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NON-NORMAL ABELIAN SUBALGEBRAS

S. ANASTASIO®

(Received August 17, 1967)

A WH#-subalgebra A, of a W¥*-algebra ./ is said to be normal in A if
(ANnANA = A, (ie. if A, has the double commutant property relative
to A). A W+-algebra A is called normal if every W#*-subalgebra 4, of A
containing the center of ./ is normal in .

It is well known (cf. [3] and [4]) that all type I factors (in fact, all type
I W*-algebras) are normal. That no type II factor is normal is proved in
[3]. Examples of non-normal type III factors are contained in [5]. There
also exist a few examples of non-normal abelian subalgebras in factors of
type I (cf. [2], [4], [6]).

In this paper we give a rather simple construction of an infinite sequence
of abelian subalgebras which are non-normal in a hyperfinite type II, factor
A and which are pairwise non-conjugate under *-automorphisms of 1.

In section 1 we shall construct, for each n =4, a hyperfinite factor .4,
and an abelian subalgebra C,, which is non-normal in 4,. Since all hyper-
finite factors are *-isomorphic, we can suppose that all these subalgebras
exist in one hyperfinite factor. In section 2 we prove that the subalgebras
C., are pairwise non-conjugate.

1. Construction of subalgebras. The factors employed here shall be
constructed according to the following general scheme: Let G be a countable
discrete group with identity e. Let § be L,(G), the Hilbert space of square-
summable complex valued functions on G. For each ¢ €G there is a unitary
operator U, defined on by U,xz(y) = x(g'g). These operators generate a
W*-algebra 4 which is a factor of type II, if all the non-trivial equivalency
classes of G are infinite and which is, in addition, hyperfinite if G is the
union of an increasing sequence of finite subgroups.

Let $ be the set of those functions ye< § possessing the following
property : for every x € the convolution product x %y belongs to $. With
each ye ' we associate the operator U, defined by Uyx =x%y. Then
A= {Uy|ye} and we have:

*) Supported by NSF Grant GP 6551.
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(i) U*=U; (3@ ="
(ii) Upe=UUy and U,,, = Uy+U, (y,2¢9)
(iii) U, = U,, where &, is the characteristic function of {g}

Finally, if G is any subgroup of G, the operators U, (g < G) generate a
subalgebra A(G) of 4 and

AG) = {U.1z< 9, 2(9) =0 if g &£ G} .

The particular factors and subalgebras we shall work with shall be
constructed as follows:

Let F denote an infinite commutative field which is the union of an
increasing sequence of finite subfields. Then F = UFi where F; are finite
i=1

fields and F, &S F, & --.
For each n =4, let G, be the group of # X7 matrices over F of the form:

Ay Az Qg3 ° * * Qn1 Aig
0 1 a23 e az_n_.l agﬂ

0 0 1 ... A3 n-1 A3y

(1)

where a;; 0.

Let 4, be the W#*-algebra A(G,), the algebra generated by ail operators
U, (9€G,) on Ly(G,). It is proved in [1] that A, is a hyperfinite factor
of type II,.

For each n =4, let G,, be the subgroup of G, consisting of all elements
of the form:

1 b12 b13 b14 b15 s bl,n—l bln
01 b, 0 O -« 0 0
oo 1 0 0 --- 0 0
(2) 00 0 1 0 0 0

00 0 0 0 --- 1 0
o0 0 0 0 --- 0 1

and let H,, be that subgroup of G,, for which b,, =0. Let A, = A(G,,)
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be the subalgebra of 4, generated by the operators U, (g< G,,), and C,,
= J(H,,) be the subalgebra of ./, generated by the operators U, (g€ H,,).

Then, A,, is a maximal abelian subalgebra of 4, (cf. [1]) and C,, is
abelian. The following lemmas in this section will show that C,, is non-
normal in 4,.

LEMMA, 1. G,y is the centralizer of H,, That is, an element g<G,
commutes with every he H,, if and only if g€ G,,.

