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For a point p of a two dimensional Riemannian manifold M, let Q(p) be

the locus of the first conjugate points of p. M is called a Wiedersehensflache,

if for any point p, Q(p) is a single point.

The following theorem, due to L. W. Green [5], is interesting in the sense

that a Riemannian manifold isometric to a two-sphere is characterized in

terms of conjugate points only:

An orientable Wiedersehensflache is a sphere of constant curvature.

It is the aim of the present author to generalize the above theorem for

higher dimensional Riemannian manifold, making use of the concept of focal

elements which is firstly introduced in this paper and contains the ones of

conjugate points or focal points in the theory of geodesies.

1. Focal elements. Let M be a complete ^-dimensional C°° Riemannian

manifold. Denote the unit tangent bundle of M by S(M) and its projection

mapping by r. Furthermore, we denote the bundle of all ^-dimensional tangent

subspaces to M by TP(M) whose fibre is the Grassmann manifold Gp n of all

/>-dimensional subspaces through the origin of Rn and its projection mapping

by τrp.

A pair (£, u\ ξ £ TP(M), u € S(M) such that ιrp(ξ) = τ(u) and u J_ ξ will be

called a p-element of M. For any ^-element (ξ, u) at a point x £ M, let σ(s)

be the unique geodesic in M, parameterized by arc length, with the initial

conditions σ(0) = x, σ'(0) = u and J(f, u}* be the set of Jacobi fields X along σ

such that

X(0)s£, X'(0)_L£ and X'(0)_[_z/.

J(ξ9u)* is Js* in the notation of W. Ambrose [2] putting S—(Sl9S2\

where *SΊ = ξ and S21 £ = 0, in other words, which is the boundary condition

corresponding to a ^-dimensional submanifold with the tangent subspace ξ

and totally geodesic at x and the geodesic σ. We introduce the notations:

J(ξ,u) = [X\X € J(ξ,u)*9 X'(0) = 0} ,

J(f,«)o = {X|X € J(f,«)* X(0) - 0} ,
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then we have clearly the direct sum decomposition of J(ξ, u)* :

DEFINITION. A p-element (ξ,u) at x is a focal p-element of a q-element
(77, v) at yy if the following hold :

(i) The geodesic σ, parameterized by arc length, with the initial con-
ditions <r(Q)=y, <r'(0) = v passes through x and its tangent vector at x is u.

(ii) J(η, v)* Π J(x, «)* ̂  0 an d C J(f , u\ .

Furthermore, (ξ,u) is called the first focal p-element of (η,v\ if there
exist no focal />-elements along σ between y and x.

By means of (ii), it must be Q ̂  p <n— 1 and a focal 0-element is a focal
point (q > 0) or a conjugate point (q = 0) in the ordinary sense along σ for
the boundary condition corresponding to (η,v).

EXAMPLE. Denoting an ^-dimensional Euclidean space by El for any
integer i. Let Sn be an ^-dimensional sphere in JS71"1"1. Take Ep+1 and EQ+1

in En+1 through the center of Sn and orthogonal to each other, and put
Sp = Sn Π Ep+l and Sq = SnΓιEq+1, where p> 0, q > 0 and p+q + I = n. For
y € SQ and x £ Sp, let σ be the great circle joining y and r. Let η and f be
the tangent spaces to Sq at y and *SP at x respectively and v and u the tangent
unit vectors to σ at y and :r respectively. Then the p-element (ξ, u) is a focal
^-element of the g-element (?/, 77).

For any point ^:^M, we denote the tangent space to M at x by Λfx.
At each point σ(s) of a geodesic σ in Λ/ we have the Ricci transformation
R(s) of the orthogonal complement Ms of Rσ\s) in Mσ(s) into itself defined by

R(s)w = Rwσ,^(σ'(s)*) ,

where RW2 is the curvature transformation (of the Riemannian connection) on
Λfσ(S), depending on w and z in Mσ(s).

Let X be a Jacobi field along σ orthogonal to σ, then we have

and so

If the sectional curvature of M is non positive at each point of σ, <X,X'>
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is non-decreasing. If X(0) = 0 and X'(0)=^=0, then <X,X>^=0 for any
s > 0. Hence we have

PROPOSITION 1.1. For any q-element of a Riemannian manifold with
non positive sectional curvature, there exists no focal p-element.

2- FΓ

ftβ-condition. For any ξz TP(M\ we denote the set of all g-elements
(77, v) such that (77, — v) has a first focal ^-element of the form (ξ, u) by Θα(£)
and put

DEFINITION. A complete n- dimensional Riemannian manifold M
satisfies the W 'p> ̂ condition if the following hold:

( i ) For any q-element (77, v\ there exists a uniquely determined first
focal p-element (ξ, u) of (77, v).

(ii) Any p-element (ξ,u) is the first focal p-element of a q-elements
(77, v) which is uniquely determined,

(iii) For any ξz jP(M), Qq(£) is a q-dimensional submanifold, η is the
tangent space to Qβ(f ) at the point τrq(rf) for any (77, v) £ θβ(|), and the
mapping φ: S"-*'1® = {u\u±ξ,uz S(M)} -*QQ(t;) by φ(u) = πq(η) is differ-
entiable, τvhere (ξ, —u) and (77, —v) are in (ii).

