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1. Introduction. It is the object of this paper to consider some of the
properties of a A-type generalization (C, N, «) of Cesaro summability, which
reduces to (C, ) when M,=n. We shall be concerned mainly with the relations
between (C, N\, ) and other summability methods, notably the Riesz method
(R, N, ) and a more general method (G,\) defined by means of a function .
Except in this introductory section, we shall deal almost entirely with methods
of integral order (we draw attention to this by writing p in place of «), and
we suppose throughout that A ={\,} is a sequence satisfying

O<A‘0 <N1<"'<)}n’_)oo.

Given any series® ) a,, and any « >0, denote

Aw) = 2- (0—N)a,;

<o

if 0 "A(w) s as o— +oo

then we say that > a, is Riesz summable (R, A, ) to s. When @—co through
the sequence {A,}, we obtain the definition of ‘discontinuous’ Riesz summability
(R*, A, €), and we may then relax the restriction on « to «>—1; thus > a, is

summable (R*\,x) to s if A*A*(N,) —s.
It is of course trivial that®, for any {A,} and any « >0,

R\, 6) & (R¥ )\, k).

1) This paper was written while the author was a Fellow at the Summer Research Institute
of the Canadian Mathematical Congress, Vancouver, 1965.

2) Unless otherwise specified, limits of summation or integration are assumed throughout to
be 0, oo.

3) Given two summability methods A, B, we say that A is included in B (written ASB)
if every series summable-A is also summable-B (to the same value); A and B are equivalent
(written A~B) if each includes the other.
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The converse inclusion, that
R* N 60) S (R, M K)

is trivial for k=0 and for «=1 (in the case k=1 this follows since Al(w) is
linear in A, <<0<\,.:), and has been proved by Jurkat [7] to hold for 0<<k<1,
without restriction on {A,}. Results for «>1 have been obtained by Kuttner
[11]—[15] and Peyerimhoff [27], and although the problem has not yet been
completely disposed of, certain restrictions on {A\,} have been shown to be
either necessary or sufficient for the inclusion to hold when x> 1.

In the special case A,=n, it is well-known (see, for example, the references
given by Kuttner [11]), that (R, A, «) is equivalent to Cesaro summability (C, «),
for any «>=0; that is,

(Ra n> ’C) -~ (C, IC) .
Riesz [22] has shown that the equivalence
(R*,n,6) ~ (C, )

holds when —1<«<1; Kuttner [11] has extended this to —1 <« <2, and has
shown also that equivalence fails for « = 2.

In problems (particularly on inclusion relations or summability factors)
involving the ‘continuous’ Riesz method (R, 7, k), the equivalence with the
Cesaro method (C, «), which has a discrete matrix with an easily calculated
inverse, often enables a treatment to be simplified by using (C, «)-means. A
corresponding simplification would occur in problems on the general Riesz
method (R, \, ) if we could obtain a generalized Cesaro method (C, A, ), which
would reduce to the (C, «) method for A, =n, and for which

(R, M, 1) ~ (C, M k) .

Such a method (C, M, k) has been defined by Jurkat [8]; in his definition, (C, A, )
coincides with (C,x) when A,=7n and « is a non-negative integer, and is
equivalent to (but does not coincide with) (C,x) when A,=n and « is non-
integral. An almost identical definition® of (C,A,«x) has been given, for
integral « only, by Burkill [3]; this is equivalent to Jurkat’s method, for any
{x.}, and also coincides with (C,x) when A,=7n. Both Jurkat and Burkill

4) See §3, where this definition is given. The two definitions coincide when Ay=0; but a
difference in A, (or in any finite number of the A,) cannot affect the summability pro-
perties of the method.
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obtained different sufficient conditions (in the form of restrictions on {A,}) in
order that (R,A,x) should be equivalent to (C,M,x), but Jurkat imposed
additional restrictions on {A,} in the case of non-integral « and I propose to
deal in this paper with an attempt to lighten the restrictions only in the
integral case; it may be that an alternative definition of (C,\,«) would be
desirable for non-integral «. I shall deal separately (§84,5) with the inclusions

(Cn ) E(R, N, 1)

and

(R,)', ’c) < (C> )‘" IC) ’

where « is a non-negative integer, showing that the first of these is true
without restriction on {A,}, and that the second is true (i) when «=0,1,2,
without restriction on {A,}, and (ii) when «>>3, under a restriction on {A,}
which is weaker than either Jurkat’s or Burkill’s. It will be useful for our
purpose (and also of independent interest) to examine (§3) the relation between
(C,\, k)-means of different integral orders «, mainly in the form of limitation
theorems, though it follows almost at once that

Cone) S(Coh ), 0o, <k,

Though we shall not be concerned here with (C, A, £)-means of negative order,
it should be noted that Maddox [19] has given a definition of (C,\, —1) summa-
bility (which coincides with the definition of (C, —1) summability when A,=n)
and has established inclusion and summability factor properties of the method.
Some related methods are discussed in [26].

The problem of finding necessary and/or sufficient conditions in order
that a general summability method A should satisfy

R,Ne)EA

has been considered by Maddox [18]. With (R,A,«) replaced by (C,\,«),
Jurkat [8] had previously given a result in this direction in the case where «
is an integer and A is a normal method (i.e. its matrix is triangular with
non-zero diagonal elements). Kuttner [10] has considered the problem when
A is a generalized Abel method (A, A, «"). In [23] I have given necessary and
sufficient conditions in order that B& A, where B is a normal method satisfying
a certain ‘mean-value theorem’ introduced by Jurkat and Peyerimhoff [9]; and
in particular, B can be taken to be (R*,\, k), 0 <« <C1 (which is equivalent
to (R,N, k) in this range of value of «). I have dealt [24,25] with the case
where A is a generalized Riemann method (R, M, p) (Burkill and Petersen [4]
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and Burkill [3] had considered this with «=1, « an integer, respectively), and
also [25] with sufficient conditions when A is a method (G,\) defined as
follows:

> a, is summable-(G,\) to s if

> gwmhya,—s as h—0+,

v

where ¢ is a function having certain properties which will be specified later
(the Riesz, Riemann, Abel methods are special cases). In this last case, the
question of finding easily applicable necessary conditions for inclusion
appears to be more difficult, especially for non-integral «; however, when « is
an integer we can use the relation between (R,\,«) and (C,\, k) given in
this paper, and hence examine necessary conditions in order that

(C,n, ) € (G,N), « an integer;

a result of this form is given in §6.

It will be apparent from the above discussion (and also from comments
of Kuttner [12,13] and Maddox [16]) that the significance of many of these
results depends upon the extent to which the restrictions on {A,} can be
lightened. Since we refer later to a number of different such restrictions, it
will be useful to state quite clearly which of then have relations of implication
between them, and which of them are mutually independent; this is done
in the following section.

