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1. Introduction. Since Prof. S. Sasaki [3], [4]° introduced the notion of

(φ, ξ, η, g) structure in odd dimensional manifolds which is equivalent to the

almost contact metric structure, many authors have investigated it vigorously

from differential geometric point of view.

In the first place it is seen easily that the almost contact metric manifold

admits a certain field of complex null planes (we call it TΓ-plane field) and

that the 7r-plane field is parallel if and only if the tensor φlj is covariant

constant. The main purpose of this paper is to study on the geometry

of the almost contact metric manifold M*2 w + 1 of dimension 2n + l whose

7r-ρlane field is parallel.

The present author wishes to express his hearty thanks to Prof. M.

Matsumoto for his kind criticism and encouragement.

2. An almost contact metric manifold admitting certain parallel

fields of complex null n-planes. Let M2n+1 be an almost contact metric

manifold, then there exist tensor fields φι

h ξ\ ηP and positive definite

Riemannian metric tensor gi5 over M2n+1 satisfying

(2 1)

It is obvious that the tensor φlj satisfies φi

jφ
j

kφ
k

h = — φι

h, and hence the

rank of the matrix (7'j) = (φιj — * / ^ T &*) is n + 1 over M2n+1. Now we

consider vectors λ j satisfying

(2. 2) r ,V = 0,

and take a field of w-planes τrn over M2n+1 spanned by the λj's, which is

called 7r-plane field hereafter. From (2.2) we see directly for any vector λ* )̂

in π-plane field

= 0, gij^ia^iβ) — 0.

1) Numbers in blackets refer to the references at the end of the paper.
2) In this paper the indices Λ,**,./,k,l,m run over the range 1, •••, 2n + 1; α, j8, 7, λ, μ

the range 1, •••, n; a.b.c^d the range 1, •••, 2n; and A, B,CyD the range l, , 2 n + 2 .
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Therefore we obtain

THEOREM 2.1. An almost contact metric manifold M2n+1 admits
π-plane field, whose vectors are complex null vectors and orthogonal to the
vector ξι.

We shall now consider a necessary and sufficient condition for the ir-

plane field to be parallel. Denoting the covariant differentiation with respect to

the Christoffel symbols j .ιΛ by ( ), we see directly from (2. 2) φι

y,kV + ^ M *

- 0.
Suppose the 7r-plane field is parallel and X\a) are basic vectors of 7r-plane,

then λ* satisfies Xi

 fk = A(a)

k\\ah where A{a\ are components of complex
covariant vector fields [7]. Hence we get

(2.3) ^ λ j = θ.

It is to be noted that irn Π ττn = { 0}, by virtue of the definition of λ*.
Then 7rn -h τrn( = p2n) forms a parallel field of complex 2n-planes orthogonal
to ξι and contains a parallel field of real 2?z-planes p2n. Therefore in terms
of real basic vectors C\a) of p2n orthogonal to ζ\ the relation (2. 3) can be
reducible to φiy,kC\(l-) — 0. Thus we may put φι

j;k = μ\ηj. It follows from
this and (2. 1) that

and obtain φιyik = 0.

Conversely, if the relation φ1^ = 0 holds good, then by differentiating

Vljλ>\a) = 0 covariantly, we have T3\
3\Λγ}k = 0, that is to say, the 7r-plane

field is a field of parallel planes. Therefore we obtain

THEOREM 2.2. A necessary and sufficient condition for ir-plane field to
be parallel is that the tensor φlj is covariant constant over the almost contact
metric manifold M2n+1.

Next, in an almost contact metric manifold satisfying φ1^ = 0, we obtain
as well as [4]

COROLLARY 1. In an almost contact metric manifold, if the π-plane
field is parallel, then the tensor φ^, ξ1 and η, are covariant constant, and
the Nijenhuis tensors N1^, Njk, Nlj and N3 vanish.

When the M2n+1 is a contact metric manifold satisfying ^*Λ* = 0' t n e n

the M2n+1 is a normal contact metric one and the relation
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holds good [5]. From this we see ηt = 0. This contradicts to (2.1). Thus

COROLLARY 2. In a contact metric manifold M2n+\ the ir-plane field

can not be parallel.