For such M, ξ is called a center element of Qq(ξ\
By virtue of (i) of the W^-condition, it must be p<n—l. When p— q

= 0, Qo(x) is identical with Q(x) in L. W. Green [5].
If M satisfies (ii) of the WP)Q -condition, for any ^-element (ξ,u), let σ be

the geodesic, parameterized by arc length, with the initial conditions σ(0) = τrp(f ),
σ'(0) = #, let (77,77) be the q- element such that (ξ,—u) is the first focal />-element
of (77, —v) and put / =f(ζ9u) be the least value such that 77^(77) — σ(/).

LEMMA 2.1. Let M be an n-dimensional complete Riemannian manifold
satisfying the W ̂ q- condition, then q^n—p—l and for any ξzTp(λf), the
function /(£, u) depends only on ξ.

PROOF. By (iii) of the Wp,g-condition and the Gauss' lemma, we get
easily this lemma.

For M as in Lemma 2.1, we put f(ξ,u) = f(ξ) .

COROLLARY 2.2. The diameter of Qq(ξ) ^ 2/(f) .
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For a submanif old N of M and a normal unit vector u to N at a point
x € Aζ we denote the boundary condition corresponding to N and w in the
sense of W. Ambrose [2] by (N; x, u\

LEMMA 2.3. Let M be a Riemannian manifold as in Lemma 2.1 and
let a p-element (ξ, —u) at χ£ M be the first focal p-element of a q-element
(97, —v) at y € M. Then we have

PROOF. By Lemma 2.1, all geodesies emanating from x and orthogonal
to ξ are orthogonal to QQ(ξ) at the points of length /(£) measured from x
along them. Hence, denoting the boundary condition (QQ(£)',y9v) by (TΊ,T2)
according to Ambrose [2], for any XzJ(ξ,u)Q we have X(l)€η, X'(Z)— T2X(/)
€ ,,-L, where Z =/(£), that is Xz J(Qβ(£) y, *>)* q e d.

COROLLARY 2.4. For any Xz J(x,u)* Π J(ί7, v)*, T2X(Z) - 0 .

PROOF. Since J(x,u)*nJ(η,v)*c:J(ξ9u\, for XzJ(x,u)*Γ(J(η9vy* we
have X\Γ)-TzX(l)zη± and X'(l)zη± hence we get T^X(Γ)^η^-. On the
other hand X(/)^τ; and T2X(l)zη, it follows T2X(/)=0. '

COROLLARY 2.5. {X|X(Z) = 0, XzJ(ξ,u\}<^J(η,v\ and the dimension
of the left hand side is equal to n—p—q—\.

PROOF. The first part is clear from the lemma. Since {X(l) \ X £ J(ξ, u\]
— η and dim η — qy we have

dim [ X \ X ( l ) = 0, X€ J(ξ,u\) = n-p-q-l .

3. TFp-condition.

DEFINITION. A complete n- dimensional Riemannian manifold M satisfies
the Wp*- condition if the following hold :

(i) M satisfies the W 'ptQ- condition, where q — n—p—\.
(ii) Let (ξ, —u) be the first focal p-element of a q-element (η, —v). Then

By means of (i), it must be 0 ̂  />'"< n—l.
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THEOREM 3.1. Let M be an n- dimensional Riemannian manifold
satisfying the Wp-condition. For any ξzTp(M), the second fundamental
form of Qn-p-ι(£) at y with respect to v, where y = τrn-p-ι(η\ (η, τ>)€ 9n-p-ι(ξ\
vanishes.

PROOF. Let (ξ, — u) be the first focal ^-element of (η, — v\ q — n—p—I,
and (TijTg) be the boundary condition corresponding to QQ(ξ) and v. For
any X € J(ξ, u\, parameterized by arc length measured from x = ττp(ξ\ along
the geodesic σ such that σ(Q) = x, σ'(G) = u, we have

- 0

by Corollary 2.4 and (ii) of the Wp -condition. By Corollary 2.5, we have
{X(l)\Xz J(£, u\] =η. Hence we have T2\η = Q, in other words, the second
fundamental form of Qq(£) at y = τrq(η) with respect to the normal unit vector
v vanishes. q.e.d.

THEOREM 3.2. Let M be an n- dimensional Riemannian manifold
satisfying the W* -condition. For any point x^M,Qn-λ(x) is totally geodesic.

DEFINITION. An n-dimensional Riemannian manifold M satisfying the
Wp -condition is said to satisfy the W p- condition if for any £ € TP(M\
Qn-P-ι(£) is totally geodesic.

When p = Q, by Theorem 3.2 the T^J-condition implies the Wύ- condition.