2. Relations between Different Conditions on A. The following con-
ditions on A= {A,}, which is assumed always to be a sequence of non-negative
numbers strictly increasing to oo, are among those which have occurred from
time to time in work on Riesz means; most of them are referred to later in
this paper. (1) and (5) appear to have been first used by Jurkat [6], (2) by
Kuttner [12], (4) by Burkill and Petersen [4], (9) (with A, on the right in place
of MN,.1) by Russell [25] aud Rangachari [21]; condition (8), which appears for
the first time in this paper, was suggested to me by Professor D. Borwein in
place of a more restrictive condition, similar to (7a), which I had assumed
at first.

In the usual notation, we write

Abu = bn - [)/L +1> I\IL = 7\”“—1/()“11,11—7\'1:) >
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and " or \, for monotonicity (in the wide sense). Note that we always have

Ak‘n < 0, 7\‘n+l/)"n > 1} An > 1 .

AN, AN, i,
69) @) 0<a< _A_)"_n-—-l (b) Ano <b <o,
2 A =0(,).
7\'n+1 _
(3) )',z - 0(1)'
(4) (@) 0<a <|AN,] (b) AN, <b < oo
®) @ A,/ equivalent to (b) ”T\
(6) (2) A,=O(1), equivalent to  (b) liminf 22> 1.
. 1 . . hn+l
@) (a) lim——max |A\,_;| =0, equivalent to (b) lim-—"-=1.
N, 1=vsn Ay
©)] lim inf 7\'1" max | AN, =0.
) AL = O(\qr)

for some pair of numbers p, p with u2=p> 0.

For the sake of clarity, we omit the parentheses in referring to conditions
1 to 9, and use the logical symbols:

— (implies), A (and), V (inclusive or), ~ (negation).

There are 110 possible relations of implication between the 11 conditions on
A which are listed (counting 1la, 1b, 4a, 4b separately). 15 of these are true —
that is, of the form p— g where any sequence A satisfying p must necessarily
also satisfy g; however, most of these can be verified immediate'y, and it
seems enough to mention in more detail only the following :

Relations between 1,2,3. Note that

A)"n - ixn—l . )"n+l - An—~1 1 .
A7\'IL—-I A/z 7\’11 - An An ’
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then the equation shows that 23— 15, the central inequality that 16 — 2,
and the inequality between the extremes that 6 — 1la. Also, if 15 then

Mart — Ay <O —Npo1) < BN, , whence N/A, <b+1,
so that 16 — 3 (and since 15 — 2 it follows that 156 — 2/ 3).

Relation between 6 and 8. If 6 then N\, /A, >c>1 for every 7, and
then

1
- =1 — 1 — Bn-t
n 112!122; l A)lu ! \ = )\'n 1 )"n c

hence 6 — 8 (and 8 — 6).

Eguivalence of 7a and 7b. Suppose 7b. Then, by the first of the in-
equalities just employed above,

o<1-l“>—:i<imaxmu_.1 -0,

Ny 1=<v=a

so that 7b—7a. Suppose 7a. Now max|AMN,_,|=|AN, |, where {v,}, which

1=v=n
is clearly non-decreasing or can be chosen to be so, satisfies 1< v, <n.
Either {»,} is bounded, in which case |A\, | is bounded and hence A;'|AN, |
—0; or else {v,} is unbounded, in which case (since it is non-decreasing) it
tends to + oo, and then

N AN | <A AN, = 1=(/M,) 21— 1=0;
hence 7a — 7b.

Condition 9. If p=0 then 9 always holds, trivially, for any u>0. Also
if 9 holds for some pair p, p then, since A, 7, it clearly holds for any pair
', p with g >pu. It is obvious that, since A,=N,:+:/|AN, |, da—9 for u == p;
but note that we do not require 9 to hold for every pair u, p with p== p>0
— for, it we did, then in particular it would have to hold for uw = p, and 9
would then be equivalent to the simple condition 4a.

Each of the 15 valid implications (together with those arising from the
additional results 2A3— 15, 4—1, 5-6V7, 8—>€, where 4 means 4a A 4b,
and 1 means laA1b) can be traced out on the following diagram:
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NN KT

\/\lb___/
\

5§ —>6v7

The other 95 of the 110 possible implications are false, that is they are
of the form ~ (p—¢q); in other words, there exists a sequence A satisfying
PAG. 95 counter-examples of such sequences A can be selected from the
illustrations which follow (A,=# is not needed for this purpose, but is included
since it is an important special case); for example, to show that 2 and 8 are
independent of each other, we note that 2A8 is satisfied by (12), or by (13),
and 2A\8 by (15), (16), (18). In the first six of the illustrations, {A,} is defined
and its behaviour relative to the conditions 1 to 9 stated concisely; the
verifications are left to the reader. In the other three illustrations some of
the salient features are briefly indicated.

(10) A, = IAZABAAABAGATABAY.

(11) M, =log(n+1): TA2A3ALaN4BASABATABAY.

(12) A, =2": IA2A3A4aNdBABAB6ATASNAI.

13) AN, =2" 1aAIBA2ASA4aNdDABAGATABAI.

(14) Non = 7, Agpsr = n+6,, where 0 <, <0, <c, < -%—:

IA2A3AAABABATABAY.
(15) Non = M, Nagpsy = n+6,, where 0 <8, 1 (or ,—0):
1aAIBAZA3SA4a N4BABABATAS.

The truth of 9 in this case depends on #, and on the relative values
of p and p; thus in the respective cases
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@)= @) logn+3), @Gi) n+2, (ii) 2",

condition 9 is: (i) trueif w>p>0,
(ii) true if p=2p>0,
(iii) false for every positive p and 2.

(16) M=k +v for m,<v<ng, (=0,1,2,-:),

where {n;} is an increasing sequence of positive integers, k;.;—k; is positive
and increasing, and 7;/k, — 0, n;,,/k; — +oo. It follows from these conditions
that k,/k;,1—0, ki —ky;— + o0, n;/m.; — 0 (a suitable choice for {n;}, {k;} would
~be n,=2%, k,=17:2"). Then N—M_1=1@#n), Ny—Npeer = kbi—kii +1,
so that 4a (hence 9), Zb, la (hence 63, 1 (hence 5) Now if we let n— o
through the values n=#;,,—1, we have:

. My ki+n,—1 ki1,
(1 ) -k - k— )
p i1 Mgy i+1

—0;

thus 3 (hence 1~b, Zb, ‘5', ’7)

_ Rivi 414

(ii) A-n = ki l—ki"‘-l—)l, A.n_]_ = ki+ni+1—1 - +OO;
. +

thus 2 (hence 15, 5, 6).

