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1.1. Definitions. Let ]Γ an be a given infinite series, and let s% and t%,

denote the n-th Cesaro means of order a (a > — 1) of the sequences \sn\ and

\nan\ respectively, where sn is the n-th partial sum. The series Σ an 1S s a ^

to be absolutely summable (C, <χ\ or summable | C, a | , if the sequence j s%)

is of bounded variation, that is, if the infinite series ^ \s% — Sn-i\ is conver-

gent ([4], [6]).

1. 2. In what follows we shall require the following identities.

(1. 2.1) n = n{s« - sLi) del [7]);

(1. 2. 2) « = Hb Σ Aϊ-l va«>

where

(1.2.3) Σ, A«nx" = (1 - x)-«-' (I * I < 1);

and, by definition ([5]),

(1. 2. 4) Ali = 0, Ao"1 = 1, A.ήι = 0 (n > 1); An2 = 0 (n ^ 2);

(1.2.5)

- I)"

(1. 2.6) AX = Γ(« + α + l)/|Γ(n + l)Γ(α + 1)}

~« '/Γ(a + 1) (α=f= - 1, - 2, ).

For any sequence \Sn], we write

(l. 2.7) Δ°£n = εn> Aεn = Δ 'θ , = εn - εn+1,

and
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(1. 2. 8) ΔTSn = Σ, A7p-%+n,
v =

provided this series is convergent.

If h and k are positive integers, we have

(1. 2. 9) ΔΛΔ*Sn = Ah+ken,

and

(1. 2.10)

We also write

(1. 2. 11) ~Sn = Δ£n,

n

(1. 2.12) £*'(», μ) = Σ Afcl A ^ε^; £ * ' ( - 1, /*) = 0;

n

(1. 2. 13) ^ σ(«, μ) = Σ A& A~*°~λ"s^

and
n

(1.2.14) Ti=Σ»- 1 ί, TJ=O.
1̂  = 1

2. 1. Introduction. The present paper is the first of a series of papers

which we intend to devote to the study of the absolute Cesaro summability

factors of infinite series. We take our start from a recent paper of Bosanquet

and Chow ([2]) in which the following theorem is shown to be true by virtue

of its equivalence to a previous result of Chow ([3], Theorem 2).

THEOREM A. If K > — 1, p > 0, p > 0, necessary and sufficient condi-

tions for Σ anSn to be summable \C, p\ whenever Sn = O(nv) are :

( π ) I > K + 1 A K + 1 ^ I < <*>.
The demonstration of this theorem by Bosanquet and Chow is naturally

circuitous, involving the proof of a number of results which are apparently

out of context. Our main object in the proposed series of papers, is to replace

such a roundabout technique of proof by one which is direct and straight-

forward. In this paper we give a direct proof of a generalized version of

Theorem A in the case : /c = p = a positive integer, replacing the sequence

\np\ by a wider class of sequences {λnj. It may be observed that our
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generalization of the necessity part of Theorem A holds in the general case
K = p = k => 0, since in our proof we do not confine k to integral values only.

2. 2. We establish the following theorem.

THEOREM. If k be an integer > 0, then necessary and suficient condi-

tions that Σ an^n should be summable \C,k\ whenever

(2. 2. 1) si = O(X), as n->°o,

where j Xn \ is a positive, monotonic non-decreasing sequence, are :

(0 Σ>»l*»l < °o
and (ii) Σ ι Λ J Δ ^ . 1 <oo.

3.1. We require the following lemmas for the proof of the sufficiency
part of this theorem.

LEMMA I. If p> 0, \\n\ is a positive, monotonic nondecreasing sequ-

ence, and Σ Hpλn | Δ
p+1£n | < oo, then Σ w<7^«I^+1^«I < °° for every Q suc^

that 0 ^ q <Ξ p.

This is proved by an easy adaptation of the proof of Lemma 2 of [1].

LEMMA 2 ([3], Lemma 1). If σ > - 1 and σ - S > 0, ^ n

LEMMA 3 ([3], Lemma 9). If β > 0, σ > 0, i/ie/z

3. 2. Proof of the theorem : Sufficiency. Let rn = τl = nanεns and let
T* denote the n-t\ι Cesaro mean of order k of the sequence \τn). By hypo-
thesis, and by (1. 2. 1),

Tl = O(\n),

as w -^ oo. And, again by (l. 2. 1), we have to show that

The case έ = 0 is obvious. We therefore take k > 1. We have
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— ^Γ Ak~λ P Y^ A'*'1 Ak tk

v = l μ=l

n n- μ

— Y^ Ak fk V^ Ak-J A ~k'1 £
— / , ^Λ-μ. ίμ. / . •fln-μ.-v £*>v cV + μ

μ = l v=0

μ=l

Hence, by Abel's transformation,

Σ l&Xn - μ, μ)\T\ + nAl

= Σ Δ.IMϊ£••*(» -μ, μ)\ Ί\ + (» +

= Σ Δ/Mj^Λn - μ,
μ=l

n

+ Σ (μ + D^ί+

Now,

ΔM £*•*(«-/»,/.)

