Tôhoku Math. Journ. Vol. 18, No. 1, 1966

AN EXTENSION OF AN APPROXIMATION PROBLEM PROPOSED BY K. ITÔ

LOTHAR HOISCHEN

(Received September 22, 1965)

The following problem, which first was proposed by Itô, is of some interest to the theory of probability:

If f(n) is a sequence with

(1)
$$\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} |f(n)|^2 < \infty ,$$

does there always exist a polynomial P(x) such that

$$\sum_{n=0}^{\infty}rac{\lambda^n}{n!} |f(n)-P(n)|^2 < arepsilon$$

for any assigned $\varepsilon > 0$?

Izumi [2] has given an affirmative answer if (1) is strengthened to

$$\sum\limits_{n=0}^{\infty} \, |\, f(n)|^{\, 2} / w^n < \infty \quad ext{for some} \quad w > 0 \, .$$

A more general existential proof, based upon the Hahn-Banach Theorem is due to Edwards [1].

In this paper we shall obtain a very short and simple proof of the following extension of Itô's problem:

THEOREM. Suppose that

(2.1)
$$\int_0^\infty H(|f(t)|) \, d\alpha(t) < \infty ,$$

f(t) continuous for $t \ge 0$, $H(t) \ge 0$ continuous and not decreasing for $t \ge 0$,

H(0) = 0, $\alpha(t)$ not decreasing for $t \ge 0$.

(2.2)
$$H(|x+y|) \leq K[H(|x|) + H(|y|)]$$

for every x, y with some constant K independent of x, y.

(2.3)
$$\int_0^\infty H(e^{ut}) \, d\alpha(t) < \infty \quad for \ every \quad u > 0.$$

Then, for every $\varepsilon > 0$ there exists a polynomial P(x) such that

$$\int_0^\infty H(|f(t)-P(t)|)\,d\alpha(t)<\varepsilon\,.$$

PROOF. To prove our theorem we only need the familiar Weierstrass Approximation Theorem:

LEMMA. Let h(x) be continuous on [0, 1], then, for every $\varepsilon > 0$ there is a polynomial P(x) such that

$$|h(x) - P(x)| < \varepsilon$$
 $(x \in [0, 1]).$

By (2, 1) we now choose a number N, so that

(3)
$$\int_{N}^{\infty} H(|f(t)|) \, d\alpha(t) < \varepsilon$$

(2.3) implies $\int_0^{\infty} d\alpha(t) < \infty$. Therefore it is easily seen that there are a number $c \ge 0$ and a continuous function g(t) for $t \ge 0$ such that g(t) = 0 for $t \ge N+c$ and

(4)
$$\int_0^{N+c} H(|f(t) - g(t)|) \, d\alpha(t) < \varepsilon.$$

Thus by (3) and (4)

(5)
$$\int_0^\infty H(|f(t) - g(t)|) \, d\alpha(t) < 2\varepsilon.$$

By the above Lemma there is a polynomial $B(x) = \sum_{v=0}^{k} b_{v}x^{v}$ such that

L. HOISCHEN

(6)
$$|g(t) - B(e^{-t})| < \varepsilon \text{ for } t \ge 0.$$

Hence

(7)
$$|B(e^{-t})| < \varepsilon \text{ for } t \ge N+c.$$

Here

$$B(e^{-x}) = \sum_{v=0}^{k} b_{v} \sum_{i=0}^{\infty} \frac{(-1)^{i}}{i!} (xv)^{i}.$$

We define the polynomial

(8)
$$P_{\mathbb{R}}(x) = \sum_{v=0}^{k} b_{v} \sum_{i=0}^{\mathbb{R}} \frac{(-1)^{i}}{i!} (xv)^{i}.$$

It follows immediately from (8) that

(9)
$$|P_{R}(x)| \leq \sum_{v=0}^{k} |b_{v}| \sum_{i=0}^{\infty} \frac{|x|^{i}v^{i}}{i!} = \sum_{v=0}^{k} |b_{v}| e^{|x|v}$$

Thus we get by (2.2)

$$\int_{0}^{\infty} H(|f(t) - P_{\mathbb{R}}(t)|) \, d\alpha(t) \leqslant K \int_{0}^{\infty} H(|f(t) - g(t)|) \, d\alpha(t)$$

+ $K^{2} \int_{0}^{\infty} H(|g(t) - B(e^{-t})|) \, d\alpha(t) + K^{2} \int_{0}^{\infty} H(|B(e^{-t}) - P_{\mathbb{R}}(t)|) \, d\alpha(t)$
= $A_{1} + A_{2} + A_{3}$.

Here, first $A_1 \leq 2K\varepsilon$ by (5). Secondly, $A_2 \leq K^2 H(\varepsilon) \int_0^\infty d\alpha(t)$ by (6). Thirdly,

$$A_{3} \leqslant K^{2} \int_{0}^{M} H(|B(e^{-t}) - P_{R}(t)|) d\alpha(t) + K^{3} \int_{M}^{\infty} H(|B(e^{-t})|) d\alpha(t)$$

+ $K^{3} \int_{M}^{\infty} H(|P_{R}(t)|) d\alpha(t) = E_{1} + E_{2} + E_{3} \text{ by } (2.2).$

We now can choose M > N+c by (9), (2.2) and (2.3), so that $E_3 < \varepsilon$ uniformly for R. Plainly $P_R(x)$ tends uniformly to $B(e^{-x})$ in every finite interval of x when $R \to \infty$. Therefore we can choose an integer R such that $E_1 < \varepsilon$. Finally,

52

$$E_2 \leqslant K^3 H(\varepsilon) \int_0^\infty d\alpha(t)$$
 by (7). Thus we have proved
 $\int_0^\infty H(|f(t) - P_R(t)|) d\alpha(t) < 2(K+1)\varepsilon + (K^2 + K^3) H(\varepsilon) \int_0^\infty d\alpha(t),$

which completes our theorem.

The conditions (2, 2) and (2, 3) of our theorem for example are satisfied if

$$H(t) = t^p$$
, $p > 0$, $\alpha(t) = \sum_{n \leq t} \frac{\lambda^n}{n!}$

Thus we have proved the approximation $\sum_{n=0}^{\infty} \frac{\lambda^n}{n!} |f(n) - P(n)|^p < \varepsilon$ for any sequence f(n) with $\sum_{n=0} \frac{\lambda^n}{n!} |f(n)|^p < \infty$. Obviously the special case p = 2 is Itô's problem.

References

- R. E. EDWARDS, An approximation problem proposed by K. Itô, Tôhoku Math. Journ., 11(1959), 406-408.
- [2] S. IZUMI, On an approximation theorem in the theory of probability, Tôhoku Math. Journ., 5(1953), 22-28.

MATH. INSTITUT DER UNIVERSITÄT GIESSEN, GERMANY.