PROOF. Clearly, if g€ G,,, ¢ commutes with all of H,,.

Conversely, suppose g€ G, is of form (1) and gh = hg for every he H,,.
Let 2 be of form (2) with b, =0. Direct computation establishes the
result for » = 4. Assume now that » =05. Partition g4 as

g1 J12
(3) so that ¢,,¢G,_,.
0 1
Partition h as
hy, 0
(4) —_— SO that h“ € Gn-1|0¢
0 1

(Note that A,, need not belong to H,_.,).

Then :

guhu 912 hugu huglz

and hg =

() gh =

e 1

Now if gh = hg for all he H,, then ¢, h;; = hy,9,; for all hy, € G,y s0
that ¢, € Gu_y,0 since G,_, is maximal abelian in G,_; (cf. [1]).
Furthermore, ¢, = h;,01s, i.e.
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Ain @, + bay, + biag, + -0 + b[,n—lan—l,n
Aoy a2n+bl2a3n
(6) A3n = Asn
Ay-1,n Ap-1,n
so that a;, =0 for all j, 2=j=n—1, ie. g G, Q.E.D.

The following property (8") is a slight variation of the property (8) of
Dixmier [2].

DEFINITION 1. Let G be a group. Let G and H be subgroups such
that H= G= G. G is said to have property (8) relative to H if, given
an arbitrary finite subset B G and an arbitrary g< G\G there exists an
element h,<c H such that (i) ¢ 'hoy 2ch, and (ii) ,ve B and w'hyow = h,
together imply that u=wv.

LEMMA 2. (Dixmier [2]) Let y be a complex function on G vanishing
outside a finite set B. Lzt g and h be elements of G such that the conditions

ueBg ', veBy ', w'hv=h imply u=v. Then |y(9)|* = (y*E&*y)(g 'hy).
The following lemma and its proof are adapted from [2].

LEMMA 3. Suppose G is a countable discrete group with infinite
equivalency classes and H= G= G. Let J(G) be the algebra described
previously. Let JAH) and A(G) be the subalgebras corresponding to H
and G, respectively. Suppose that G is the centralizer of H and that G
has property (8) relative to H. Then JAH) n AG) = J(G).

PROOF. It is clear that A(G) is contained in AH)NJA(G). To
establish the reverse inclusion, suppose that A = U, ¢ A(H) NJA(G). Since
the unitary operators form a generating set for the W#*-algebra A(H) N A(G),
we may assume U, is unitary. Therefore, Uy = U, U,U,; for all he H.
That is, using the terminology previously defined, U., = Ujzyesor Hence,
(Z*&,#x)(¢) = 0 unless ¢ = h. To show that U, e J(G) we will establish
that x(y) = 0 if g G\G.

Let £>0 be given and gc G\G. Then there exists a complex function
y on G, vanishing outside a finite set B, such that

le—yl: =&, [yl = lzl:, and y(9) = 2(y).
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Let, for z€ §', |2[. = Lub. {|2(¢)||g € G}. Then, for every he H,
Iy*enxy —Zx&xxle=[(Y—2)*E*xy + Tx&*(y—2)|.

= ly—zxl: Iyl + lxfe |y —xl. = 28] x|, .

Using property (8"), choose h,< H such that ¢~'h.gy = h, and such that
u, ve Bg™' and w 'hyw = h, imply #=v. Then, using Lemma 2,

l2(g) 1> = [y(@)|* = [(F * &, % y)(g™ " Pog) |
= [(Z % &, x )¢ hog) | + 26| x|, = 28] ],

since g ' hog = hy.
Since & is arbitrary, z(g) = 0. Q.E.D.

LEMMA 4. G,, has property (8) relative to H,,.
The proof of this lemma is presented in section 3.

THEOREM 1. The subalgebras C,, are non-normal in J,.

PROOF. Lemmas 1 and 4 allow us to apply Lemma 3, putting G=G,,
G=G,,, and H=H,,, We may then conclude that

(7) Cy’;gnc}q":g)qno.

