Ry RI=4(" ")
0 B
®) [R5, R,] = 4( ") for B4,
- Bﬁy O
0 D,
R Ryl = 8( )
[ Y 7] . Dy 0
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Hence we find

m 0 B
© P=Rt =3[R, Ry =40n + 1)( OF
2 = \— B, 0
from which it follows
m + 1 « _ Byv
@) P+ R, Ryl = 40m + D( 5, o ).
According to (3) ~(7), we see that the lemma is true. q. e. d.

By means of the above lemma, we have the following

THEOREM. In a Kadhlerian manifold of n dimensions, if its curvature
tensor Ryy" satisfies at a point the relation

1 PtRmh = (9u3," - gjtath + ¢n¢jh - ¢jt¢th + 2 ¢u¢th)Pt

for a non-vanishing vector p', then the local homogeneous holonomy group
of the manifold at any point coincides with the full unitary group U(n/2).

PROOF. We suppose that the relation (1) holds at a point P. We con-
sider for fixed indices j and 2 a matrix R(kj; P) whose (7, h)-element is
given by the value of Ry," at the point 2. Then, it follows from the above
lemma that the Lie algebra generated by all the matrices R(kj; P) is equi-
valent to the Lie algebra of the full unitary group U(n/2). Therefore, taking
account of Nijenhuis’ theorem®’, we see that the local homogeneous holonomy
group of the manifold at the point P contains the unitary group U(n/2). The
manifold being Kihlerian, it follows thus that the local homogeneous holo-
nomy group of the manifold at P coincides with U(n/2). q. e. d.
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