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AN EXTENSION OF AN APPROXIMATION PROBLEM
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The following problem, which first was proposed by Itό, is of some
interest to the theory of probability:

If f{n) is a sequence with

(i) Ϊ
71 = 0 ""

does there always exist a polynomial P(x) such that

for any assigned 8 > 0 ?

Izumi [2] has given an affirmative answer if (1) is strengthened to

oo

Σ \Kn)\*/w<n < °° f°r some w > 0.
71 = 0

A more general existential proof, based upon the Hahn-Banach Theorem is
due to Edwards [1].

In this paper we shall obtain a very short and simple proof of the
following extension of Itό's problem:

THEOREM. Suppose that

(2.1) ί H(\f(t)\)dct(t)< oo,
Jo

fit) continuous for t^O, H(t) > 0 continuous and not decreasing for
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H(0) = 0, a(t) not decreasing for t > 0.

(2.2) H(\x+y\)<K[H(\x\) + H(\y\)]

for every x, y with some constant K independent of x, y.

(2. 3) I H(eut) da(t) < oo for every u>0.

Jo

Then, for every £ > 0 there exists a polynomial P(x) such that

fH(\f(t)-P(t)\)dct(t)<€.
Jo

PROOF. TO prove our theorem we only need the familiar Weierstrass
Approximation Theorem:

LEMMA. Let h(x) be continuous on [0, 1], then, for every £ > 0 there is
a polynomial P(x) such that

\h(x)-P(x)\<8 Or s [0,1]).

By (2.1) we now choose a number N, so that

(3) f H{\f{i)\)da(t)<s.

(2. 3) implies I dcί(t) <oo. Therefore it is easily seen that there are a number

O and a continuous function g(t) for t^O such that g(t) = O for

and

J
JY+c

H(\f(t)-g(t)\)da(t)<ε.
0

Thus by (3) and (4)

(5) f H(\f{i)-g{t)\)da(t)<26.
Jo

k

By the above Lemma there is a polynomial B(x) = Σ bυx
v such that
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(6) \g(t)-B(.e-t)\ <£ for ί > 0 .

Hence

(7) I # 0 1 <« for t^N+c.

Here

v=0 i=o

We define the polynomial

(8)

It follows immediately from (8) that

0) |P^)KΣl*.l

Thus we get by (2.2)

- PB(ί) I) da{t) < ϋ : [ H( I /(ί) - g(t) I) ̂ ( ί )

t) - P^t) \) da{t)

Here, first A,<2iC£ by (5). Secondly, A,<K2H(€) f da(f) by (6). Thirdly,

A3<K> f H(\B{e-t)-PR{i)\)da{t) + K> [ H(\B(e-*)\)d*{t)
Jo JM

+ X3 f H{\PR{t)\)da(t) - E, + £2 + E3 by (2. 2).

We now can choose M > iV+c by (9), (2. 2) and (2. 3), so that E3 < 8 uniformly
for R. Plainly PR{X) tends uniformly to B(e~x) in every finite interval of x
when i?-*oo. Therefore we can choose an integer R such that Ev < 8. Finally,
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E2<K3H(S) ί da{t) by (7). Thus we have proved

f~H(\f(t) - PR{t)\)da{t) < 2{K+l)ε + (K*+K>)H(ε) Γda(t),
JQ JO

which completes our theorem.
The conditions (2. 2) and (2. 3) of our theorem for example are satisfied if

= t", p>0,

Thus we have proved the approximation Σ —f" \f(n) ~~ P(n)\p < £ f°r anY
n=0

sequence /(/z) with ^ —j— | / ( n ) | p < oo . Obviously the special case p = 2 is

Itό's problem.
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