Since A,, is maximal abelian, A, N A, = A, .
Therefore, (CooN A N A, = AN Ay = Ay -
Since C,, is properly contained in A,, C,, is non-normal. Q.E.D.

Statement (7) leads immediately to:

COROLLARY 1. A, is the wunique maximal abelian subalgebra
containing Cy.

2. The subalgebras (,, are pairwise non-conjugate. Suppose, in
general, that 4, is a W¥*-subalgebra of the factor . Denote by R(_4,) the
W+#-algebra generated by all unitaries U € ] such that UA,U* C 4. Then
R(A,) is a W*-subalgebra of A, and 4, C R(A,) T A. Let R'(A,) = R(A)
and, for each j = 2, define R/(1,) to be R(R’-!(A)).
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DEFINITION 2. (cf. [7]) 4, is said to be of length L in A if there is
a chain

A S R(A) F RH(A)SE - - - S RA(A) = A

It is proved in [1] that the length of a subalgebra 4, in f is a
*.algebraic invariant.

LEMMA 5. Let A, be an abelian W*-subalgebra of the factor .
Suppose A, is contained in a unique maximal abelian subalgebra M( ).
Let o be a *-automorphism of A. Then o(M(A,)) is the unique maximal
abelian subalgebra containing the abelian subalgebra o(J,).

PROOF. Clearly, if o{M(_A,)) were not maximal abelian, so that there
existed B, R o(M(A,)), then o7 (By) P M(A).

And, if o(M(A,) were not unique, so that ), were also maximal
abelian, 9, 2 o{(A,), then ¢7'( 9, would also be maximal abelian and
contain /. Q.E.D.

LEMMA 6. Let J, and B, be abelian W*-subalgebras of the factor A,
contained in wunique maximal abelian subalgebras M(A,) and M(B,),
respectively. If o is a *-automorphism of A such that o(A,) = B,, then
o(M(Ay) = M(Bo).

PROOF. Since M($B,) is then the unique maximal abelian subalgebra
containing o(A,), by the previous lemma, o(M(A,)) = M(B,). Q.ED.

LEMMA 7. Let A, and B, be abelian W*-subalgebras of the factor A,
contained in unique maximal abelian subalgebras M(A,) and M(B,),
respectively. If the length of M(A,) is not equal to the length of M(B,),
then A, and B, are not conjugate under *-automorphisms of .

PROOF. Suppose A, and B, were conjugate under o, so that o(A,)=B,.
Then, o{M(A,) = M(B,). On the other hand, since the length of a sub-
algebra in ] is a *-algebraic invariant, and since the length of M(_1,) is not
equal to the length of M(%,), we cannot have o(M(A,)) = M(B,). Q.ED.

We may now suppose that all the subalgebras C,, lie in one hyperfinite
factor .

THEOREM 2. The abelian subalgebras C,, are pairwise non-conjugate
under *-automorphisms of .
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PROOF. It is proved in [1] that, for each n =4, 1,, has length n—2
in A,.

Since A, is the unique maximal abelian subalgebra containing (,,, the
result follows from Lemma 7. Q.E.D.

3. Proof of Lemma 4. Let g<G,\G,, be given, g of form (1). Let B
be a finite subset of G,, B = (&, u®, ..+ 4™} We must produce an
element h, € H,, such that

(1) gho # hog

(1) uPhy = hu? implies u® =u®D 1= p g =m.

Let #? be of form (1) with cntries a,;?.

Let he H,, be of form (2) with entries &,;,
the b;; to be determined. Because of the nature of A, it is clear that,
regardless of the choice of b,;, the matrices ¢gh and hg are identically equal
to g, except for the first two rows. Alsc, u‘”h agrees with u(” except for
these rows and hu‘® agrees with u‘® except for thesz rows. Accordingly,
we investigate rows 1 and 2 of these four matrices.

a, ayb+ a, anbs+anhs+as ¢ ceeec,
gh = ,

0 1 bis + as; Ayy Qg *** Aoy

where ¢; =a,b,; +a,;, A=j=n

hg =

ay, ay, + by, ay+bpay+b, dy dy---d, ]

0 1 b, + ay, e, e ---e,
where
Jj—1

dj:a1j+b”'+zb1kakj7 4§J§n’

k=2

e; =ay; + bpay,;, 4=j=n.

