ON FIBERINGS OF SOME NON-COMPACT CONTACT MANIFOLDS

SHÛKICHI TANNO

(Received June 18, 1963)

Introduction. Every contact manifold M (dim $M \neq 1$) with η as a contact form has a contact metric structure (ϕ, ξ, η, g) [6] such that

$$d\eta(X,Y) = w(X,Y) \equiv g(X,\phi Y),$$

for any differentiable vector fields X, Y on M. W.M.Boothby and H.C.Wang [5] proved that, if η is a regular contact form on a compact manifold M, then M is a principal fiber bundle over a symplectic manifold B with structural group and fiber the circle group S^1 . Further, η defines a connection in the bundle M in such a way that $d\eta = \pi^*\Omega$ is the equation of structure of the connection, where π is the natural projection $M \to B$ and Ω is the fundamental 2-form on B. In this case, as is verified recently [9], M is a K-contact manifold. That is, we can find a suitable Riemannian metric g associated with g such that g is a Killing vector field.

This note is devoted to give fiberings of some non-compact K-contact manifolds. We remark that, it is only in the case where M is non-compact that there may exist an infinitesimal transformation which leaves ϕ invariant, but not η invariant. If such an infinitesimal transformation exists on a complete K-contact manifold, then M is a principal fiber bundle over an almost Kählerian manifold with structural group and fiber the real line K. And K is an infinitesimal connection in K. Further, if K is simply-connected, then K is reduced to the product bundle.

1. Lie algebra of infinitesimal transformations. By L_{ϕ} we denote the set of all infinitesimal transformations which leave ϕ invariant and by $\mathfrak A$ that of all infinitesimal automorphisms of the contact metric structure. Let $Z' \in L_{\phi}$ and $Z' \in \mathfrak A$, then for some constant σ , $\mathfrak A(Z')\eta = \sigma\eta$. As $\sigma \neq 0$, we define $Z = -\sigma^{-1}Z'$, so that $\mathfrak A(Z)\eta = -\eta$ is satisfied. This Z plays an important rôle throughout this note. We put $L = (\alpha Z : \alpha \in R)$, then we have the following

THEOREM 1-1. In a differentiable manifold with a contact metric structure, the relation

$$L_{\phi} = \mathfrak{A} \oplus L$$
 (direct sum)

is valid. And the followings are evident,

$$[\mathfrak{A},\mathfrak{A}]\subset\mathfrak{A}, \qquad [L,L]=0, \ [\mathfrak{A},L]\subset\mathfrak{A}.$$

PROOF. For any $X \in L_{\phi}$, there corresponds a real number α satisfying $\mathfrak{L}(X)\eta = \alpha\eta$. Then X is decomposed as follows:

$$X = (X + \alpha Z) + (-\alpha Z).$$

Clearly, $\Re(X + \alpha Z)\phi = 0$ and $\Re(X + \alpha Z)\eta = 0$ follow. This being said, it is known that $X + \alpha Z$ leaves g and ξ invariant, and so $X + \alpha Z \in \mathfrak{A}$. As \mathfrak{A} is a subalgebra of the Lie algebra composed of all Killing vector fields on M, \mathfrak{A} , and hence L_{ϕ} , is finite dimensional. If M is compact, of course, $L_{\phi}=\mathfrak{A}$.

An almost contact metric structure associated with Z. We assume that there exists a vector field Z on M which satisfies $\mathfrak{L}(Z)\eta = -\eta$. Using this Z we define $\overline{\eta}$ as follows:

$$\bar{\eta} = \eta + i(Z)w,$$

where i(Z) is the interior product operator by Z. Then, η fulfils the following two relations:

$$(2. 2) \overline{\eta}(\xi) = 1,$$

$$(2. 3) d\overline{\eta} = 0.$$

A linear operator $\overline{\phi}$ of the family $\mathfrak{X}(M)$ of all vector fields on M to itself is defined as follows:

(2. 4)
$$\overline{\phi}X = \phi X - \overline{\eta}(\phi X)\xi, \quad X \in \mathfrak{X}(M).$$

Then the next formulas hold good:

(2. 5)
$$\overline{\eta}\overline{\phi} = 0, \quad \overline{\phi}\xi = 0,$$
 (2. 6) $\overline{\phi}\overline{\phi}X = -X + \overline{\eta}(X)\xi, \quad X \in \mathfrak{X}(M).$

And the definition of the new metric is:

(2. 7)
$$\overline{g}(X,Y) = g(X,Y) + w(Z,X) \cdot \eta(Y) + w(Z,Y) \cdot \eta(X) + w(Z,X) \cdot w(Z,Y), \quad X,Y \in \mathfrak{X}(M).$$

If we notice that $w(Z, X) = \overline{\eta}(X) - \eta(X)$, (2. 7) may be written in the simplified form as

(2. 8)
$$\overline{g}(X,Y) = g(X,Y) + \overline{\eta}(X) \cdot \overline{\eta}(Y) - \eta(X) \cdot \eta(Y).$$

LEMMA 2-1. The tetrad $(\overline{\phi}, \xi, \overline{\eta}, \overline{g})$ defines an almost contact metric structure on M.

PROOF. By virtue of (2. 2) and (2. 8), we see that

(2. 9)
$$\overline{\eta}(X) = \overline{g}(\xi, X), \quad X \in \mathfrak{X}(M).$$

Further, the next relation is valid,

$$(2.10) \overline{g}(\overline{\phi}X,\overline{\phi}Y) = \overline{g}(X,Y) - \overline{\eta}(X) \cdot \overline{\eta}(Y), X,Y \in \mathfrak{X}(M).$$

In fact, from the definition of $\overline{\phi}$ it follows that $\eta \overline{\phi} = -\overline{\eta} \phi$, and so we have

$$\eta(\overline{\phi}X) \cdot \eta(\overline{\phi}Y) = \overline{\eta}(\phi X) \cdot \overline{\eta}(\phi Y).$$

And from (2. 5), the relation $\overline{\eta}(\overline{\phi}X)\cdot\overline{\eta}(\overline{\phi}Y)=0$ follows. Again from (2. 4) we can deduce the following

$$g(\overline{\phi}X,\overline{\phi}Y) = g(\phi X,\phi Y) + \overline{\eta}(\phi X) \cdot \overline{\eta}(\phi Y).$$

Putting $\overline{\phi}X$ and $\overline{\phi}Y$ instead of X and Y into (2.8) and utilizing preceding three equalities, we obtain

$$(2.11) \overline{g}(\overline{\phi}X, \overline{\phi}Y) = g(\phi X, \phi Y).$$

As $g(\phi X, \phi Y) = g(X, Y) - \eta(X) \cdot \eta(Y)$, (2. 8) and (2.11) give the verification to (2.10). To see that \overline{g} is positive definite, we transform (2. 8) identifying X and Y,

$$\overline{g}(X, X) = g(\phi X, \phi X) + \overline{\eta}(X)^2.$$

Hence, g is non-negative. Moreover, if $\overline{g}(X,X)=0$, then $\overline{\eta}(X)=0$, and $\phi X=0$. The latter $\phi X=0$ implies $\overline{\phi}X=0$, and so X=0. Though it is redundant, ξ and the vector of the form $\overline{\phi}X,X\in\mathfrak{X}(M)$, are orthogonal with respect to \overline{g} . (2. 2), (2. 5), (2. 6), (2. 9) and (2.10) are the required conditions for $\overline{\phi},\xi,\overline{\eta}$ and \overline{g} to define an almost contact metric structure on M.

LEMMA 2-2. We have the following relation:

(2.12)
$$\overline{g}(X,\overline{\phi}Y) = w(X,Y), \qquad X,Y \in \mathfrak{X}(M).$$

PROOF. By virtue of (2. 4), (2. 5) and (2. 8), we have

$$\overline{g}(X, \overline{\phi}Y) = g(X, \overline{\phi}Y) - \eta(X) \cdot \eta(\overline{\phi}Y)$$

$$= g(X, \phi Y) - \overline{\eta}(\phi Y) \cdot g(X, \xi) - \eta(X) \cdot \eta(\overline{\phi}Y)$$

$$= w(X, Y).$$

3. Maximal integral manifolds of the distribution $\bar{\eta}=0$. The distribution on M defined by $\bar{\eta}=0$ is completely integrable on account of closedness of the 1-form $\bar{\eta}$. Therefore, for any point p of M, there is a maximal integral manifold W=W(p) through p. Let $\iota:W\to M$ be the injection map. Then, since $\bar{\phi}$ maps $\iota(\mathfrak{X}(W))$ onto itself in some sense, we can define $\bar{\phi}'$ as follows:

(3. 1)
$$\overline{\phi}'X' = \iota^{-1}\overline{\phi}(\iota X'), \qquad X' \in \mathfrak{X}(W).$$

Furthermore, we can define $\overline{g}' = \iota^* \overline{g}$.

Proposition 3-1. If a contact manifold M admits a vector field Zsatisfying $\mathfrak{L}(Z)\eta = -\eta$. Then every (maximal) integral manifold W of the distribution $\eta + i(Z)d\eta = 0$ has an almost Kählerian structure.

PROOF. For any vector field $X' \in \mathfrak{X}(W)$, $\bar{\eta}(\iota X') = 0$ holds good. Thus, $\overline{\phi}'\overline{\phi}'X' = -X'$ follows from (3. 1). And we get

$$\overline{g}'(\overline{\phi}'X', \overline{\phi}'Y') = \overline{g}(\iota\overline{\phi}', \iota\overline{\phi}'Y') = \overline{g}(\overline{\phi}\iota X', \overline{\phi}\iota Y')
= \overline{g}(\iota X', \iota Y') = \overline{g}'(X', Y').$$

Thereby, the pair $(\overline{\phi}', \overline{g}')$ defines an almost Hermitian structure on W. Denoting by Ω the fundamental 2-form and using Lemma 2-2, we have

$$\Omega(X', Y') = \overline{g}'(X', \overline{\phi}'Y') = \overline{g}(\iota X', \iota \overline{\phi}'Y')$$

$$= \overline{g}(\iota X', \overline{\phi}\iota Y') = \iota \omega(\iota X', \iota Y')$$

$$= \iota^* d\eta(X', Y').$$

Hence, we see that $\Omega = d\iota^*\eta$.

O. E. D.

The Nijenhuis tensor N for the almost contact structure is given by

(3. 2)
$$N(X,Y) = [X,Y] + \phi[\phi X,Y] + \phi[X,\phi Y] - [\phi X,\phi Y] + (Y \cdot \eta(X) - X \cdot \eta(Y))\xi,$$

for $X, Y \in \mathfrak{X}(M)$. And the Nijenhuis tensor N' for the almost complex structure $\overline{\phi}'$ on W is expressed as follows:

$$(3. 3) N'(X', Y') = [X', Y'] + \overline{\phi}'[\overline{\phi}'X', Y'] + \overline{\phi}'[X', \overline{\phi}'Y'] - [\overline{\phi}'X', \overline{\phi}'Y'],$$

for $X', Y' \in \mathfrak{X}(W)$. If we put $N' = \mathfrak{L}(\xi)\phi$, then several relations hold good between N^{1} and N if η is a contact form [7], and from those we extract the followings for the later use,

(3. 4)
$$\phi \cdot N(X, Y) + N(X, \phi Y) - \eta(Y) \cdot N'(X) = 0,$$

(3. 5)
$$N(X, \xi) + \phi \cdot N^{1}(X) = 0,$$

(3. 6)
$$\phi \cdot N^{1}(X) + N^{1}(\phi X) = 0,$$

(3. 7)
$$N^{1}(\xi) = 0, \quad \eta \cdot N^{1}(X) = 0,$$

(3. 8)
$$\eta \cdot N(X, Y) = 0.$$

LEMMA 3-2. For any vector fields X, Y on a contact manifold M, the next identities are valid,