LEMMA 3.3. Let M satisfy the W p- condition. For any ξz TP(M\ take
a q-element (η,v)ζ Θρ(£), q = n — p—l, and a unit normal vector v to η. Let
(ξ, —u) be the first focal p-element of (η, —v\ then Qq(ξ) = Qq(ξ}.

PROOF, η is the common tangent space to QQ(£) and QQ(ξ) at y = τrq(η).
By the definition, Qα(f) and Qq(ξ ) are totally geodesic. Since M is complete,
hence Qq(ξ) = Qq(ξ\

LEMMA 3.4. Let M satisfy the W v- condition (0<p<n—l). For ξ,ξ
such that Qq(£) = Qβ(f), we have f(ξ) = f ( ξ ) and the diameter of QQ(ξ) is

PROOF. Let (ξ,—u) be the first focal />-element of (η,—v)z®Q(ξ) and
put frrq(η)=y, τrp(^) = x. Let VΛ be a unit normal vector to η depending on a
parameter cί, (ξa, —ua} be the first focal ^-element of (η, —va) and (ηa,vΛ) be
the ^-element of ^Q(ξ) = ̂ Q(ξa) (by Lemma 3.3) corresponding to (ξ*9—uΛ\ Let
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σα : [—/«,/«] — >M, la = /(£«)> be the geodesic such that σβ(0) = #« = •»-„(&),
σ*«(0) = wα. If t>« is differentiable on Λ, ;rα and wα are also differentiable on
oί (I. N. Patterson [3]). Since σa cutting Qq(ξ) orthogonally at ya — 7rβ(57Λ), we
have /(£α) =f(ξ) by Gauss' lemma.

Now, let y,yz QQ(ξ) be the two points such that

dis (y, y) = diam Qβ(g) .

By the completeness of M, let σ be a geodesic segment joining y and y. Let
v and ?; be the tangent unit vector to σ and the tangent space to Qq(£) at y.
Then, v_[_η. We may put (ξ, — u) be the first focal ^-element of (η,—v).
We have clearly dis (y, y) = length σ g: 2/(g). Hence making use of Corollary
2.2, we have diam Qq(ξ) = 2/(f). q.e.d.

Now, we denote the locus of the supporting points of center element ξ
of Qq(ξ\ for a fixed f € Γ^Aί), by Qp(f).

THEOREM 3.5. Let M be an n- dimensional Rίemannίan manifold
satisfying the Wp- condition (0<p<n—ί). For ξzTp(M) at x^M and
(?;, v) € Θβ(f), ^ = n— p—l, we have the following:

(i) Putting ηt = [w\w £ My, w_]_η, II w || g /}, where y = τrq(η) and
l=f(ξ) and denoting the boundary ofηir by 3?;f, the exponential mapping
Exp?/ is locally regular on dη ̂  and E^py(d^f) = Qp(ξ).

(ii)

PROOF. By virtue of Lemma 3.4. we have easily

Let VΛ be a one-parameter family of unit normal vectors to η at y = ττq(η) and
σ(cc, t) be the corresponding geodesic such that σ(a, I) = y and σ'(<2, /) = va.
Putting X= dσ/dct\a=o, we have

hence Xz J(η, v\. We may put X'(l) ^ 0. If X(0) = 0, we have Xz J(x, uf
Πj(τ?,ϋ)*. By (ii) of the Pl/^- condition, we have X€j(£,u\. By Corollary
2.5, it must be X=0 which contradicts to X=^0. Hence we have X(0) =V 0.
This shows that the exponential mapping Exp?/ is locally regular on dηi:
(ii) is clear from (i). q.e.d.
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COROLLARY 3.6. J(Qp(ξ) x, «)*= J(η, v\+J(ξ, u\=J(Qp(ξ) x, *)+ J(ξ, u\
= J(η,v)*9 where " + " denotes the direct sum.

From Theorem 3.5 and J(η,v)*Dj(ξ9u\9 these equalities are clear.

LEMMA 3.7. Let M be an n- dimensional Rimannian manifold satisfy-
ing the W 'p- condition. For any ξ € TP(M) and any point z € M, we have
dis (z, Qβ(f)) ^f(ξ\ p = n-p- 1.

PROOF. There exists a point y of Qq(ξ) such that dis(z9y) = di s Or, Qg (£•))•
Let g be a geodesic segment joining z and y with length dίs(z9y) and η be
the tangent space to Qp(ξ) at y. The tangent unit vector v to g at 3̂  is
orthogonal to η. Let (f, — u) be the first focal ^-element of (η, — v) and put
x=7rp(ξ). Let σ be the geodesic parameterized by arc length with the initial
conditions σ(G) = x9 σ'(U)=u. It is clear that z is on σ between x and y by the
well known property of focal points. Hence we get

q.e.d.

This lemma and Lemma 3.4 imply immediately

COROLLARY 3.8. Let M be an n-dimensional Riemannian manifold
satisfying the W p- condition, we have diamMίg 4/(£), for any ξz TP(M).