3. Converse theorem. In this paragraph we shall consider the converse

of the Theorem 2.2 and obtain

THEOREM 3.1. If a Riemannian manifold V271*1 of class Cω admits a

field τrn of n-planes which is null and parallel with respect to a given posi-

tive definite Riemannian metric gi5 on V2n+1, then the V2n+ι is an almost

contact metric manifold satisfying φ1^ = 0.

PROOF. Since τrn is null and the given metric is positive definite, the

real vector of irn at any point is the zero vector only. Therefore irn is a field

of complex null n-planes. The manifold also admits the complex conjugate

ήeld τrw, which is also null and parallel. The planes ΊΓV and τrn at each point

have only the zero vector in common, then their sum πn + 7rn forms a parallel

field of complex 2n-planes and contains a field of real 2n-planes p2v, whose

real basic vectors are C\a) (a\a), b\a)), where a\a) and b\a) are respectively

real and imaginary part of basic complex vectors λ*(α) of τrn and satisfy

(3.1) O W = B%)kC\h).

Now consider, at any point P of V2n+1, unit contra variant vector orthogonal

to a real vector space p2n(P). Then the relation

(3.2) C\a)Vj = 0

must be satisfied over V2n+1 by the vector ηt = guξ5. Differentiating (3.2)

covariantly and using (3.1), we have ηy>k = 0.

Since ηr,k=ηk ,j, there is a scalar field/ =f(x\ x2, , x2n+1) locally satisfying

VJ = 'djf- Then the hypersurfaces K2n defined by f = constant in a local

coordinate neighborhood form a family of oo1 totally geodesic hypersurfaces.

By K2n(P) we mean the hypersurface K2n passing through a point P with

local coordinate x\. Hence if by τr*n we denote naturally induced τrn in the

K2n(V\ then, apparently, K2n(P) admits a parallel field of null n-planes τr*Λ

Therefore, according to Patterson's result [2], the K2n(F) is a Kahler manifold.

When we represent by φ*a

b and g*ab the complex structure tensor and

naturally induced metric tensor of K2n (P) respectively, they satisfy

(3. 3) φ*a

bφ*bc = - δα

c, φ*** = 0, g*ab = 9*cdφ*\φ*a

b.
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Since the V2n+ι admits a covariant constant vector field ηh according to

the well known theorem [8], there exists a local coordinate system, with

respect to which the ds2 of the manifold is written by

(3. 4) ds2 = g*ab(uc)duadub + du*duA (Δ = 2n + 1),

where g*ab(uc) duadub is of the Kahler manifold K2n(P). It is clear that the

orthogonal trajectories of the family {K2n} are geodesies. If we represent the

relation between two coordinate systems xι and (uc,uA) by xi = x\uc,uA), the

K2n is given by uA = constant.

On the other hand, when we put Bb

a = dax\ Bb

ό = g*ab gjk Bk

a and

(3.5) φij = φ*atBt

aB
b

j9

the φi

j becomes a (1 — 1) tensor over M2n+ι.

Then, after direct calculation, we can easily see that φi

h ξ\ ηά and gij

form an almost contact metric structure. In terms of coordinate system (ua,

u*), making use of (3. 3) and (3. 4), we can also verify that

φ'j* = 0.

Thus we have proved the Theorem 3.1, and at the same time we obtain

THEOREM 3. 2. The folio-wing three conditions are mutually equivalent',

(I) A Riemannίan manifold V2n+1 of class Cω admits a parallel field of

null n-planes with respect to a given positive definite Riemannian metric.

(II) A differentiate manifold V2n+1 of class Cω is an almost contact metric

manifold satisfying φ1^ = 0.

(III) A Riemannian manifold V2n+1 of class Cω admits a family of totally

geodesic hypersurfaces whose orthogonal trajectories are geodesies^ the

hyper surf aces being Kahler manifolds whose Kahler metric is naturally

induced one from V2n+1.

4. Some theorems which have resemblance with those in Kahler
manifolds. In this paragraph we denote by M*2n+1 an almost contact metric

manifold satisfying φι

nk = 0, and show that M*2n+1 has several properties

which hold good in Kahler manifolds.

From the Corollary 1 of paragraph 2, the Ricci identities for ξ\ ηj and

φι

5 lead us to

(4.1) Rl

kijVl = 0, R*H£ = 0, R\isφ\ = Rι

kiiφ\.

It follows from these that

(4.2) Ruξι = 0,

where Rι

jkι and Rjk are the Riemann curvature tensor and Ricci tensor
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respectively.