(3. 9)
$$\overline{\phi}[\overline{\phi}X, Y] = \phi[\phi X, Y] - \overline{\eta}(\phi[\overline{\phi}X, Y])\xi$$

$$- \overline{\eta}(\phi X)[\xi, \phi Y] + \overline{\eta}(\phi X)N^{1}(Y),$$
(3.10)
$$[\overline{\phi}X, \overline{\phi}Y] - [\phi Y, \phi Y] - \overline{\eta}(\phi Y)[\phi Y, \xi] - \overline{\eta}(\phi Y)[\xi, \phi Y]$$

$$(3.10) \qquad [\overline{\phi}X, \overline{\phi}Y] = [\phi X, \phi Y] - \overline{\eta}(\phi Y)[\phi X, \xi] - \overline{\eta}(\phi X)[\xi, \phi Y]$$

$$- \{\overline{\phi}(X) \cdot \overline{\eta}(\phi Y) - (\overline{\phi}Y) \cdot \overline{\eta}(\phi X)\}\xi.$$

PROOF. (3. 9) follows from direct calculation in which we use the relation $\phi[\xi, Y] = [\xi, \phi Y] - N'(Y)$.

(3.10) is obtained similarly and so we shall omit the details.

LEMMA 3-3. For any point p of M and X', $Y' \in \mathfrak{X}(W(p))$, we put $X = \iota X'$, $Y = \iota Y'$, then

(3.11)
$$\iota N_p'(X',Y') = N_p(X,Y) + \overline{\eta}_p(\phi X) \cdot N_p^{\mathsf{I}}(Y) \\ - \overline{\eta}_n(\phi Y) \cdot N_p^{\mathsf{I}}(X) - K_n(X,Y) \xi_n,$$

where we have put

$$K_{p}(X,Y) = \overline{\eta}_{p}(\phi[X,\overline{\phi}Y] + \phi[\overline{\phi}X,Y]) - (\overline{\phi}Y)_{p}\eta(\overline{\phi}X) + (\overline{\phi}X)_{p}\eta(\overline{\phi}Y) + Y_{p}\eta(X) - X_{p}\eta(Y).$$

PROOF. As the value, for instance, of N(X,Y) at p depends upon only the magnitudes of tangent vectors X_p , Y_p at p and is independent of their extensions, we can assume that X (or Y) is defined in each sufficiently small neighborhood U in M by $X_{\exp t\xi \cdot q} = \exp(t\xi)X_q$, $q \in \{\text{slice in } U \text{ passing through } p\}$, $|t| < \varepsilon$, ε being a positive number depending on the point p. Then, we see that the term $\iota N_p'(X',Y')$ is equal to

$$[X,Y]_p + \overline{\phi}_p[\overline{\phi}X,Y]_p + \overline{\phi}_p[X,\overline{\phi}Y]_p - [\overline{\phi}X,\overline{\phi}Y]_p,$$

since, for example, $\iota \overline{\phi}'[\overline{\phi}'X', Y']$ is easily seen to be equal to $\overline{\phi}[\overline{\phi}\iota X', \iota Y']$. Consequently, by Lemma 3-2, we have (3.11).

Theorem 3-4. In a normal contact manifold M admitting Z as above, every (maximal) integral manifold W of the distribution $\bar{\eta} = 0$ is Kählerian. Conversely, in a K-contact manifold M, if for any point p of M, W(p) is Kählerian, then M is normal.

PROOF. We have N=0 in a normal contact manifold M by definition. And, as is known [7], $N^1=0$ follows from N=0. So, by Lemma 3-3, we get

$$\iota N_p'(X',Y') = - K_p(\iota X',\iota Y')\xi_p,$$

for any p of W and X', $Y' \in \mathfrak{X}(W)$. As $\overline{\eta} \cdot \iota N'(X', Y') = 0$, $K_p(\iota X', \iota Y')$ must vanish everywhere in W. Thus N'(X', Y') = 0 follows.

In the next place, suppose that M is a K-contact manifold, that is $N^1 = 0$. This is equivalent to the fact that ξ is a Killing vector field with respect to the metric g. Then (3.11) of Lemma 3-3 implies

$$\iota N_{v}'(X',Y') = N_{v}(\iota X',\iota Y') - K_{v}(\iota X',\iota Y')\xi_{v}.$$

Therefore, for any point p of M if W(p) is Kählerian, we obtain

$$N_{v}(\iota X', \iota Y') = K_{v}(\iota X', \iota Y')\xi_{v}.$$

By (3. 8) we get $K_p(\iota X', \iota Y') = 0$. And hence $N_p(\iota X', \iota Y') = 0$. Further, if we put (3. 5) into consideration, our assertion may be seen to be true.