L ax (o, = Bi=katl ok

(i) n 1=vsn BiAna—1"" mg —0;
thus 8 (hence 6).
Combining the results, we see that {A,} satisfies
TaA1BA2ABAN4a NGB ASABATABAY.
a7 M =i+@—n)/(ni—n) for n,<v<mny,, (=01,2---),

where n;,,,—n; is positive and increasing, with 7,,/n, — + oo (for example,
n,=2"). Here

Mr1— Ny = 1/(ni+l_n1:) (n; <v <Miy),

so that 4a (hence 6), 4b (hence 3, 6, 7, 8); and, since |AM, |\, we have A, ",
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so that 5 (hence 15, 2, 3). Also, for v=n,, AA;'” = ni_ni"——>0, so that la

-1 Niy1— Ny

(hence 6). Finally, the condition on {7} ensures that 7,,,—n;,> c¢-2" (¢ > 0),
and hence

A2 NGFy ~ Py — 1) > ciPTH2P > o0

for any positive p and p, so that 9 (hence 4a, 6). Combining the results,
{\.} satisfies

TaA1bA2ASA4aN4bASABATABAD.
18) N = mt+ (=) ma—n)}T for n <o <y (=0,1,2,+++),

where ;. —n, — +oo, but such that 7;,,—n; = o(n}) (a suitable choice is
n,=2Y. An easy calculation shows that, for n, <<v <n,,,,

— ’\/(ni+1_ni) = _1_
T N+ l=n)+ A/ v—n,) 2

7\'u+1 - 7\'u

so that 4a (hence 9); but |A\,, | =+/ (7,4, —n;)— o0, so that 4b. So long as the
suffixes all remain within [#n;, n;.,], we also see that

|AN,| N\, hence A, , hence A, /AN

thus 1<t

LS (n, <v <ny.y)

N,

ni+/\/<ni+1—ni) — 1+0(1)
n; ’

so that 7 (hence 3, 6, 8). It then follows that

Ay _ N AN, AN,
Av M Al AN,y

and by taking v=#n, and noting that |AM,_;| <1, |A\,| — oo, we obtain
2 (hence 15, 5, 6). Finally, it is easily verified that (for any increasing {n;})
(AN,)/(AN-) Z=1/(1 + A/2) for every v, so that la holds, and {\,} therefore
satisfies

1aA1IBAZA3A4aNdBABABATABAY .
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3. Relations between (C,\, p)-Means of Different Orders. Given a
non-negative integer p, a sequence {A,} of non-negative numbers strictly
increasing to oo, and any series ) a,, we define, for n=0,1,2,+--,

(19) Co=>a, C2=3 i1 —=N)*+* Mip—M)a, (p=1,2,+++);
v=0 v=0

the (C,\, p)-means #2 of > a, are defined by
t'Z = C:, tfb = (7\'7”1 "'7\'71+p)_1Cg (PZ 1’2,"')’
and we say that ) a, is summable (C,\, p) to s if

th—s.

Denoting convergence by I (the identity transformation) we have trivially,
for any {\.},

CAMO)=E®REN0)=RN0=1,
CAD)=@EREN D~ RN,

(20)
Note that, for n=0,1,2,--- (and defining C”, = 0),

szﬂ_ Zt% = Z (7\'1;+1 - 7\w) b (7\'"+p+1 - )\u) ay — Z O\:n")w)’ b (7\:n+p_7\ru) ay
v=0 v=0
@1
= (7\'n+p+1_)\'n) C: 5

and it follows directly that®

(22) Cott = 3" (Mspri— M) CP .

THEOREM 1. If C3 = o(n,), where 0 <w,/, then Ci*' = 0oNpsps17n)-
We may replace o by O throughout. :

5) Although the definition of CE is slightly different, this is the formula following 1(13) of
Jurkat [8]. Most of the results of this section are elementary consequences of (21) and (22),
but are given for the sake of completeness.
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PROOF. Under the hypothesis of the theorem, it follows at once from
(22) that

Cr = 0(12) 2= (wrpsr—) = 01 7).

v=0

COROLLARY 14. (C)A, p) S (Con, p+1) (p=0,1,2,---).

PROOF. We may suppose, without loss of generality, that >_a, is summable
(C,\, p) to zero, and the corollary follows from Theorem 1 on taking 7, =1
(P::O): Mo = Np+1*** Mg (P> 1.

COROLLARY 1B. (C,\, p) is regular for every non-negative integer p.

If C? denotes the (C,\, p)-matrix then (22) (when expressed in terms of
the means £ and #3!) defines a matrix L, such that C**'=L,C?, and Corollary
1A is equvalent to the statement that, for $=0,1,2,---., L, is regular (a
T-matrix) — L, is the sequence-to-sequence matrix of (C,A,1). Since L, is
normal, it has an inverse L;! (which, in fact, is easily calculated — see (28))
and Maddox [19] defines the (C,n, —1)-matrix as L;'. Some further properties
of L, and L;* also appear in a forthcoming note [26].

To proceed from a (C, A, p)-mean to a (C,A,7r)-mean of lower order, we
have the following limitation theorems.

THEOREM 2. Let C:=o(y,) (n,>0), and denote 7,.= maxrn,; then,

n—-rsi=n
Sfor r=0,1,--+,p,
(23) Cr = o{nup—r/Mnsra1—=Na)? 77}
We may replace o by O throughout.

PROOF. (23) is certainly true for » = p, since it then reduces so the
hypothesis. Suppose that (23) holds for some 7 in 0 <7< p; then, by (21),

CimCla 1 [ _olmasd

24)  Cit= =
( ) ()‘n+r+1_7\'n)p—r

— 0("]7;—1,17—1') }
Apsr— Ny Aptr—Ny

(7\'n+r'_7\'n—-1)p_r

— 1 o(ﬂn.p—r+1>
7\'n+7'_)\'n O\'n+r_>"n)p_r ’

since 7., 5-r < Nup-r+1s Mum1,p-r << T, p-r+1> a0d A, . It now follows by induction
that (23) holds for »=0,1,---, p.
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COROLLARY 2. If Ci = o(y,), where 0 <=u,,, then
C:z:O{")n/IA)'nlp—r} (T=0,1,'-°,P).

Jurkat [8, Satz 7] gives this result, where pand r need not be integers, subject
to the restrictions

(5] A = 0w,
_ M
a7

neither of these restrictions is needed when p and » are integers.
There is an alternative form of Theorem 2 in which we replace 7, by
Nps1** * Mnspnn and express the result in terms of the (C, A, 7)-means =\, .,

e oo Npip) 'Ch.  Since the two forms are not completely equivalent we give a
short separate proof.