If the manifold is Einstein, (4.2) implies Rι} — 0, because of ξiηi = 1. This

result is stated as follows

THEOREM 4.1. If the almost contact metric manifold satisfying cplyik

= 0 is an Einstein manifold, then the Ricci tensor vanishes.

If the manifold M*2n+1 is of constant curvature, then the M*2n+1 is, of

course, an Einstein, and from Theorem 4.1 we have 2 ? ^ =0. Thus

COROLLARY. If the almost contact metric manifold satisfying φ1^ — 0

is of constant curvature, then it is of zero curvature.

This corollary corresponds to Bochner's theorem "If a Kdhler manifold

is of constant curvature, then it is of zero curvature•." [1].

Next, we examine the theorem corresponding to Yano-Mogi's theorem

"If a Kdhler manifold is confor?nally flat, then it is of zero curvature."

[9].

In the case n Ξg 2, the condition for M*2n+1 to be conformally flat is

represented by

(4. 3) Rmι = £ — ^ (Rjkgu - RSιgik + gikRu ~ #*2?ffc)

" 2n(2n- l)(β*9» ~ 9*9*)-

Proceeding in like manner with the calculation used by Yano-Mogi [9], (4.2)

and (4.3) lead us to

(4. 4) - ^ φ\ = - (2n - 3)2? V \ , (n - 1)2? = 0.

From the assumption n §: 2, (4. 4) shows us R = 0 and R^k — 0. Then

using (4. 2) we obtain Rim = 0.

In the case n = 1, the condition for M*3 to be conformally flat is

represented by

(4. 5) Rυ.k - Rίk;j + ~gik R j- ~giόR* = 0.

R
After direct calculation, (4.2) and (4. A) lead us to Rjk(φkί + ξkηι) = ~^- φH,
from which we have

(4. 6) Ru = ~γ (gtj -

Substituting (4.6) into (4.5), we have
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(4.7) Rm = 0.

Conversely, if (4.6) and (4.7) hold good in M*\ (4.5) also holds good. Hence

we obtain

THEOREM 4.2. In order that an almost contact metric manifold

M*2n+1 satisfying φι

j]k — 0 is conformably flat, it is necessary and sufficient

that, (1) for ή^2, the M*2n+1 is of zero curvature, and (2) for n = l,the M*3

has a covariant constant Ricci tensor given by (4.6).

5. Some examples. We shall consider some examples of almost

contact metric manifolds satisfying <p*ΛΛ = 0.

Let K2n+2 be a Kahler manifold whose complex structure and Kahler

metric tensor are FA

B and gΛB respectively. Let us consider an orientable

differentiable hypersurface M2n+1 of K2n+2, which is locally expressed by the

equations yA = yA(xl), and denote the normal unit vector and tangent vectors

by NA and BA

t = dty
A respectively.

Following Y.Tashiro [6], we put

(5.1) φ*s = BA

5F\Bi

B, f = - NAFB

AB\, Vi=BA,FB

ANB,

then the quantities φι

h ξ\ ηj and induced metric gi3 ( = gABB
A

ιB
By) form an

almost contact metric structure of APn+1. We call this hypersurface almost

contact metric hypersurface in K2n+2. The second fundamental tensor Hίk of

M2n+1 imbedded in K2n+2 is defined by the equations

(5. 2) B\k = dkB\ + j ^ c ] B \ B \ - I * I BA

h - HikN
A.

Using (5.2), we have

(5.3) φts* = gtι(Hιkηj-HJkηι).

Hence the condition φi

yjc = 0 can be written as follows:

(5. 4) Hi5 = <xViVj.

Thus we have

THEOREM 5.1. In order that an almost contact metric hypersurface in a

Kahler manifold K2n+2 satisfies φι

m = 0, it is necessary and sufficient that

the second fundamental tensor Hυ of M2n+1 is given by (5.4).

COROLLARY. A totally geodesic hypersurface imbedded i?ι a Kahler

manifold K2n+2 admits an almost contact metric structure satisfying

φ j h = 0.
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Moreover, if an enveloping Kahler manifold K2n+2 is flat, the Gauss'
equation of a hypersurface and (5. 4) implies Rhijk — 0. Hence

THEOREM 5. 2. If an almost contact metric hypersurface M2n+1 in a flat
Kahler manifold K2n+2 satisfies the condition φ1^ — 0, then the M2n+1 is also
flat.
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