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Introduction. Every contact manifold M (dim M=#1) with » as a contact
form has a contact metric structure (¢, &, 7, g) [ 6] such that

def
(X, Y) = w(X,Y) = g(X, 47),

for any differentiable vector fields X,Y on M. W.M.Boothby and H.C.Wang
[5] proved that, if 7 is a regular contact form on a compact manifold M,
then M is a principal fiber bundle over a symplectic manifold B with structural
group and fiber the circle group S'. Further, » defines a connection in the
bundle M in such a way that dnp = #*Q is the equation of structure of the
connection, where 7 is the natural projection M — B and Q is the fundamental
2-form on B. In this case, as is verified recently [9], M is a K-contact
manifold. That is, we can find a suitable Riemannian metric ¢ associated with
n such that & is a Killing vector field.

This note is devoted to give fiberings of some non-compact K-contact
manifolds. We remark that, it is only in the case where M is non-compact
that there may exist an infinitesimal transformation which leaves ¢ invariant,
but not % invariant. If such an infinitesimal transformation exists on a complete
K-contact manifold, then M is a principal fiber bundle over an almost
Kihlerian manifold with structural group and fiber the real line R. And 7 is
an infinitesimal connection in M. Further, if M is simply-connected, then M is
reduced to the product bundle.

1. Lie algebra of infinitesimal transformations. By L, we denote the
set of all infinitesimal transformations which leave ¢ invariant and by U that
of all infinitesimal automorphisms of the contact metric structure. Let Z° € L,
and Z' € U, then for some constant o, (Z )y = on. As ¢ #0, we define Z =
—¢'Z', so that &Z)yy = — n is satisfied. This Z plays an important role
throughout this note. We put L = (aZ:a € R), then we have the following

THEOREM 1-1. In a differentiable manifold with a contact metric
structure, the relation

Ly=ADL (direct sum)
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is valid. And the fbllowz'ngs are evident,
A A, [L,L1=0,
[, L] c
PROOF. For any X ¢ L;, there corresponds a real number a satisfying
YX)m = an. Then X is decomposed as follows :
X=X+ aZ)+ (- aZ).
Clearly, (X + aZ)¢ = 0 and (X + aZ)yp = 0 follow. This being said, it is
known that X + aZ leaves g and ¢ invariant, and so X +aZ € %. As A is a

subalgebra of the Lie algebra composed of all Killing vector fields on M, ¥,
and hence Ly, is finite dimensional. If M is compact, of course, Ly = .

2. An almost contact metric structure associated with Z. We assume

that there exists a vector field Z on M which satisfies (Z)y = — 7. Using this
Z we define 7 as follows:
2. 1) 7 =9+ i2)w,

where #(Z) is the interior product operator by Z. Then, 7 fulfils the following
two relations : v

@. 2) 7&) =1,
(2. 3) dq = 0.

A linear operator ¢ of the family X(M) of all vector fields on M to itself is
defined as follows :

2. 9 X =X — 7(pX)e, X € M)

Then the next formulas hold good :

2. 5) 7$=0, ¢£=0,

(2. 6) PpX = — X+ 5(X)E, X e ZM).

And the definition of the new metric is:

@ 7) 9K, Y) = ¢(X, Y) + w(Z, X)n(Y) + w(Z, V)yn(X)

+ w(Z, X)w(Z,Y), XY < ZM).

If we notice that w(Z, X) = 7(X) — 7(X), (2. 7) may be written in the simplified
form as

@. 8 9X,Y) = g(X,Y) + 9(X)7(Y) — n(X)n(Y).

LEMMA 2-1. The tetrad ($,&,7%,9) defines an almost contact metric
structure on M.
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PROOF. By virtue of (2. 2) and (2. 8), we see that
@. 9 7(X)=9¢EX), X< IM).