THEOREM 3. Let p be a non-negative integer, n, > 0, and denote

(25) An,r = >\'n+r+1/(7\'n+r+1—7\'n) (7‘ = 0: 1,2,... ) >
d = 3

an 17 ! nI—I‘}ii)énn

If £ = o)

then

(26) th = o(gnp-+ AZ7) (r=0,1,+--,p).

We may replace o by O throughout.

PROOF. It is easily verified that, since N, 7,

(27) Anr <Aprg and Aoeir <Agrois
and also
(27)’ 77;;,7 < "7;,1+1 and 77;;—1,7 < 77;1,T+1 .

The proof is now similar to that of Theorem 2, except that it is convenient
to express (24) in terms of the ¢}, namely
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Nparbn—Np by
28 t;—-l — n+rbn nbn-1
( ) 7\‘n+r—7\’n

Now the formula in (26) is true for » = p, by hypothesis; and if it holds for
some integer 7 in 0 <r < p then, substituting in (28) and using M, < N,4p»

8,7 = 0(Nn, 19,0+ ABT) + 0(A g r—1 7pne1,p-r ABZT )
_— ’ — 1
= 0("7n,p—r+1 Aﬁ,r’fl 5

by (27) and (27). The required result now follows by induction.

COROLLARY 3A. Denote A, = Mot/ Nper1—NMy) . If t?=o0() then
t:L = O(Ag_r) (7‘:0, 1,' "»P)a

PROOF. By (27), A, ,<<A,.=A, #=0,1,---), and using this inequality in
Theorem 3, with 5,=1, we get the result.

Note, incidentally, that Corollary 3A is directly analogous to one form of
the limitation theorem for Riesz means (see Borwein [1], Lemma 2; or for
k=p, a non-negative integer, see Bosanquet [2], Lemma 3; we write o in place
of O); thus denoting the Riesz mean of order « by R¥{w)=0"A%(®), the result

is:
R(w) = o1) implies R (w) = o(AS™) Ay <0 < Npyy, #=0,1,+ -, [&]).
COROLLARY 3B. If A,=0Q) or, what is the same thing, if

[(6)] lim inf (A pay /M) > 1

then (C,\, p) is equivalent to convergence for any integer p.
PrROOF. If (6) holds then, by Corollary 3A4, 2 = o(1) implies #,=0(1).

4. The Inclusion (C,A, p) & (R, N, p). In considering an inclusion relation
of the form CE A, it is desirable to be able to express the A-means of a
series ) _a, in terms of its C-means, and then to consider conditions under
which the resulting transformation is regular. This problem is simplified
when the matrix of C has a readily calculated inverse, as is the case with the
(C,n, p) method, where the inverse can be expressed in terms of divided
differences; both Jurkat [8] and Burkill [3] make use of this, though in the
former case the notation is somewhat different from that adopted here. Thus,
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given a function f defined in an interval [a,b], and distinct points x; in this
interval, we denote f[x] = f(x) and

(29) f[xo,xl,...,xn]____ f[xoa""xna—:;]__x{[xl"",xn] (n=1,2’...);

for an exposition of the properties of divided diffrences see, for example,
Milne-Thomson [20, Chapter I]. Since f[x,,+--,x,] is independent of the
order of the arguments, we may suppose that a=x, <x, <:++<x, =b.
If the derivative f™(x) exists in (xy, x,), and f*"(x) is continuous also at
the endpoints x,, x,, then [see 20, p. 6]

(30) Slxoy e+, x,] = —anf(")(f), for some € in x, <& <x,.

Thus in the special case where, in the interval [x,, x,], f is a polynomial of
degree less than n, flx,,+++,x,] =0. Any divided difference is expressible
in terms of the functional values at the points x; as follows [see 20, p.7]:

(31) flows ezl = SR where b= T (@2,
i=0 @ J=0

and IT' indicates omission of the zero factor given by j=i.

LEMMA 1. Let g(x) be defined for £=>0. Then

»

(32) Z go\'u) a, = Z (- 1)7‘ 9[7\'7;+1, b ,7\'n+7+1] C:l,

7=0

+ (_1)p+1 Zg[)‘w MY 7\'u+p+1](7\‘u-!-p+l_)"u) C,l}:l .
v=0

PROOF. The proof is by induction on p. First, using
CS - C3—1 =a, and g[)'ua 7\'u+1]()"u+l_7\'u) = g(hv+1) - 9(7\'.1) ’

we easily verify that (32) is true for p=0 (and any n>=0).
Now for any non-negative integer p we have, using in succession (21),
partial summation, and (29),
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Z 9[7\-", DY 7\lx.+p+1]o\'u+p+1_7\'v) Cf')
v=0

= Z 9[7\,,,, T )"v+p+1](C5+l— Cffll)
v=0

n

= {g[hu, ct 7\'u+p+1]—g[7\w+1, cc M+p+z]}C.’f“+g[7\m+1, M) 7\'n+p+2] CZH
v=0

= - Zg[hv, ctcy 7\'u+p+2]()"u+p+2_7\'11) Cx‘)Hl + {/[7\'n+1, ctey, 7\'n+p+2] Cg+1
v=0

and by substituting this in (32) we see that the right hand side of (32) has
the same value for any non-negative integer p; since for p = 0 it is equal to
the left hand side (which is independent of p), the result follows.

Now define

(o—z)y <z <o),
0 (x> w).

Given o > 0, let n be the integer such that A, <w < \,.,; then the Riesz
sum is

A@) = T (@—M)a = :LZ(:,,,(M) a

<o

and the Riesz mean is
R(0) = 0 ?A"(w) .
We now employ Lemma 1 with ¢(x) = c.(x). First, since c.(x) = 0 for

x>, and each of the points N, ({ =n+1,--+,7n+r+1) satisfies M, = 0, we
have

Cw[)’n-i-l; b a7\'n+r+1] =0 (7"-_—0, 1, 29 M ) .

Further, if 0 <v <n—p—1 then M\, <M, < and ¢,(x) is then a polynomial
of degree p throughout the range A, << x<\,;,.; —any divided difference of
order greater than p, taken at points x; in this range, will then vanish; in
particular,

Cw[)\'vy' i 77\'v+p+1] =0 for 0<V<n_P_l
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In case n < p, define C? = 0 for v <0. Then, by Lemma 1,

n

(33) Ap(m) = (_ 1)p+1 Z CmD\‘v’ Y 7\'u+p+l]o\'u+p+l"‘7\'1;) Cff ()‘n < <xn+1) .

v=n—p

This is the same as the expression for T(w) given half-way down p.58 of
Burkill [3]; it is stated there as being obtained from [3, Lemma 1], which
assumes the restriction on A stated in this paper as (4). In terms of the Riesz
mean R”(w) and the (C,\, p)-mean ¢, (33) may be written

(34) Rp(m) = Z af("’) ty (7\'1; <o <7\'n+1)
v=n-—-p
where
(35) d,’;((o) = (— 1)p+lw—p cm[)\'m b :)\'u+p+1]()\'u+p+1—7\'u)7\'u+1 e 7\'u+p .