4. Manifolds satisfying TF0>0-condition. For a complete Riemannian
manifold M and any u z S(M)9 denote by σ(s, u) and ψ{#) the geodesic para-
meterized with respect to arc length with the initial conditions σ(0, u) = τ(u\
σ'(Q9u) = u and the length from τ(u) to its first conjugate point on this
geodesic. In the following, using the notations in §2, let M be an n-dimensional
Riemannian manifold satisfying W0t0- condition. A 0-element (x9u) is a focal
0-elemant of a 0-element (y9 v) if x and y are conjugate points each other on
the corresponding geodesic σ with the tangent vectors u and v at x and y
respectively. For any point x z M, Q0(x) is a point because it is 0-dimensional
and connected by (iii) of Definition in §2. Hence M is a generalization of
Wiedersehensflache of L. W. Green [5].

The following Lemmas 4.1-^4.4 are included in [5] for Wiedersehensflache.

LEMMA 4.1. Every geodesic of M is closed.

PROOF. Let σ is a geodesic parameterized with respect to arc length.
Put σ(0)= x, f(x) = / and y = Q0(x), f(y) = m. QQ : M-* M is involutive and
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differentiable by the property of conjugate points. Since l — m, for any £ > 0,
Qo(σ(ε)) = σ CZ + eO and QoW/ + £)) = σ(2/ + £2), for some positive 8, = ^(έ) and
£2 — £2(£) £ι(£) and £2(£) are monotone increasing continuous functions of £.
Since QoCQoOΦ))) = *<£) - *(2/ + βafo (£))), for sufficiently small £, the arcs
corresponding to [0,6'] and [2/, 2/ + £2(£1(£))] of <r coincide. This shows that
σ is closed and f(x) is constant on σ. q.e.d.

COROLLARY 4.2. M « compact.

COROLLARY 4.3. ψ{#) zs finite and constant on S(M).

PROOF. Suppose M satisfy the W090- condition. For any uz S(M), we
have ψ (w) =f(x), x — τ(u), by Lemma 2.1. Since M is complete, any two
points x and j> lie on a geodesic σ. Hence f(x) = f(y) and so ty(v) is constant
on 5(M).

LEMMA 4.4. WAew Q0 ̂  1, Qo ^ ^^ isometric involution.

LEMMA 4.5. If M is simply connected, M is homeomorphic to the n-
sphere.

The proofs of these lemmas are evident and analogous to the ones of
Corollaries 2.3 and 2.4 of [2].

For a fixed point xz Mand positive r, let N(r) = N(r,x)= [σ(r,e\ ez S(M\
τ(e} = x] and put / = f(χ).

LEMMA 4.6. If M is simply connected, any closed geodesic of M inter-

sects at least two points with ΛΠ -7^) as point sets.

PROOF. A homeomorphism of the w-sphere onto M is given by means of
the polar coordinates of an n- sphere of radius l/π and the exponential mapping

Expx : Mx — > M. Hence N( —~- } divides M into the two regions containing x
\ ίj /

and y = Qo(x) respectively. Q0 transforms the regions each other onto and any
closed geodesic of M is invariant under QQ. This yields the lemma. q.e.d.

In the following, we denote by Vm the measure on Borel sets of m-
dimensional Riemannian manifolds and by cm the total measure of the unit
m-sphere. Let μ be the 2n— 1 dimensional measure on S(M) induced naturally
from the metric of M.
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THEOREM 4.7. If M is a simply connected n-dimensional W0>Q-manifold

and any closed geodesic of M intersects N{—^-} at two points or tangent to

it without intersections, then

PROOF. Put ΛΓ = JVί— Jand denote the regions of M divided by N by

Gl3x and G2^y = Q0(x)y then M= G! + N+ G2 (disjoint sum). Putting
A= {<r'(s, v)\vz S(N), 0 ̂  5 < 2/} , since

dim A ̂  (2(τz- 1)- 1} + 1 = 2(n- 1) < dim S(M) = 2n- 1 ,

the measure of the set of all unit tangent vectors of closed geodesies of M
intersecting N is identical with the total measure of S(M).

Putting E = {v\vz τ~\N)9 σ(s, v) z Gl for 0 < s < /} , we can apply the
formula (8) in Appendix for this E, we have

Making use of the involutive isometry Q0, we get

β(S(Aί)) = ~ "̂ Vn-l(N) / X 2 = Vn(M) X Cn-! ,

hence

q.e.d.

THEOREM 4.8. Let M be a simply connected n- dimensional WO.Q
manifold. If any closed geodesic of M intersects N(r\ 0 < r < /, at two
points or tangent to it without intersections, then

V.-.Wn)) 5£ ̂ ...(̂ (r,)) , 0< rt < r, ̂  -|- .