Further, the next relation is valid,
(2.10) 9@X,9Y)=9(X,Y) - 5(X)5(¥), X, Y e ¥M).
In fact, from the definition of ¢ it follows that 5¢ = — 7¢, and so we have

7 X)n($Y) = 7($pX)-7(¢Y).
And from (2. 5), the relation 7(¢X)-7(¢Y) = 0 follows. Again from (2. 4) we
can deduce the following

9PX, $Y) = g(¢X, ¢Y) + 7(¢X)-7($Y).
Putting ¢X and ¢Y instead of X and Y into (2. 8) and utilizing preceding
three equalities, we obtain
(2.11) 9(PX, dY) = g(pX, ¢Y).
As ¢g(@X,¢Y) = g(X,Y) — p(X)n(Y), (2. 8) and (2.11) give the verification to
(2.10). To see that g is positive definite, we transform (2. 8) identifying X and
Y, :

9(X, X) = g(¢X, ¢X) + 7(X)".

Hence, g is non-negative. Moreover, if (X, X) = 0, then %(X) = 0, and ¢X = 0.
The latter $X = 0 implies ¢ X = 0, and so X = 0. Though it is redundant, &
and the vector of the form ¢X, X € X¥(M), are orthogonal with respect to g.
(2. 2), (2. 5), (2. 6), (2. 9) and (2.10) are the required conditions for ¢, &, 7 and
g to define an almost contact metric structure on M.

LEMMA 2-2. We have the following relation:
(2.12) 71X, oY) =w(X)Y), XY e ZM).

PROOF. By virtue of (2. 4), (2. 5) and (2. 8), we have

9(X, ¢Y) = g(X, $Y) — n(X)n($Y)
= ¢(X, ¢Y) — 7(¢Y)-g(X, &) — 7(X)n($Y)
= w(X,Y).

3. Maximal integral manifolds of the distribution 7= 0. The distri-
bution on M defined by 7 = 0 is completely integrable on account of closedness
of the 1-form 7. Therefore, for any point p of M, there is a maximal integral
manifold W = W(p) thrcugh p. Let «: W — M be the injection map. Then, since

¢ maps ¢« (¥(W)) onto itself in some sense, we can define ¢ as follows :

3.1 X ='¢0X), X e Z(W).
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Furthermore, we can define ' = *7.

PROPOSITION 3-1. If a contact manifold M admits a wvector field Z
satisfying ((Z)y = — n. Then every (maximal) integral manifold W of the
distribution n + «(Z)dy = 0 has an almost Kihlerian structure.

PROOF. For any vector field X ¢ X(W), 5 (.X") =0 holds good. Thus,
¢'d’' X = — X follows from (3. 1). And we get
X, dY)=9(d, pY)=9X, .Y")
= X, ¥) = §X,Y)
Thereby, the pair (¢',9") defines an almost Hermitian structure on W. Denoting
by Q the fundamental 2-form and using Lemma 2-2, we have
AUX,Y) = §(X,FY) = §6X, FY)
=9(X, oY) = w(X, Y

= Fdy(X,Y).
Hence, we see that Q = dv. Q.E.D.
The Nijenhuis tensor N for the almcst contact structure is given by
(3. 2) NX,Y)=[X, Y] + ¢[¢X, Y] + ¢[ X, ¢Y]

— [¢X, Y] + (Y n(X) — Xen(Y))E,
for X,Y € ¥(M). And the Nijenhuis tensor N’ for the almost complex structure
¢ on W is expressed as follows:
(3.3 NX,Y)=1X, Y]+ ¢ X, Y]+ ¢IX, Y- [¢X, Y
for X,Y" ¢ ¥(W). If we put N'= &(&)¢, then several relations hold good

between N' and N if 7 is a contact form [ 7 |, and from those we extract the
followings for the later use,

(3.4 $NX,Y) + NX, ¢Y) — n(Y)-N'(X) = 0,
(3.5 N(X, &) + ¢-N(X) = 0,

(3. 6) $-N'(X) + N'(¢X) = 0,

3.7 N'§) =0, 2 N(X)=0,

(3. 8) 7N(X,Y) = 0.