THEOREM 4. (CMPDE RN P (p=0,1,2,---).

(0—2)?
(x_)'n-fl) b (x—)'u+p+1)
<n and M <2<\, <o Ny <+++ <Nypu. By the expansion formula
(381) for divided differences, we then have

PROOF. Denote h(x)=

where 0 <<n—p<»

p+p+1 c ()\') vip+l
CmD\'u, e v+p+1] = Z mﬁ ) where But = H (7\‘1_7\'1)
i=p vi J=v

n EVAY:
—_ Z (iﬁ_x“‘)_ s since Cmo\'i) = 0 for Ni>hn+l >a)
t=p vi

and also
}lvD\'u, DY n] - Z hﬁ(hi) ’ Where /31’15. = 1—[ ,()'i—)'j) .
i=y vi J=v
But, by definition of A,(x),
hv(hi) . (&)—7\.,)” _ (&)_hi)p

/31:12 - (7\‘1‘,'—7\'71+1) °° ‘(M‘Mwﬂ)ﬂ;i - ieul.

and hence

(36) Cm[)"u, Y 7\‘u+IH—1] = th\'u’ e )k'n] (0 < n_P< 4 < n)-
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Also, by property (30) for divided differences,

hl(}n—v)(g) .
(37) B[Ny, e e A ] = 7(751:;)' - for some & in A, <KEA,.

Now the denominator of A,(x) contains v+ p—n+1 factors, all negative,
so that

(— 1> hy(2)> 0.

Further, logarithmic differentiation of A/(x) gives

and since A, = w for 7z >n+1 we have
YWr)<L0 for A<\, v<{n—1.

Then, since y(x) alternates in sign on successive differentiations, we can
differentiate A,(x) any number of times using Leibniz’ theorem and prove
easily by induction that
(38) (=1 () =0 (A, <<z <KN,)
for n—p<v<{n, r=0; or for n—p<Lv<n—-1, »=0,1,2,---.

A combination of (36), (37), (38) (with » = n—v) now yields

(—1)p+lcm[)"v, ctcy 7\'u+p+1] > 0 (ﬂ—p< v < n)

and since the other factors on the right of (35) are also positive, it now follows
that

aﬁ(w)>0 (n—P<V<n,)'n <a)<7\'n+l),
so that (34) is a positive transformation. Now we clearly have
limaw) =0 (»=0,1,2,---)

since al(w) =0 for v <n—p. Hence (by the Toeplitz theorem) in order that
t? — s always implies R”(w) — s it is necessary and sufficient that
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n

(39) lim 3 a(w) = 1.
O yep—p

Since, for n > p, the transformation (34) is independent of A,, let
M=0, a=1, a=0 (@>0);

then #£=1 for every », and R?(w)=1 for every >0, and substitution in (34)
gives at once

Sat@)=1 A <o< Ny, 2> P).

v=n—p

Thus (39) holds and we conclude that, for any sequence {A,} of non-negative
numbers increasing to infinity, and for any non-negative integer p, (C,\, p)
C (RN, P). ’

COROLLARY 4. Let 2= o(y) (9,> 0) and denote », , = mzéxsn,j. Then
n—-p<vn
R () = 0(nn,5) My <0 <Nyiy) -

PROOF. This follows at once from the theorem on putting # = (5,)"' ¥
= 0(1) and noting that

n

| R (@) <y 20 al(@)]2h] .

v=n—p

REMARK 1. If we put #, = Ny41+ ¢« Nyypny in Corollary 4, the result can
be put in the form

C? = o(n,) implies A(w) = o{w” max —%_} ,
n—p<r<n 7\'v+1 e )\'v+p !

but, writing #, , = max s, it is possible to obtain an alternative result (which
n—p<v<n

in some cases may be better than Corollary 4 — compare with the forms of
Theorems 2 and 3), namely:

(40) Ch = o(n,) implies A'(w) = 0(n,,) A, <o<\,y).

To prove this, we note that the transformation (33) contains only p+1 terms,
so that (40) will follow if we can show that, for v, <e<X\,., and n—p<v<n,
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ColMos * * ¢ s Nprps1]Nyipii—A,) = O(1) independently of 7.
But
ColMs * * + s MyrprtlMips1—=N) = CalMuity = = ¢ s Muspra] — CalMyy * + + 5 Ny
and it is therefore enough to show that
(41) ColMy o, Nsp] = 0Q) for n—p<v<n+1, A, < o< INps;.

Now although ¢P(x) may not exist at r=w, ¢ P(x) exists everywhere (and
is continuous); thus, by (29) and (30),

07\:1; ,'-c,),”+ —Ce ”...’ » _
ColNyy = =+ ’7\'"+p] = sy hp] _C)\,D\' Nyip 1
v+Dp v

_ edTV(E)—cN(ED
B (P_ 1) ! (7\».;+p— 7\'v)

where & >N\, £, >N\,;1 > N\,. Calculation of the derivative then shows that,
for 2,

@) | < p! max(0, 0—&) < P! Nuii—A) < P! M=),

provided that v >n—p+1; and (41) therefore holds for these values of .
In the excluded case v=n—p, we have c,(x)=(0—x)? for <\, <w, and hence

CaD\'n—p: ¢ :)'n] = (__1)1),

thus (41) holds in any case, and (40) follows.
This proof of (40) provides a simpler proof of Theorem 4 if we know

that

(3] M = Oy) -

For, if 9, = ANps1++ * Npsp and (3) holds, then, for A, < o,
Map = 12 = O = O(e”)

(40) then shows that:

If (3) holds then (C,N, ) E (RN, D).

However, the more delicate analysis in the proof of Theorem 4 shows that (3)
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can be dispensed with entirely.
REMARK 2. It is well-known (see, for example, [5], Corollary 1.62) that if
[(6) liminf (A\psi/An) > 1

then (R, M, «) is equivalent to convergence for any « >0. This fact, together
with Theorem 4 and Corollary 1B, shows that if (6) holds then

ISCMPERMPET

and we get an alternative proof of Corollary 3.

5. The Inclusion (R,\, p) S (C, A, p). In this section we deduce informa-
tion about (C, N, p)-means from knowledge of the (R,\, p)-means (i.e. in the
opposite direction to the results of §4). In order to obtain an inclusion
theorem we shall impose a restriction on A when p> 3, namely that given
in (2). Some lemmas are required.