Clearly, if gh is to equal hg, we must have a,,+b,, = a;,b,,+a,,. Hence,
if 6,0, a;; must equal 1. We hencefcrth assume b, >0 and a,, = 1.
Taking this into consideration, (1,3) (the entry in first row, third column)
gives b(a3—ay;) =0, ie. a;, = a,;. Next, we must have, for each j,
4=j= n, e; =a, Thatis, b,a;; =0. Therefore, a,; =0 for 4=j =n.

Finally, we must have, for each j, 4 =j=mn, ¢c; =d;. That is:

j-1

(%) zblkakao'

k=2
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We leave this for the present to consider the first two rows of (™A and
hu'®

a“(p) au(mb12+au(p) a“(p)b”+an(p)bm_‘_als(n) C4(”) Cs(p) coe c"(n)
uUPh =
0 1 bl2+a23(p) a“(l?) 425(11) e oo a2n(p)

where ¢;” = a,,"b,; + a,;

2,P @@ +by a P +b1,ay 0+ b 4P AP - dD

hu® =
0 1 byy+ as'?® e, e ..., @
where
j-1
dj(q) = au‘(q) + bl]’ + Z blkakj(q) , A=5=n
k=2
and e, = ay,\P + bya,'P, A=j=n.

Now, if «‘”h is equal to hu‘® we must have a,,” = a,,?. Further,
considering (1,2), we need 8,,(a,;;*” —1) = a,,? —a,,¢». Let

a0 — g,™

A= 1 a,;,‘”—1 lpg=1,2+-- m; a, ‘P x1

A, is a finite set. We now assume by, ¢ A,. Then, unless a,,” =1, uPh
differs from Au‘® in (1,2). We assume henceforth that a,,¢” =1 so that
also a;,” = a,,*?. Next, (2,3) requires a,;” = a,,?. And (1, 3) requires
b1x(a,” —ay ) = a P —a,; . Let

A = a,,$? — a,,»
2 = q
a,, " —a,, 9

)
lﬁq = 1’2"' *,Mm; a12(m #aﬂ(oj.
We assume that b, does not belong to the finite set A,. Reasoning as
before, this requires a,,”’ =a,;® and a,;” =a,;*?. Next, for each j, 4=j7=n,
we need e;” =a,;?, ie. b,a,;?=a,;" —a,;P. For each j, 4=j=n, let

» O

; Ay — Qgj ]

As(n—i_—__a o ]p,q——l,z,...,m;as,-(“)#Oi.
3j

We now assume b,y AP, Thus, a,;” =0 and a,,” = a,,?. Finally, we
need, for each j, 4 =j =n, d;? =¢,?, ie.
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j-1
(*%) Zblkakj(q) — a”(p) . alj(q) .
k=1

We now investi'gaté:‘equations' (*) and (**), fecalling that b, A UA,
UAD Y -« UAM™U{0}. (¥) gives the following (n—3) equations (recalling
that a,;=0):

(*) = 4) bysas, =0
(*) J=9) b12a25 + bua,;; =0
(*) Jj=6) bisase + bruay + bysas, = 0

.

.

(*) J=n) bisas, + byay, + biyas, + - +b1,n—1an—l,n =0.