LEMMA 3-2. For any vector fields X,Y on a contact manifold M, the
next identities are valid,

— 7(@X)[¢, ¢Y] +n(¢X)N'(Y),
(3.10) [9X,9Y] = [¢X,¢Y] — 7($Y)[¢X, E] — 7($X)[E,¢Y]
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— {$(X)7(pY) — (Y)-7(9X)}IE.
PROOF. (3. 9) follows from direct calculation in which we use the relation

BlE, Y] = [£,¢Y] — N(Y).
(3.10) is obtained similarly and so we shall omit the details.

LEMMA 3-3. For any point pof M and X', Y € XW(p)), we put X = X,
Y = .Y, then
(3.11) NAXL,Y) = NY(X,Y) + 7,(X)-Ny(Y)
— 7Y )-Ny(X) — KX, Y)E,,

where we have put

KP(X’ Y) = ﬁp(¢[X’ $Y] + ¢[$X7 Y]) - ($Y)D77($X)
+ @Xm(PY) + ¥ (X)) — Xyn(Y).

PROOF. As the value, for instance, of N(X,Y) at p depends upon only the
magnitudes of tangent vectors X,, Y, at p and is independent of their extensions,
we can assume that X (or Y) is defined in each sufficiently small neighborhood
U in M by Xegy., = exp(t£)Xy, ¢ € {slice in U passing through p}, |t]| <§,
& being a positive number depending on the point p. Then, we see that the
term (N(X',Y") is equal to

[X, Y]p + $p[$X, Y]zz + $p[X, $Y]p - [$X, $Y]p’
since, for example, (¢’ [¢'X’,Y’] is easily seen to be equal to ¢[¢ X, Y]
Consequently, by Lemma 3-2, we have (3.11).

THEOREM 3-4. In a normal contact manifold M admitting Z as above,
every (maximal) integral manifold W of the distribution 5 = 0 is Kdhlerian.
Conversely, in a K-contact manifold M, if for any point p of M, W(p) is
Khlerian, then M is normal.

PROOF. We have N =0 in a normal contact manifold M by definition.
And, as is known [ 7], N' = 0 follows from N = 0. So, by Lemma 3-3, we get
WNAX,Y) = — KX, X)E,,
for any p of W and X', Y € Z(W). As 7«N'(X,Y) =0, K,(X,Y") must
vanish everywhere in W. Thus N'(X',Y") = 0 follows.

In the next place, suppose that M is a K-contact manifold, that is N' =0.
This is equivalent to the fact that & is a Killing vector field with respect to
the metric g. Then (3.11) of Lemma 3-3 implies

NUAX,Y) = N(X, oY) — KX, X)E,.
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Therefore, for any point p of M if W(p) is Kihlerian, we obtain
N,(X',.Y") = K, (X', Y,
By (3. 8) we get K,(¢:X',.Y')=0. And hence N,(:X',Y")= 0. Further, if we

put (3. 5) into consideration, our assertion may be seen to be true.

LEMMA 3-5. Let M be a K-contact manifold. Then & is a Killing vector
Jield also with respect to the metric g, and consequently & and % are parallel
fields in the Riemannian geometry of §.

PROOF. By assumption, we know that ¥(§)g =0 and R(&p =0. And as
2(E)y = 0 is readily seen, 2(£)g = 0 follows from (2. 8). Since & and 7 are
related by (2. 9), and % is a closed form, they are both parallel fields with
respect to the Riemannian connection defined by §.

THEOREM 3-6. In a simply-connected K-contact manifold M with the
property that & generates a 1-parameter global group of isometries (in
particular, with completeness), we suppose that there exists a vector field Z
satisfying 8(Zym = — n. Then M is a product bundle of an almost Kdihlerian
manifold W and the additive group of real numbers R. And the given contact
form n is a connection form in the bundle M. Moreover, M is normal if and
only if W is Kihlerian.