W-μ W-μ-7

— V^ >4Sr~1 4- f c- ]/: _ ^ Ak~ι A~k~ι P
— / f ^Λ-n—μ-v Ή-v c ^ + μ / r ** n—μ-v-\ Λ c ^c+μ+

— Y^ A-k~λ Δ (A*-1 P }A- A~k~l £

n-μ-J

= = X . A v J±n-μ-v ^μ C^ + /u.

v=0

n~ μ-i

"f /-^ Av An-μ-v ί̂/ + μ+l + An-μ £n

Π-μ W-μ

Λι/ xl-W—μ-v cv+μ+l~k~l \k~ι AP 4-
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= £*•*(* -/*,/*) + Ek-lk(n-μ,μ+ 1).

Hence

n

Air* = Σ, Δμ(μAl)E°\n - μ,μ)T*μ

Therefore

V („ _L Ί\Δk Ϊ7*-1.V*« n ιι Λ- Ί\Tk

/ , \μ> -T l j A μ + i JOJ \n — μ>f μ> ~r 1)1 μμ Ί

(O, «)T* + (n + 1) A^+1 £
f c *(Of «

Ek-: \n - μ,μ + 1)1%
μ=l

i I Δ θ r e I I Γ *

Σ (nAΪ)-\n

!£*•*(« - Λ / )11 Til

μ - 1



Thus,

(3. 2.1)

(3. 2. 2)

(3. 2. 3)

(3. 2. 4)

(3. 2. 5)

(3. 2. 6)

(3. 2. 7)

+ Σ M ^ Σ O + DAU ET^ Xn

it suffices for our purpose to show that

ΣK\*e.]<oo;

ΣK\Sn+ι\ < oo;

Σ λn-ll^n| < °°;

Σ^-.l«.l<-.
" fc ^ \Ek'k (n,μ)\

^ Ί ^ μ^(n + μ)Ak

l+fX °°?

227

I .

(3.2.8) 2^-Aμ \ 1

(3.2. 1) —(3.2.5) are all true by hypothesis. We proceed to prove the rest

PROOF OF (3. 2. 6). By Lemma 3, since n > 1,

and, for 0 ̂  r ^ * - 1,

+ μ

ΣAΪ\ΛΔ*-ri

(by Lemma 2)

<oo,*

by hypothesis and Lemma 1.

* K denotes a positive constant, not always the same.
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PROOF OF (3. 2. 7). By Lemma 3, since n > 1,

and, for 0 ^ r <; β - 1,

by hypothesis and Lemma 1.

PROOF OF (3. 2. 8). By Lemma 3, since n > 2,

r-0

and, for 0 ^ r ^ έ - 2,

Λ*-r-2

(by Lemma 2)

(by Lemma 2)

by hypothesis and Lemma 1.
This completes the proof of the sufficiency part of our theorem.

4 . 1 . We require the following additional lemmas for the proof of the
necessity part of the theorem.



ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES 229

LEMMA 4 ([3], Lemma 5). If the sequences \un] and \Un\ are connected
by the relation

μ - 1

(n = 1,2,3, ),

a necessary condition that the series Σ Un should be convergent whenever

un = O(l) is that

< oo.

LEMMA 5 ([3], Lemma 6). If the sequences {un} and {Un) are connected
by the relation

n

Un = Σ Sn,μUμ (tl = 1,2,3, ),

a necessary coniition that the series Σ I Un I should be convergent whenever

un == O(l) is that

μ - 3

LEMMA 6. Let k > 0, 8n = O(l), and

£**'* + 1 (n, /*) = Σ AS".1, ^-fc"2

Then

PROOF. The proof runs parallel to that of Lemma 7 of Chow [3]. We
give it here for completeness. By Lemma 2, we have

the inversion of the order of summation being justified by absolute convergence.
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4. 2. Proof of the theorem: Necessity. First we take k > 0. Since

ir* =Air*

we have

(4.2.1) ~^ = J2^t.^l

THE CONDITION (i) IS NECESSARY. By virtue of Lemma 5, in order that

Σ an $n be summable |C, k\, that is, Σ n < °°? whenever si = O(λ w ), as

n -> °°, it is necessary that'

(4. 2. 2) I

Since, when p = μ9

< oo.

(4. 2. 2) reduces to

THE CONDITION (U) IS NECESSARY. The condition (i) which is shown

above to be necessary implies that Sn = O(l). Hence, by Lemma 4, in order

that Σ an £<n be summable |C, k\ whenever sn — O(λn), as Λ -> oo, it is neces-
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sary that

that

(4.2.

is,

3)

oo

Σ

oo CO

S (»+

r Δ, {Atzl vεr) A:*;1

1 ^ A »-I

< co,

Since

i*^+ 1 (n,μ)

< 00.

(4.2.3) reduces to

which, by Lemma 6, is equivalent to

< 00,

We finally dispose of the necessity part of the theorem in the case £ = 0>
with the remark that the condition (i) (to which the condition (ii) reduces)
becomes necessary as soon as we take the result of the theorem as true in the
special case: an = (— l)nλw .

The authors take this opportunity of expressing their warmest thanks to
Professor B. N. Prasad for his generou? encouragement.
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