(**) gives the following m?*n—3) equations (recalling that a,,*” =0 for all
J,q):

**) Jj=4) 01205, P = a;, P — a,, P
¢ . q —
(%*) J = 5) b13as5° + by,a,, 0 = a;5 P — a;,P
(**) Jj=6) b12@:? 4 b14a46P + bisas® = a” — a6 P
(%) J=1) 0185, ° + 01,4, 0 + c 00+ byn @2 = AP — a0

Considering (¥) j = 4) we see that a,, = 0. Now let

e @y
j QP —a, @

A4(12)>= ( a“(ﬂ) [P,q = 1, 25 ' E "m 5 a24-(q) x 0 }

A az dln(ﬂ)_aln(q) =12 . [ 0
n — a,. D IP,Q— s Lyt e, M 5 Ayy B3
2n

(all these sets are finite)

Assume henceforth that b, & AP UACD U --- U A9, Then, equations
(¥*) j = 4 cannot be satisfied unless a,,‘? =0, ‘in which case a,,? = a,,<”.
We may assume, therefore, that a,? =0 for all ¢ and that a, < = q,®
for all p, g

Now, fix b;, subject to all previous restrictions. We 'now institute the
following procedure :
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At step £—3, k=4,5,+++,n—4, define the following finite sets:

k-1
q q q
als(p) _als( )—blzazs( ) — §4blrars(

q
ak&( )

Ak =
8§

where s = k+1, k+2,++-,n.
n
Then, restrict b, so that b,, & U A0 Also, restrict b,, so that:

S=k+1

SR 25 U
—b.a, — Tz_‘l4b1rart
b > = (1)

Ay

for any ¢t = k+1, k+2,-+-,n, whenever a >x0. (For 2 = 4, the summation
in (1) is understood to be zero.)

Then, because of (), in order to satisty equation (¥) j = k+1), it will
be necessary that a i, =0, Whence by (1) for previous values of %,

Aokl = Ao = = ** = Ay = 01

Next, because b, ¢ U A%, it will not be possible to satisfy equations

S=k+1
(**) 7 = k+1) unless a4, =0 whereupon, by a combined use of previous
restrictions on by, -+, by, and (1) it will follow that a;_; 1P = @iy ?
=+ee = a5, = 0.and that a,” =a P for all p, ¢

Finally, fix b, subject to all previous restrictions and proceed to the
next step.

Therefore, at the end of the % step, we have estabhshed that the super-
diagonal entries of g in the (2+4)" column, except for the entry in the first
row, are zero. And ‘also at the end of the ™ step, we have established
that the (k+4)* column of «» is identical to the (k+4)"" column of u(®.
(The work previous to step 1 took care of columns 1,2, 3, and 4 both for Y
and u?, u(?)) .

Finally, let A, consist ‘of the ﬁxed entries b” ‘This element A, is the
one required to guarantee that gh,>ch,g and u‘”h, = hu® only if u(P =u?.

We exemplify the above procedure in the case k=6, n = 8.

At step 3, we define’

a,,” —a,,? =b, ea;s 001444, = by5a5,
PR

A0® =

n -
‘We restrict b,, so that b, & UAQ({” and also
§=7
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_bmazv —bay, "blsas-/
Qg7

bls =

and

b x —blzazs —buats—blsasa
16
QAgs

b, — 12095 — 014840 — b15a5y
16 ae" i
Consider equation (*) j = 7):

bisas + byay + bisas; + bisas; = 0.

—by,a,, "buau,—‘blsas?

By (1), since b, , we must have a,;; =0 This

Agr
means that &,,a,,+b,,a,;+by5a5,=0. But, by (1) for step 2, &5 :-————-_b”afl’—b“a“,
57
so that a;; =0. Therefore, b,,a,; + b a;; =0. But, by (T) for step 1,
b ﬁ:%”“ﬂ, so that a,; = 0. And, since b, % 0, 2y = 0.
47

Consider equations (*¥) j = 7):
byay® + buau(q) + blsam(q) + b16a26: P = a,; P — a,;P.
Since &, & A,'®, we must have a,,‘° = 0, whereupon
b12a: P + ba, P + byya, P = a, P —a,, .
Since b,; & A,¢'®, we must have a;,”> = 0, whereupon

b0y + bay P = a P — a, P
Finally, we get

a; =0 and a,;® =q,;,?.
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