LEMMA 2. Let Q(t) be a polynomial in t, of degree p, and define
coefficients 0%(w) by

(42) Qlo—x) = pZ 0%(w)x" .
Then
(43) ; Q) a, = Z 0%() A’(®) .

PROOF. Put £ = 0—A\, in (42), multiply by a,, and sum over all values
of v such that A, < »; then

S Qe = X a3 te) o0 = 5 6w) A7),

<o A,<e =0

on interchanging the order of summation and using the basic definition of

A'(w).

LEMMA 2. If pnr» = Mprrs1—Nns1 and coefficients 627 are defined by

)
(42), x(x+/'°71,1)(‘r+fl’71,2) M (x+,u"n,p—1> = Z oprx”

r=1
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then

D
(43) Co=>"60r"A"(\psy) (=1,2,3,+-).

r=1

PROOF. Let Q) = (Wps1—2) + * * Mnsp—1); then, by (19),

CZ = iz Q(Nu) Ay,

also
QWi —x) = [Ny — N1 —2)] Nase—Qper—2)] * o+ [7\'n+p—(7\:n+1_x)]

= x(x—'_:u’n,l)(x—*'ﬂn,?) ce (x+/"n,p—1) .
The result follows Lemma 2 on taking o=»N,;-

LEMMA 3. Let p be a positive integer and 0 <¢, . If

(44) Aw) = 0o(€,) Ay <o <Npiy)
then

P — e e o -————W_)In p-l
(45) Cn - O(C'n))'n*“z 7\'n+p [;7\1”+7;(7\'n+1"_7\'n)} .

We may replace o by O throughout.

PROOF. We first recall the limitation theorem for Riesz means in the
form corresponding to Corollary 2 (see, for example, [5], Theorem 1.61) that
(44) implies

(46) A(@) = 0(&n/ AN [P77) My <O <K Npaa; 7 =01, ¢, P).

From the definition of 67? given in (42) we see that, for fixed n, 67? is the
sum of all the products of p—r different u,;; since p,; = Apiir1— Apss
increases with ¢ (for each fixed ), it follows that

(47) 0< eﬂ'p<Kp/"n,r,u’n,r+l *c Map-1 -

Substitution of (46) and (47) in the result (43)" of Lemma 2’ now yields

»
(48) C?"’L = O(gn)z F’n,r#’n,r%»l M 'l"n,p—-l/(k'ni-l_)\'n)p—r .
r=1
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But g, /N4 increases with 7, and hence

_ M < Fn,p-1 < Nntp= N (i=1,2, cee p— 1);

7\-n+i+1 7\'n+p )\'nﬂ)

substitution of this inequality into (48) now gives

p 7\’ - p-T
C:;,:o n A'n T 7\'71 ."A'n [&&l—]
(é‘ ); +7r+1 +r+2 +p 7\:n+,,(7\,n+1—7\;,,)

D
=o0(,)> b,., say.
7=1

,
M1 Nntrer *

D
n+1

Now b, , = " Mty (n,n)" ", where

Mt ot p—Non)
9 l — Mn+i\Antyp n) .
(4 ) " )'n+p(7\'n+1 _)‘n) ’

and, since [, ,>1, b, .\, as /. Hence C2=0(¢,b,, ), and this is the required
result (45).

REMARK 3. Writing &, = A2, &, and with [, , as defined in (49), we can
deduce from Lemma 3 a result in terms of the means; thus: Let A2, &,
and N, <o < N4y ; then

(50) R"(w) = o(§,) implies t] = o{&,(L,,,)" "'} .
A slight improvement might apparently be effected by avoiding the use of

the inequality g, ;-1 <Au+p—N, which appears just after (48), and concluding
the proof of Lemma 3 very nearly as before. Thus write

lr — 7\'n+1()\'n+p_7\'n+1) .
"P 7\'n+p()\'n+1_)"n) ’

then (50) can be modified to
(50) R¥(w) = o(;) implies t, = o(&,) max {1, (0,,)" 7'} ;

however, we see that [,, <[, ,<lIl,,+1, so that (50) and (50) are in fact
equivalent statements.

Before deducing an inclusion theorem, it is worth noting that if we
sacrifice some of the generality of hypothesis (44) we can use, in place of (46),
the improved limitation theorem of Bosanquet (already mentioned after our



432 D. C. RUSSELL

Corollary 3A) to yield the following result:

LEMMA 3. Let p be a positive integer, pt+a >0, and L, ,-1 be defined
as in (49), with ([,.,,)° interpreted as 1. If

(44y R*(0) = o(0”)
then
(45) 1= oMin(lusrp-0)" '} -

We may replace o by O throughout.

PROOF. Bosanquet’s result [2, Lemma 3, with o in place of O] can be
stated as follows: if (44)" holds then

A'(w) = 0(@"A2AZT) for A, <o Apyy, 7=0,1,+-+,p.

Now A"(w) is a continuous function of , if > 0; and hence the order con-
dition on A”(w) if valid also for o =, and r=1,2,---,p Thus, putting
®=X\, and then replacing n by n+1, we get

(46) A"Nprr) = oNVIEAZTD), 7=1,2,+++,p.

Since the summation in (43) starts at »=1, we can now follow through the
proof of Lemma 3, using (46)" in place of (46) and omitting the inequality
Honp—1 < Aprp—N, which follows (48). We thus arrive at

p
Ch = o(A341) Z b;z,r

r=1
where b, = N1 Mpsrsr = * * Mpiplns1,p-1)" ", and conclude, by the same method
as in Lemma 3, that C2=0(A%,, b, ;). When expressed in terms of the means
t5, this is the required result (45)".

When the hypothesis is (C, A, p)-summability, the case in which /, , or
lu11,p-1 1s bounded is clearly of interest in deducing an inclusion theorem ;
and then, since [, ;=1 and /,, increases with », Lemma 3 will be more
effective than Lemma 3 for this purpose. We first draw attention to the
condition

[(2)] An-l - O(An) »

and then prove:
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Let q be a fixed positive integer greater then 1; then
(51) l,a =0Q) if and only if (2) holds.

For: {,,/ asr/, so that [, ,>=1,,> A,/A,,, for ¢ =2, and (2) is therefore
necessary for boundedness of /,, Conversely, if (2) holds, then

B s M =

7\'n+q_7\'n <7\'n+a*7\'n+a—1 7\Jn+1’“7\'n 1 1 O 1
7\'n+a = 7\'n+ll 7\'n+1 An+q—1 An

and hence /, ,=O().
THEOREM 5. Let p be a non-negative integer; if p—=>3 assume that
[(2)] Apy = OA,).

Then RMPE(CN D).

PROOF. We may suppose, without loss of generality, that >_a,=0(R,, p);
the result now follows from (51) and Lemma 3" (with a=0).