PROOF. For a fixed positive r, 0<r^g-^-, denote the regions of M
1

divided by N(r) by Gj(r) ^Λ; and G2(r) ^3' = Q0(
;r)- Putting

£(Γ) = {t; 1 1, s τ->(N(r)), σ(s, v) e G,(r), for 0 < s < Z} ,
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we can apply the formula (8) in Appendix for this E(?~) from the assumption
of the theorem, hence

β (\J CE(r))() = ̂ - V»-,(tf (r)) I. (1)
t l / n L

Let 0 < Γι < r2 ίS —^r . For any vl € E(ΓI\ let g be the closed geodesic σ(s, vγ\
Δι

0^5^2/. g has common points with Λ/(r2) and N(l—rz). Let z2 = σ(s2yvί)
be the first common point with N(r2) along g starting at zl = τ(vλ) and v2 be
the tangent vector to g at z2. Putting vz — φ(v^) and s2 — λ(^!), ^> and λ are
clearly continuous on E'(r^ = E(ΓI) — (p~l(S(N(r^))}. Since

dim [σ'(s, v)\vs S(N(r,)\ 0<s <l] =2n-2,

we have

For any v1 € E'(r^), we have

'(s9 v,)) = σ\l + 5, t^) .

Hence, putting Ω = \J (^(n)),, ίlj - M*,^)!^ € £'(rO, 0 < s <λ(τ;1)}, we

have

0<t<l

Since Q0 is an isometry on M, we have

β(ίΐ) = β^ + (a- 00) -

and so from these relations

0<t<l

By (1) and this we get

^ Vn_,(N(rJ) . q.e.d.
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THEOREM 4.9. Let M be a simply connected n- dimensional W0l0-

manifold. If the hypersurface N\—^-9 x\ — JExpx~^-e e £ T"1^)!, x € M,

is al-ways totally geodesic, then M is isometric to an n-sphere 'with radius
1/τr.

PROOF. When n — 2, this is true according to L. W. Green [5]. Assume that

this theorem is true for the dimension n—l. N(-^~,X] is simply connected

and satisfies the Tί/r

0,o"con(lition from the assumption. Hence, it is isometric
2

with an (n— l)-sphere with radius l/ττ. Its sectional curvature is -/2~ and

equal to the one of Λf, since N(~^~, x) is totally geodesic. This holds for any

point xz M. Hence, M has constant sectional curvature τr2/72. Accordingly,
M is isometric to an w-sphere with radius l/ir. q.e.d.

THEOREM 4.10. If M satisfies the condition in Theorem 4.8 for N(r)

— N(r,x), 0 <r </, with any center xz M, then N(—~\ is totally geodesic.

PROOF. Let g be any closed geodesic of M such that x <E g. Let ZQ <Ξ g
be a point such that rQ = dis(x, g). We may assume that g is given by σ(s),
— l^s^l and z0=σ(0). Let g0 be the geodesic through x and ZQ. We have

max dis(.r, σ(s)) = I — r0 .

If Γ o— -—9 gc. JVί-y-, x j . Suppose 0 <r0 <^τ Since ^ is invariant under

Qo> 3̂  = QoG*0 € flr Putting σ(s) = σ(r(s), e(s)\ e(s) € i-1^), r0 ̂  r(i) g / - r0 < /.
Let #o be given by σ(s, ̂ 0), ̂ 0 = 0(0).

For any 5, —l^s^l, there exists a point on gQ with the same distance
to z0 and σ(5), because /— r0 S l—r(s). Let σ(r0 H- />(s), £0) be the first such point
along gQ starting from z0 for s^=Q. p(s) is differentiable and 0 < p(s) ^ /— r0.
From the assumption, N(p(s\ σ(r0 + p(s), eQJ) can not intersect # at σ(ί).
Hence the geodesic joining σ(s) and σ(r0 + ̂ (̂ ), 00) is orthogonal to gr. If p(s)
is not constant, there exists s0 such that '̂(̂ o) =^= 0. Then, for s sufficiently
near to $0, the family of geodesies joining σ(s) and <r(rQ-\- p(s),eQ) envelops a
subarc of gQ, this implies #0 = <r(s). Hence p(s) is a constant. By Lemma 4.6,

/it must be —^-.
Δ

Now, let g be tangent to N(-^~-,XQ\ at ZQ and ^0 be the geodesic joining
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xQ and z0. If we take a point x on g0 near to ZQ such that dis (x, ZQ) — dis

(x, g), the above consideration can be applied. Hence gd N{ —^-yxΛ. Nl-^,

x0j is totally geodesic at ZQ. q.e.d.

This theorem and Theorem 4.9 give immediately

COROLLARY 4.11. Let M be a simply connected n-dimensional Wo,<r
manifold. If any closed geodesic of M intersects N(r, x), 0 < r < /, at two
points or tangents to it without intersections, then M is isometric to an n-
sphere with radius I/ΊΓ.

5. Manifold satisfying the TF^-condition.

DEFINITION. An n-dimensίnal Riemannian manifold M satisfies strongly
the Wp-condition if the following hold:

(i) M is a Wp-manifold.
(ii) For any (n—p—Ϋ)-element (η,v) and the geodesic σ parameterized

by arc length such that σ(0) = τ(v)9σ'(0) = v, take any Xz J(η,v)*,X ^ 0, then
X(s)^Q for 0 <5 </, where σ(Γ) is the supporting point of the first focal
p-element of (η, v).