LEMMA 3-5. Let M be a K-contact manifold. Then ξ is a Killing vector field also with respect to the metric \overline{g} , and consequently ξ and $\overline{\eta}$ are parallel fields in the Riemannian geometry of \overline{g} .

PROOF. By assumption, we know that $\mathfrak{L}(\xi)g = 0$ and $\mathfrak{L}(\xi)\eta = 0$. And as $\mathfrak{L}(\xi)\overline{\eta} = 0$ is readily seen, $\mathfrak{L}(\xi)\overline{g} = 0$ follows from (2. 8). Since ξ and $\overline{\eta}$ are related by (2. 9), and $\overline{\eta}$ is a closed form, they are both parallel fields with respect to the Riemannian connection defined by \overline{g} .

Theorem 3-6. In a simply-connected K-contact manifold M with the property that ξ generates a 1-parameter global group of isometries (in particular, with completeness), we suppose that there exists a vector field Z satisfying $\mathfrak{L}(Z)\eta = -\eta$. Then M is a product bundle of an almost Kählerian manifold W and the additive group of real numbers R. And the given contact form η is a connection form in the bundle M. Moreover, M is normal if and only if W is Kählerian.

PROOF. We take an arbitrary point p of M and by W we denote the maximal integral manifold through p. Let $\exp(t\xi)$, $t \in R$, be a 1-parameter group of isometries with respect to g. Of course, for any $t \in R$, $\exp(t\xi)$ is also isometric with respect to \overline{g} by Lemma 3-5. By $g(\xi,\xi) = \overline{g}(\xi,\xi) = 1$, the canonical parameter is also the arc-length with respect to both g and \overline{g} . We define the map $\mu: R \times W \to M$ by

$$\mu(t,q) = \exp(t\xi)q, \quad t \in R, q \in W.$$

Then μ is well-defined into map. Now, let x be an arbitrary point of M, then x has a neighborhood U(x) with local coordinates (y^k) , $k=1,2,\ldots,2n+1$ (dim M=2n+1), such that each slice $(y^{2n+1}=\text{constant})$ is an integral manifold of the distribution $\bar{\eta}=0$ [1]. For the slice passing through x, say $\lambda(x)$, if $\exp(t\xi)\cdot\lambda(x)$ meets U(x), the intersection is contained in some slice, because $\bar{\eta}$ defining the distribution is invariant by $\exp(t\xi)$ for any $t\in R$. By this reason, we can assume that $U(x)=\{\exp(t\xi)\cdot\lambda(x), -\varepsilon(x)< t<\varepsilon(x)\}$, where $\varepsilon(x)$ is determined by the condition that, for any $d\in\lambda(x)$, $\{\exp(t\xi)d, |t|<\varepsilon(x)\}$ $\cap \lambda(x)=d$. Under these preparations, we can show that μ is onto. Namely, suppose u be any point of M, and join u and p by a curve l. Then, by the standard argument, the curve is covered by finite neighborhoods $U(x_{\alpha})$, $\alpha=0,1,\ldots,f$, $x_{\alpha}\in l$ $(x_0=u,x_f=p)$ in such a way that $U(x_{\beta})\cap U(x_{\beta+1})$ contains