It would, incidentally, be of interest to know whether (2) is a necessary
condition for the inclusion (R, A, p) S (C, N, p) when p=>3, but I have been
unable to prove this, or to find a counter-example. (Added in proof : see [28])

REMARK 4. Sin e, by Theorem 4, the reverse inclusion to that of
Theorem 5 is true unrestrictedly, it follows that if (when pZ>3) (2) holds, then

(52) (C’ N, P) -~ (R> A, P) (P = 0> 1: 2) ° . ') .
We note that (see §2) (2) is implied by either of the conditions
[(4)] 0<a < hs; — N < b <0

[(5)] A,

Hence we have:

COROLLARY 5A. [Burkill 3, Theorem 1] (4) implies (52).

COROLLARY 5B. [Jurkat 8, Satz 1] (5) implies (52).
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As remarked in §1, Jurkat has given a definition of (C,\,«) for non-
integral «. He has shown in [8], Satz 1, that (C,, ) and (R, A, ) are equivalent
for all positive « if

A, |AN,| is monotonic, z|AM,|*™ 7.

This result has been used by Maddox [17, Theorem A] to show that (subject
to these restrictions on A\) a necessary and sufficient condition that

> la8,| converges whenever > a, is summable (R,\, k)

is >A%|g,| <oo. For any &> 0, it is enough to assume our condition (2) for
the sufficiency part of the proof (as is clear from Maddox’ proof). Conversely,
when «=p, a positive integer, use of our Theorem 4 and Maddox’ method
(using his key Lemma 4) shows that a necessary condition for the result
(without restriction on A) is Y A%, ,{&,| <co, where A, ,-; is given by (25);
and if (2) holds then this implies > _AZ|E, | <<co.

We drew attention in §1 to the problem of finding necessary or sufficient
conditions for the inclusion relation (R¥*,A, k) S (R, N\, «). Kuttner [15] has
shown that if «=2, then a necessary condition for this relation is that A,
= O(1) (both methods then being equivalent to convergence), and conjectures
that the same result holds for ¥ > 2. Now it is not difficult to show that, for
any ¢ > 1, (2) is a necessary condition for this inclusion relation; consequently,
if p is a positive integer we have, by Theorems 4 and 5,

RN D) S (RN, p) if and only if (R¥,\ p) S (C)N, p).

Although the second inclusion appears to be as difficult to deal with as the
first, at least this may provide, for integral «, an alternative line of attack on
the problem.

6. Relation of (G,\) to (R, A, p) and (C,\, p). We consider here the
summability method (G, M) referred to in the Introduction. Suppose that g(x)

is defined for £ >>0; given a series > a,, denote
Gi(h) =3 gwh)a, (h> 0)

whenever this last series converges. We say that ) a, is summable (G,\)
to s if Gy(h) exists in some interval (0,%,) and Gy(h) —s as h-—>0+. The
conditions to be imposed on ¢ will be
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(53) gO0+) =¢0) =1,
(54) ¢ exists and is of bounded variation in [0, X] for any X> 0,

(55) ¢ x) =0 ™) as £—> 4+ (r=0,1,-+-,p),

where p is a non-negative integer and 2> 0. The first condition is necessary
for regularity of (G,\); we impose the second since we shall be making use
of Stieltjes integrals and this will ensure their existence; the third condition
anticipates possible application to generalized Riemann summability (see [24]
and [25]), since it is satisfied by g¢(x) = (sin z/x)* (with the restriction u> p
if p is not an integer).

A theorem dealing with sufficient conditions for (R,\, ) E (G,N) (where
« need not be an integer) is given in a forthcoming paper [Russell, 25]; the
result for k=p, a non-negative integer, is as follows:

THEOREM 6. Let p be a non-negative integer, u—=p, and AZ = o(\:);
and let g denote a function with the properties (53), (54), (55). If

(56) [ 2idg» @) <o
then
G RN HEGN).

Since (by Theorem 4) (57) implies

(58) CxMpEGN),

Theorem 6 also provides sufficient conditions for (58). Conversely, necessary
conditions for (58) are also necessary conditions for (57) (of course, if we
postulate condition (2) on N then, by Remark 4, (57) and (58) are equivalent
statements). The main result of this section will show that, subject to some
reasonable restrictions on A (in fact, we assume (3), (8), (9)), (56) is a necessary
condition for (58). Since we shall make use of Lemma 1, we first need a
lemma giving conditions under which the first sum on the right of (32) tends
to zero as n — oo,

LEMMA 4. Suppose that p is a non-negative integer, p >0, ¢ (x) exists
for £ =0, and (55) holds. Let C% = o(y,), where 0 <9, /, and

(59) M = OO\’zH)’ Nn = OO\'ZHIA?\'nIp) .
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Then

v4
(60) S (=1 gNpsrs* * * s Ml Cr = 0(1) as n— oo

7=0

PrROOF. By (30) and (55) we have, for » = 0,1,-+-+,p and for some &,
il’l 7\‘n+1 <§r <)"n+'r+17

lg[)‘ni-l’ DR )'n+'r+1]l = Ig(r)<gr)//r! [ < Ké’r_ﬂ < Kh;-‘:l 5
where K is independent of n and r; also, by Corollary 2, C? = o(n,) implies
CZL = O(nn/lA)'nlp_T) (T‘ = 0’ 19' ° ;P) .

Using these estimates, together with (59), we obtain

3 P
Z (*1)7 gD\onﬂ, *t 7"n+r+1] C; = 0(’7717";&1) Z IA)'n I e
r=0 r=0

= o(n, M k)(L+ [ AN, [ 77)

=o(1) + o(1).

LEMMA 4. Let g satisfy (65), p=p, and ) a,=0(C,N, p). If p=>1
assume that (9) holds, and if p==2 assume in addition that (3) holds. Then
(60) follows.

PROOF. Take 7,=1 (=0), 7, = Aps1** *Apsp (p=1). Then (3) implies
7. = OWii) = ONia) for p=p;
while (3) and (9) together imply
7 = OWNin) = O(AR] AN, [7) = O | AN, [7)
Thus the hypotheses of Lemma 4 hold, and the conclusion follows.

THEOREM 7. Let p be a non-negative integer, pZ> p, and g denote a
Sunction with the properties (53), (54), (55). Assume that

[(®)] lim inf 1 max (M, —N,_y) = 0;

oo n 1<vgn
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if p=1 assume also that
(O] AL = O s
if p>>2 assume in addition that
(3] Mo = O(N,) .

Then in order that (C,\, p) € (G, \) it is necessary that
(56 [ #lag@) <o
0
PROOF. Using Lemma 1 and replacing A, by MA (A>0) in (32), we obtain

n ¥4 n
(61> Zgo\wh)'av = Z(_h)r ‘(][Nnﬂh; s Nprr h] C;; + Z‘yl’;,u t,
v=0 7=0

V=0

where

(62) ryg'v = (_1)p+1 hp+l gD\lvh’ ctey, 7\'u+;n-!—1 h] ()"u+p+l—7\'u) 7\'u+1 e )\'u-!-p .