By virtue of the definition for the WVcondition in §3 and Theorem 3.2,
an n-dimensional WQ-manifold M has the following property: For any (n—1)-
element (η, v) and its first focal 0-element (x, v), it must be

JO, w)* = J(η, v) -

LEMMA 5.1. For a manifold satisfying strongly the WVcondition, the
WQ>Q-condition holds.

PROOF. Let M be an n-dimensional manifold satisfying strongly the WV
condition. For any uz r~1(x), xz M, let (η,v) be the (n— l)-element such that
(x,—u) is the first focal 0-element of (η,—v) and let (x, u) be the one of
(η, v). By Theorem 3.2, Qn^(x) and Qn-ι(x) are totally geodesic and tangent
at y — TΓn^η) each other. Hence Qn-ι(x) = Qn-ι(x) Accordingly, all geodesic
rays emanating from x meet again at x. The point x is the first conjugate
point of x along any geodesic through x, since M satisfies strongly the
Tί'Vcondition. q.e.d.

THEOREM 5.2. A simply connected n-dimensional manifold satisfying
strongly the WVcondition is isometric to an n~sphere.
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PROOF. Let M be a simply connected ^-dimensional manifold satisfying
strongly the W0-condition. By Lemma 5.1 and Lemma 4.5, M is homeomorphic
to an ^-sphere. For any point x^M, using the notations in §4, Qn-\(x) is
also homeomorphic to an (n— l)-sphere. Q^-itX) is totally geodesic by Theorem
3.2. As an (n—l)-dimensional Riemannian manifold, Q7Z_1(.r) satisfies the same
conditions as M. This theorem holds for n = 2, by virtue of Green's theorem
[5]. For n>2, inductively, we assume that this theorem is true for (n— 1)-
dimensional manifolds. Qw-iίX) is isometric to an (n— l)-sphere for any x£ M.
Accordingly, every geodesic on Qn-ι(x) is closed and has the same length.

For any two closed geodesies passing through any point y £ M, there exists
a point x such that Qn-ι(x) contains these geodesies. Hence, they have the
same length. Since M. is complete, every closed geodesic on M has the same
length, i.e. 21. Accordingly, the sectional curvature of M is constant and equal
to τr2//2. M is isometric to an w-sphere. q.e.d.

LEMMA 5.3. Let M be an n-dimensional Riemannian manifold satisfy-
ing strongly the W Ώ-condition (Q<p<n—l), then for any ξz TP(M), Qq(ξ)
is a q-dimensional Riemannian manifold satisfying strongly the W0-condίtion,
q = n-p-l.

PROOF. Let η be the tangent space to QQ(ξ) at a point y and v be a
normal unit vector to η. Let (ξ, u) be the ^-element such that (ξ, — u} is the
first focal -^-element of (η,—v). Take any (q— l)-dimensional subspace ξ of η
and let vl be a normal unit vector to ξ in η. (See Fig. 1.) Putting ηί = ξ(Jv,

let (ξi, — ̂ i) be the first focal ^-element of
geodesic segments joining x — τ(u) and xl =

v^. Let σ and σl be the
to y given by σ(s, u) and
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σ(s9uί) respectively. Since Qq(£) is totally geodesic, σlC.Qq(ξ).
Since M satisfies the W% -condition, we have

J(xl9uύ* Π

Putting L(σ) = l and L(σl) = ll9 for any XsJ(ξι9u^, X^O, we have

X(θ) - o, χ-(o)

and X(/j)^0, for otherwise X^J(ηl,vl\ which implies X = 0 by means of
Corollary 3.6, where L denotes the arc length. Since M satisfies strongly the
^-condition, X(s) ^ 0 f or 0 < 5 < I, .

Now, if X(/ι) £ f, the Jacobi field X can be constructed from a family of
geodesies of M emanating from xl9 which are also geodesies of Qq(ξ). Since
QQ(ζ) is totally geodesic, we may regard X as a Jacobi field along the geodesic
σl in the g-dimensional Riemannian manifold Qq(ξ). Hence, putting vl — σ{(ll9

UI\(XD — #ι) is the first focal 0- element of the (q— l)-element (f, — t>ι) in Qβ(|).
From these considerations, Qβ(f) satisfies strongly the WVcondition. q.e.d.

LEMMA 5.4. Assume that M satisfies strongly the conditions in Lemma
5.3, then all geodesic of M are closed.

PROOF. When (7 = 1, Qι(!) is regular at each point and closed. From the
definition of the Tί^-condition, Qι(ξ) is geodesic.

When <7>1, the universal covering Riemannian manifold Qq*(ξ) of Qα(f)
satisfies strongly the "R^0-condition and is homeomorphic to a g-sphere. Hence,
by means of Theorem 5.2, Qq*(ξ) is isometric to a g-sphere. Accordingly,
any geodesic of Qq*(£) is closed and the same fact holds for Qq(ξ). For any
geodesic g in M, there exists a Qq(ξ) containing g. Hence g is a closed
geodesic. q.e.d.