a point $u_{\beta+1} \in l$ for each $\beta = 0, 1, 2, \dots, f-1$. Then, for the slice $\lambda(u)$ passing through u, there exists a number t_1 , such that $\exp(t_1\xi)u_1 \in \lambda(u)$ and the slice passing through u_1 is identical with $\exp(-t_1\xi)\cdot\lambda(u)$ in U(u). By two similar processes for (x_1, u_1) and (x_1, u_2) , we get t_2 having a property that the slice passing through u_1 in $U(x_1)$ is the image of the slice passing through u_2 in $U(x_1)$ by $\exp(t_2\xi)$. Hence, $\exp(-t_1-t_2)\xi \cdot \lambda(u)$ is contained in the maximal integral manifold through u_2 . After finite steps, we have numbers t_1, \dots, t_{f+1} , for which $\overline{u} \equiv \exp\left(-\sum_{\gamma=1}^{f+1} t_{\gamma}\right) \xi \cdot u \in W$ holds. Therefore, μ maps $R \times W$ onto M. However, it is not difficult to see that there corresponds to l uniquely the curve l in W joining p and \overline{u} . So we know that \overline{u} is irrespective of the choice of the curve which joins p and u. In fact, let l_1 be another curve connecting pand u, then we have a homotopy l_r , $0 \le r \le 1$, $l_0 = l$, since M is simplyconnected. \overline{u}_r corresponding to l_r is a curve in W and is also contained in the set $R(u) = \{\exp(t\xi)u, t \in R\}$, and R(u) meets W at most countably many times. Consequently, $\overline{u}_r = \overline{u}$. Hence, μ is one-one and $R \times W$ and M are homeomorphic. The action R_s of $s \in R$ is defined on each fiber $R(\overline{u})$, $\overline{u} \in W$, by $R_s u = \exp(t+s)\xi \cdot \overline{u}$, for $u = \exp(t\xi)\overline{u}$, that is to say, $R_s = \exp(s\xi)$. By this, M is a principal fiber bundle over an almost Kählerian manifold W with fiber and structural group R. And it may be proved that η is a connection form in M [5]. If we denote by π the natural projection $M \to W$, then $d\eta = \pi^*\Omega$ (Proposition 3-1). Now, if W is Kählerian, the (maximal) integral manifold W(x) through any point x of M is Kählerian. By Theorem 3-4, M is normal when and only when W is Kählerian.

REMARK 1. By virtue of Lemma 3-5, we see that the integral submanifold W is totally geodesic with respect to the metric \overline{g} .

REMARK 2. If we assume the completeness of the metric \overline{g} , then our decomposition follows easily from the de Rham's Theorem.

As an example, we know that the contact metric structure given to Euclidean space E^{2n+1} $(n \ge 1)$ admits the vector $Z : \mathfrak{L}(Z)\eta = -\eta$.

4. The case where M is not simply-connected. To establish the fibering, we have to show first of all that the contact form η is regular. For this purpose, we give some lemmas.

LEMMA 4-1. For any x of M, Z is related to ξ by

$$(4. 1) \qquad (\exp(t\xi)Z)_x = Z_x + t\xi_x.$$

PROOF. Define $\Theta(t) = \exp(t\xi)Z - Z - t\xi$. Then $\Theta(0) = 0$. And easily we see that

$$\begin{split} \left(\frac{d\Theta(t)}{dt}\right)_s &= \exp(s\xi) \cdot \lim_{t \to 0} \frac{\exp(t\xi)Z - Z}{t} - \xi \\ &= \exp(s\xi) \cdot \mathcal{Q}(Z)\xi - \xi = 0, \end{split}$$

since, $\mathfrak{L}(Z)\xi = \xi$. Thus $\Theta(t)$ is identically equal to 0.

Lemma 4-2. The contact form η is regular. Namely, the distribution defined by ξ is regular.

PROOF. Assume that there is a point p such that any coordinate system at p is not regular with respect to the distribution ξ . And let W(p,r) be the open connected submanifold of the integral manifold W(p) through p composed of the points whose distances from p are less than (sufficiently small) r with respect to g. Then we take $U = \{\exp(t\xi)q: q \in W(p,r), |t| < b\}$ as a coordinate neighborhood of p, where p is a sufficiently small (§3) fixed positive number. By the hypothesis, there exist two points p and p in p in the same leaf p in the same leaf p in the same leaf p is a sufficiently small of p in the same leaf p in the leaf p in the

$$g_x(Z_x, \boldsymbol{\xi}_x) = g_y(\exp(s\dot{\boldsymbol{\xi}})Z_x, \boldsymbol{\xi}_y)$$

= $g_y(Z_y, \boldsymbol{\xi}_y) + g_y(s\boldsymbol{\xi}_y, \boldsymbol{\xi}_y).$

And hence

On the other hand, r may be taken so that $|\eta_x(Z) - \eta_y(Z)|$ is smaller than b, in contradiction to the inequality (4. 2). Q. E. D.

Similarly we have

LEMMA 4-3. Each leaf R(p), $p \in M$, cannot be a circle, but homeomorphic to the real line R.