PROOF. We take an arbitrary point p of M and by W we denote the maximal
integral manifold through p. Let exp(¢§), ¢ € R, be a 1-parameter group of
isometries with respect to ¢g. Of course, for any ¢ € R, exp(¢£) is also isometric
with respect to g by Lemma 3-5. By ¢(§, &) = ¢(§, &) = 1, the canonical parameter
is also the arc-length with respect to both ¢ and ¢g. We define the map
p:R x W —M by

u(t,q) = exp(td)g, t<R,qgecW.

Then p is well-defined into map. Now, let £ be an arbitrary point of M, then
x has a neighborhood U(x) with local coordinates (y*), £=1,2,...,2n + 1
(dim M = 2n + 1), such that each slice (y***' = constant) is an integral manifold
of the distribution % = 0[1]. For the slice passing through x, say AMx), if
exp(zg)-Mx) meets U(x), the intersection is contained in some slice, because 7
defining the distribution is invariant by exp(¢§) for any ¢ € R. By this reason,
we can assume that U(x) = {exp(z€)nx), — &x) < t < &x)}, where &(x) is
determined by the conditien that, for any d ¢ Mx), {exp(té)d, |t| < &)}
N Mx) = d. Under these preparations, we can show that p is onto. Namely,
suppose « be any point of M, and join # and p by a curve [. Then, by the
standard argument, the curve is covered by finite neighborhocds U(x,), a =
0,1,...,f, o € I (xy = u, 2, = p) in such a way that U(xg) N U(xg,,) contains
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a point ug,, € [ for each 8 =0,1,2,...,f — 1. Then, for the slice M«) passing
through #, there exists a number #,, such that exp(£,€)u, € Mu) and the slice
passing through #; is identical with exp(— #£)Mu) in U(x). By two similar
processes for (x;,u,) and (x,,u,), we get ¢, having a property that the slice
passing through #, in U(x,) is the image of the slice passing through #, in
U(x;,) by exp(t.€). Hence, exp(— ¢, — t,)8Mu) is contained in the maximal

integral manifold through u,. After finite steps, we have numbers #;,...,%¢,,,
I+1

for which z = exp( -3 t7>§-u € W holds. Therefore, u maps R X W onto
y=1

M. However, it is not difficult to see that there corresponds to / uniquely the

curve [ in W joining p and %. So we know that % is irrespective of the choice
of the curve which joins p and «. In fact, let [, be another curve connecting p
and u, then we have a homotopy 1,, 0=r=1, [, =1, since M is simply-
connected. %, corresponding to /, is a curve in W and is also contained in the
set R(u) = {exp(t&)u, ¢t € R}, and R(x) meets W at most countably many
times. Consequently, %, = %. Hence, p is one-one and R X W and M are
homeomorphic. The action R, of s€ R is defined on each fiber R@), z € W,
by R = exp(t + s)éu, for u = exp(té)z, that is to say, R, = exp(s€). By this,
M is a principal fiber bundle over an almost Kihlerian manifold W with fiber
and structural group R. And it may be proved that 7 is a connection form in
M [5]. If we denote by = the natural projection M — W, then dn= 7*Q
(Proposition 3-1). Now, if W is Kihlerian, the (maximal) integral manifold
W(x) through any point  of M is Kihlerian. By Theorem 3-4, M is normal
when and only when W is Kihlerian.

REMARK 1. By virtue of Lemma 3-5, we see that the integral submanifold
W is totally geodesic with respect to the metric §.

REMARK 2. If we assume the completeness of the metric g, then our
decomposition follows easily from the de Rham’s Theorem.

As an example, we know that the contact metric structure given to
Fuclidean space E**! (n=1) admits the vector Z:&(Z)yn = — 1.