THEOREM 5.5. Let M be a simply connected n-dimensional Riemannian
manifold strongly satisfying the W \ -condition (0<p<n— 1), then M is
isometric to an n-sphere.

PROOF. CaseO<p<n-2. For any ξzTp(M), take two independent
unit tangent vectors vl9 v2 € η=(Qq(&)y at any point y £ Qq(ξ\ where q=n—p—l.
Denoting the sectional curvatures for the tangent space spanned by vl and vz

of M and Qq(£) by R(vl9v2) and ^(7^1,^2) respectively, we have R(vί9vz)
= Rξ(vι,Vz), since Qq(ξ) is totally geodesic. By the definition of the WpιQ-
condition in §3, the universal covering Riemannian manifold Qβ*(£) of Qq(ξ)
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is homeomorphic to a g-sphere. By Lemma 5.3 and Theorem 5.2, Qq*(£) is

isometric to a g-sphere. Hence, denoting the measure of the radius of Qq*(£)
by rξ, we have

On the other hand, the length of any closed geodesic of Qq*(ξ) is equal to
2τrrξ. According to Lemma 5.4, let gl be the closed geodesic in M tangent

to Vι and g* be a lift of gl in Qα*(f), then L(g*) = mL(g1), m — an integer.
Hence, from these considerations, we have

2τr \2

This shows that for all tangent 2-planes of Qq(ξ) containing tangent vectors
of gl the sectional curvature of M is constant. We may regard η as any q-

plane at y £ M and join any two points in M by a geodesic segment, hence
the sectional curvature of M is everywhere constant. Since M is simply

connected, M is isometric to an ^-sphere.

Case p= n — 2 (n>3). For any ξz TP(M), Q^ξ) is a closed geodesic by
Lemma 5.4. Let (η,v) and (rj, v) be 1-elements such that (£, —u) is the first

focal (n— 2)-element of (77, —v) and (ξ,u) is the one of (η, — v). Put y = τ(v)
and y = τ(v). By Corollary 3.6, we have

Putting f(ξ) = /, this yields that : For any Xz J(η,v\ (that is X(/) = 0, X'(l)

€ ^Πt;-1-), it must be X(—ΐ)€ η. Since M satisfies strongly the W^-conditoin,
for the 1-element (η,v) and (η,v) it must be

X(j)^0, for 0 < | 5 | < Z .

Furthermore X(0) ^ 0, for otherwise X € J(χ, u)* and so X £ J(ξ, u\ by (ii) of

the first definition in §3, which implies X = 0 by Corollary 3.6.

On the other hand, we have easily

dim [X\X(-l) = 0, Xz J(η,v\}^n- 2 - dimη = n - 3> 0 ,

hence there exists a Jacobi field Xz J(η,v\ such that X(—ΐ) — 0 and X ^ 0.
Accordingly, y is the first conjugate point of y on the geodesic σ(s, u) towards
the direction of —v at y. For, as is well known, on the geodesic ray σ(s, —v\

the conjugate points of y are isolated. The points y as the first common
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point of the fixed geodesic ray σ(s, — v) and the variable geodesic ray σ(s9w)9

<v9 w> — 0, depend continuously on τv. Hence, y is a fixed point for y9 and
so this shows that y is the first conjugate point of y on σ(s9 — v).

The length 21 of its subarc between y and y is equal to the diameter of
Qι(ί) by Lemma 3.4. By Lemma 5.4, all geodesies of M are closed. We may
consider any closed geodesic g as Qι(£) in the above consideration. Making
use of the function ψ: S(M) —> R defined in §4, ψ is constant for unit tangent
vectors of M normal to g. Since n > 2, moving 77, we see that -ψ depends
only on the supporting points of unit tangent vectors to M. Since any two
points of M can be joined by a geodesic segment by the completeness of M,
hence -ψ must be a constant on S(M), which implies /: TP(M)-^R is also
a constant / and ψ=2l. From those, we see that at any point χ€ M, for any
two ul9uz€τ~l(x) such that <uίyu2> = 0, it must be σ(2Z, u^) — σ(2l, u2).
Furthermore, since n>2, this is true without the condition: <ulfu2> = 0.
Hence, M satisfies the W0,o-condition. From the fact that Qι(£) = [σ(l,u)\u
£ *S(M), w_L£] is a closed geodesic of M, all N(l, x) are totally geodesic. By
means of Theorem 4.9, M is isometric to an /z-sphere.