THEOREM 4-4. If in a K-contact manifold M, ξ generates a 1-parameter group of isometries (in particular, M is complete). And if there exists a vector field Z such that $\mathfrak{L}(Z)\eta = -\eta$, in particular if $L_{\phi} \neq \mathfrak{L}$, then M is a principal fiber bundle over an almost Kählerian manifold M/ ξ with R as the structural group and fiber. Denoting by Ω the fundamental 2-form on M/ ξ and by π the projection, the relation $d\eta = \pi^*\Omega$ holds good. Of course, η defines a connection in M. Further M is normal if and only if M/ ξ is Kählerian.

PROOF. Since the contact form is regular, $B = M/\xi$ has a differentiable structure [4]. And it can be shown that B is a Hausdorff space. The proof of the fact that M is a principal bundle over B with R as the structural group and fiber and that η is a connection form in M is almost similar to [5]. And so

we shall omit it. Let \widetilde{X} and \widetilde{Y} be two vector fields on B. If the vector fields \widetilde{X}^* and \widetilde{Y}^* on M satisfy $\eta(\widetilde{X}^*) = \eta(\widetilde{X}^*) = 0$ and $\pi_p \widetilde{X}^* = \widetilde{X}_{\pi p}$, $\pi_p \widetilde{Y}^* = \widetilde{Y}_{\pi p}$, for any πp , $p \in M$, we call \widetilde{X}^* , \widetilde{Y}^* the lifts of \widetilde{X} , \widetilde{Y} with respect to η . The Riemannian metric \widetilde{g} and almost complex structure $\widetilde{\phi}$ in B are defined by

$$\widetilde{g_{\widetilde{p}}}(\widetilde{X},\widetilde{Y}) = g_{p}(\widetilde{X}^{*},\widetilde{Y}^{*}),$$

$$(4. 4) \widetilde{\phi}_{\widetilde{p}}\widetilde{X}_{\widetilde{p}} = \pi_{p}\phi_{p}\widetilde{X}_{p}^{*},$$

where $\widetilde{p} \in B$ and p is an arbitrary point such that $\pi p = \widetilde{p}$. We see that the right hand sides of (4. 3) and (4. 4) are independent of the choice of $p \in \widetilde{p}$, since η , g and ϕ are invariant under the transformation $R_t = \exp(t\xi)$. Then the fundamental 2-form Ω on B satisfies

$$\begin{split} \pi^*\Omega(\widetilde{X}^*,\widetilde{Y}^*) &= \widetilde{g}(\widetilde{X},\widetilde{\phi}\widetilde{Y}) = g(\widetilde{X}^*,(\widetilde{\phi}\widetilde{Y})^*) \\ &= g(\widetilde{X}^*,\phi\widetilde{Y}^*) = d\eta(\widetilde{X}^*,\widetilde{Y}^*). \end{split}$$

Hence we can deduce $d\eta = \pi^*\Omega$, because any tangent vector V to M is expressed as a sum of $\eta(V)\xi$ and some lift. We refer to [9] for the verification that M is normal when and only when B is Kählerian. We remark that the base space B may be understood also by another approach if M is complete with respect to \overline{g} in §3 [3].

REFERENCES

- [1] C. CHEVALLEY, Theory of Lie Groups, Princeton 1946.
- [2] G. DE RHAM, Sur la réductibilité d'un espace de Riemann, Comm. Math. Helv., 26(1952), 328-344.
- [3] A.G. WALKER, The fibring of Riemannian manifolds, Proc. London Math. Soc., 3(1953).1-19.
- [4] R.S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc. 22.1957.
- [5] W. M. BOOTHBY AND H. C. WANG, On contact manifolds, Ann. of Math. 68(1958), 721-734.
- [6] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. Journ., 12(1960), 459-476.
- [7] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tôhoku Math. Journ., 13(1961), 281-294.
- [8] S. TANNO, Note on infinitesimal transformations over contact manifolds, Tôhoku Math. Journ., 14(1962), 416-430.
- [9] Y. HATAKEYAMA, Some notes on differentiable manifolds with almost contact structures Tôhoku Math. Journ., 15(1963), 176-181.

TÔHOKU UNIVERSITY.