Now the hypotheses of Lemma 4’ are included in the hypotheses of this theorem
and hence, for every series summable (C,M, p) (to zero, without loss of
generality), the first sum on the right of (61) tend to zero as n— oo, for any
fixed h. Further, if (C,\, p) © (G, M) then, whenever t#=0(1), Gy(h) must exist
for each 2 in some interval (0, H) (i.e. the series defining it must converge)
and Gi(h) = o(1) as A —0+. It then follows, on letting n— o in (61), that

Gi(h) = XM, t2 (0 <h <H)
v=0

and that this transformation must be regular. But then, by the Toeplitz
theorem, it is necessary that, for some A, < H,

(63) sup D |7, =M <o

0<h<he o

Let us, for the moment, replace NA by x,; let X > 0 be arbitrarily given,
let {x,} denote a partition

O=x_.1<xo<x1<"‘<xn+p=X,



438 D. C. RUSSELL

with norm 8 = max (x,— Zy-y),
0 <n+p
and consider the sum

n~1

(64) S({x.,}, [f P) = Z Ig[xu, ety xv+p+1](xv+p+l_xv) Ty+1** xv+p|

v=0

n—1

= Z lg[xm, cee L, Ty — g[xu, SN s | NPT A

v=0

1 n—1
= P‘ Z ' g(p)(éu-fl) - g(p)(év)]xnml e Tyip,
* V=0

where x, <& <x,., w =0,1,--+,7n) for p=>1. Ideally, we should like this
X

last sum to be a Riemann-Stieltjes sum for the integral f z?|dyP(x)|, but
0

we cannot deduce this at once, since {£]} is not necessarily monotonic, nor
do Z,41,+*+, Tus, necessarily lie between & and §,... Accordingly, we let
N = N(n) be the integer such that Np<{n <(N+1)p; then we note that,
when p>1,

0=a_, <z <& <z, <E < Ty <byy <oov <y < ZTwrinp < Lnap = X

Now, for (r—1)p<v <rp, we have L1+ Zysp = Zh1 > xh_1yp, and hence

(65) Z lg(”)(érp)—g“’)(&r—m) | b1y
= Z Zh-1yp Z {g(”)(ém) - g“’)(f»)}
T=1 v=(r-1)p

< Z ,g(p)(gw-l) - g(p)(&z)lxwrl s ZLyip
v=0

<p Sz}, 0. P)-

Since oggﬁp(x.,——x.,_l) =8, we have x,,—Z¢-1, < p8 and

xfﬂ - xg"—l)l? < P‘rg;l(pr—x(T—l)ﬂ) < p2X‘p—18 = K8 (7" = 17 2, ) N);

thus since, by hypothesis, ¢ is of bounded variation in [0, X], it follows
that, given &> 0,
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N
(66) 2 g ) — g Er-1p) | (Xh— Zh-110)
r=1

<st |dy»(x)] <& for &< n,(e).
[]

Further, X—§&y, < Zn,— 2w, <2p8 and & <z, <(p+1)8, whence

&0

67) @) — @OlB <X [ 140@)|

(p+1)8

< Xr . ldg(")(x)l <& for & <8,

X
9 49 = &) 2ty < X0 [ 149
Np

X
<pr |dgP(x)] <& for & <ny8).

X-2p8

Now define & ,=0, &w.1p,=2X, and note that

E(T—l)ﬂ < Zrp <Erp, Efp_E(T—l)p < ZPS (T=O, 1, ttty N+ 1) .

X

Then, since f x?|dg®(x)| exists as a Riemann-Stieltjes integral (¢ is of
(1]

bounded variation and x” is continuous), it follows that

N+1

@) | 169E) — 92l 25— I”ldg(”)(x)||<8 for & <n.(®).

Writing #(&) = min(zy, s, 75, 7.), & combination of (65)-(69) now yields at
once, for a positive integer p,

(70) P S}, 9. P = ﬁ ;"ldg(p)(x)l— 4& for & < (8.

n—1
In the case p=0, S({z.},¢,0) = > |g(xss1) — g(x)| and (70) follows trivially.
v=0

We shall reach the required conclusion of the theorem by combining (63) and
(70), with a suitable choice of {z,}.

Employing the hypothesis (8), there is an increasing sequence {n;} such
that
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max (\—A-) =0 as 7— oo,
ny+p 1<UEng+p

(71) 3 =
With X > 0 arbitrarily fixed, let {A,} be the sequence
hi = X/Mpsp (G =1,2,044);
then 0 < h, < h, for > 4,, and A, — 0+. Write
xd =Mhy, O<v<n+p);
then, for each 7, {x{"} forms a partition of [0, X] with norm 8=8"X, where

3™ is given by (71); and hence, given 7(€)> 0, we can find I(€) > 7, such
that 8§ <#(&) for 7> I(§). Then, from (62), (63), (64),

M>= supz (Y80l SUPS({IU)} ¢ P)
i>17 v=0

=S({z}, g, p) for any i> i,

> 1 f o d (@) — L& for i> Ie), by (70).
= P Jo g P‘ ?
Since M and the integral are independent of Z, it now follows that
"
[ #1a @i <pm
0
for arbitrary X > 0; thus, letting X — oo, we obtain
[ zidgo@) <ptm

and this completes the proof of the theorem.

We may choose, from the diagram of implications given in §2, conditions
on A which imply those postulated in Theorem 7 —for example,

(D] Nns1/ N — 1
implies (3) and (8). Or
[(D] 0<a < N1 — 2, Kb <0
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implies (3), (8) and (9) — and, incidentally (Corollary 5A4) (C, N, p) and (R, N\, p)
are then equivalent. Though (4) is a somewhat restrictive condition, nonetheless
we obtain a non-trivial corollary by using it in Theorems 6 and 7; thus:

COROLLARY 7. Let pz= p=0, g satisfy (53), (64), (55), and N satisfy (4).
Then (R, p) & (G,N) if and only if fx”ldg"’)(x)l < oo,

A special case of Corollary 7 would be given by A, = n, and we should then
obtain a necessary and sufficient condition in order that (C, p)=(G,n). The
special case of Theorems 6 and 7 in which (G,A) is the Riemann method
(R, N, u) has been examined in more detail in [24] and [25].

It would be of interest if some of the results of the present paper could
be extended, at the cost of minimal additional restrictions on A, to non-integral
values of p; or if some of the results of Jurkat [8] in this direction could be
obtained with lighter restrictions on .
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