Case n — 3, p — 1. Using the notations in the previous case, for ξz T!(.M),
Qι(f) is a simple closed geodesic. For the geodesic rays σ(s,—v) and σ(s,w),

Fig. 2

0 rg 5, tf € ?;, the point y is the first common point. The length of the subarc
of the ray σ(s, — v) between y and y is 2f(ξ) which is the same value for v
orthogonal to η at y by Lemma 3.4. Accordingly, considering them in exchange
of their stand-points, it must be that the points y and y divide Qι(f) into two
geodesic segments with the same length. Hence, all geodesic rays emanating
from y orthogonal to Qι(ξ) pass through the same point y and the length
of their subarc between y and y is the common value 2f(£). By means of
the same consideration of the previous case, we can show that M is isometric
to a 3-sphere. q.e.d.
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Appendixes

Let M be an w-dimensional manifold with line element ds2 = gij(ιi)duίduj.
Geodesies in M are given by the equations :

d*u} . - i / N dvt duh

where Γ£Λ are the components of the Levi-Civita's connection of M. Let (ul

9 z/)
be the local coordinates of T(M) as vi'd/'dui represents a tangent vector of M.
In terms of the local coordinates (ul, vl\ let X be a tangent vector field on
T(M) given by

Since we have

=* 0,

X is tangent everywhere to the hypersurface gij(u)vίvj — constant, especially
the unit tangent bundle S(M). Hence, the integral curves of the field x lie
in these hypersurfaces. When M is orientable, by means of the volume
element of M:

(3) dVM = V g dul Λ Λ du«, g =

and the (w—l)-form giving the (n— l)-dimensional angular volume on fibres of
S(M):

n

(4) dωn-t = Vy ΣC-l/'^'^'Λ ^ dv^1 ^d•vl+1 Λ ••• Λ^ Ώ ,
i = l

define an (2w—l)-form on T(M) by

( 5 ) J£ = jym Λ d<»n-ι

n

= ^^(-ly-^^^Λ /\dunf\dvl Λ^ ί~1Λ^ i + 1Λ /\dvn .

In Appendixes, T(M) represents the tangent bundle of M.



302 T. OTSUKi

Making use of (2), (5) the Lie derivative of dμ with respect to x is given by

dVιrf\
ί = l

dVM Λ
*=1

+ Σ(-i;rV Σ ̂
j = i + l

where u/x" denotes the omission of the symbols under it. By some calculations,
the expression in the braces of the last equation can be written as

+ 1 Λ ' ' ' f\dvn

J Λ •• f\dvj~l /\dvj+ί Λ dvn

o

and, as is well known, we have ΓΛj — ^ h logV g . Hence it must be

(6) Lj{dp.) = dV*h

C-iy-1^^1 Λ Λ Λ ' t\dι
ί=ι

/\(V~g~dvl Λ f\dvn).

LEMMA 1. Let X and θ be a vector field and a I-form on an n-
dimensional differentiate manifold such that 0(X)— <θ, X>= 0. Then, the
(n—ί)-form:

(7) ω

i=l

vanishes under the condition : θ = 0 .
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w~1 f
PROOF. Putting θ = Σfidu\ fn ^ 0, we substitute dun = - ]Γ Jί

i=l Jn

into ω, then

- Σ
.?=!

Λ Λ <*«"-' Λ

Όώ*1 Λ Λ dun~l

+ W)| dul Λ Λ ώ*"-1 - 0 . q.e.d.

Now, the right hand side of (6) can be written as

-l^^

and for the 1-form d(gijv
ivi} on T(M) we have

1 (0W f f v') = <^(flr« v* ̂ ), X > = 0 .

Hence, by Lemma 1, we get the following

LEMMA 2. When M is orίentable, on each hyper surf ace g^vW = constant
of T(M), we have Lχ(dμ>) = Q, that is the (2n— I)- dimensional volume in the
hyper surf ace is invariant under the flow of the integral curves of x.

On S(M), dfi is called the kinematic density and the flow of the integral
curves of x is the geodesic flow of M.

The following result is a generalization of Liouville's theorem.

LEMMA 3. Let N be an orient able hyper surf ace in an n- dimensional
orientable Riemannian manifold M. Let φt : S(M) — > S(M) be the one-
parameter group defined by the geodesic floτu. If E is the set of unit vectors
on N and pointing toward one side of N in M, then

(8)
0<t<T

provided EtnEt, ^ 0 for 0<t<t'<T, where cn.2 is the volume of the unit
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(n—2)-sphere, Vn^(N) is the (n— Ϋ)-dimensional volume of N and Et = φt(E).

PROOF. Introduce local coordinates in \l Et = B as: To e^B,e = φt(ξ)
0<t<T

= Expί£, ξ € E,τ(ξ) = x, let correspond the triple (t,x,ξ\ Let η be the field
of normal unit vectors to N contained in E, then the kinematic density dμ
can be written on E as

dμ = <η, ξ> dt Λ dVN Λ dωn., ,

where JV^ denotes the volume element of N. Since φs(t,x,ξ} = (t-\-s9x9ξ)
and dμ is invariant under <ps by Lemma 2, the above expression for dμ is
true in B. Hence we have

β(B) = I <ξ, η> dt Λ dVN Λ dωn.i
JB

Γ ( Γ )
= J \J <*>**> dω"-ι dt Λ W*

On the other hand, we have

It

Γ Γ . - C -2
I <Cf, τ;> dc&n^ = ίτ^-2 / cos ^«(sin #)n 2 dθ = —?L-— ,

hence we obtain

Γ. q.e.d.
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