4. The case where M is not simply-connected. To establish the fibering,
we have to show first of all that the contact form 7 is regular. For this
purpose, we give some lemmas.

LEMMA 4-1. For any x of M,Z is related to & by

(4 1 (exp(tf)Z), = Z, + tE..

PROOF. Define O(t) = exp(t§)Z — Z — tE. Then ©(0) = 0. And easily we
see that
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( %’99) > = exp(sé): ltlgl

= exp(sE)-&2)E — E =0,
since, ¥(Z)¢ = & Thus 6(¢) is identically equal to 0.

exp(t))Z — Z
: 13

LEMMA 4-2. The contact form n is regular. Namely, the distribution
defined by & is regular.

PROOF. Assume that there is a point p such that any coordinate system
at p is not regular with respect to the distribution & And let W(p,r) be the
open connected submanifold of the integral manifold W(p) through p composed
of the points whose distances from p are less than (sufficiently small) » with
respect to g. Then we take U = {exp (¢£)g:¢ € W(p,r), |t| < b} as a coordinate
neighborhood of p, where b is a sufficiently small (§3) fixed positive number.
By the hypothesis, there exist two points £ and y in W{(p,r) such that = and
y are in the same leaf R(x). That is, we get a number s for which y = exp(s&)x
holds good. As exp(s&)*y, = ¢, with the help of Lemma 4-1, we have

gx(Zaw %z) = gy(eXP(5é>Zx, EU)
= {}y(Zy, &) + gy(sfy’ &)

And hence

4. 2) |n(Z) = n/(Z)| = |s] >b.

On the other hand, » may be taken so that |9.(Z) — #,(Z)| is smaller than b,
in contradiction to the inequality (4. 2). Q.E.D.

Similarly we have

LEMMA 4-3. Each leaf R(p), p € M, cannot be a circle, but homeomorphic
to the real line R.

THEOREM 4-4. If in a K-contact manifold M, & generates a 1- parameter
group of isometries (in particular, M is complete). And if there exists a
vector field Z such that {(Zyy = — n, in particular if L, U, then M is a
principal fiber bundle over an almost Kihlerian manifold M/E with R as the
structural group and fiber. Denoting by Q the fundamental 2-form on MJ/E
and by m the projection, the relation dn = 7*Q holds good. Of course, n defines
a connection in M. Further M is normal if and only if M/§ is Kdihlerian.

PROOF. Since the contact form is regular, B = M/¢ has a differentiable
structure [4]. And it can be shown that B is a Hausdorff space. The proof of
the fact that M is a principal bundle over B with R as the structural group and
fiber and that 7 is a connection form in M is almost similar to [5]. And so
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we shall omit it. Let X and Y be two vector fields on B. If the vector fields
X* and Y* on M satisfy 7)(}?’"‘) = n()?’"‘) =0 and 'n-,,;)v(* = yfw, '71'1,?* = Y,,, for
any mp, p € M, we call )?’*, ¥ the lifts of X, Y with respect to 7. The Riemann-

ian metric § and almost complex structure ¢ in B are defined by

(4. 3) 07X, Y) = g, (X%, Y%),
(4. 4) $5X5 = mb, X5,

where ; € B and p is an arbitrary point such that =p = ;; We see that the

right hand sides of (4. 3) and (4. 4) are independent of the choice of p ¢ ;,
since 7, g and ¢ are invariant under the transformation R, = exp (¢£). Then the
fundamental 2-form Q on B satisfies

(e, T4) = (X 3Y) = o2, GT7)
= g(X*, ¢7*) = dn(X*,7¥).

Hence we can deduce dn = n*Q, because any tangent vector V to M is
expressed as a sum of 7(V)& and some lift. We refer to [ 9] for the verification
that M is normal when and only when B is Kihlerian. We remark that the
base space B may be understood also by another approach if M is complete
with respect to ¢ in §3 [3].
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