SUBNORMAL OPERATOR WITH A CYCLIC VECTOR

TAKASHI YOSHINO

(Received June 28, 1968)

In this paper, we aim to characterize the non-trivial closed invariant subspace of a subnormal operator and to study the existence of such subspaces.

An operator A acting on a Hilbert space H is said to be subnormal if, on some space K containing H, there exists a normal operator B such that Bx=Ax for every x in H; then B is called a normal extension of A.

The normal extension B, acting on K, of a subnormal operator A, acting on H, a subspace of K, is the minimal normal extension of A if the smallest subspace of K that contains H and reduces B is K itself; Halmos has shown that any two minimal normal extensions are unitarily equivalent ([3]).

If A is subnormal on H, we call that a vector x is cyclic with respect to A if the smallest subspace containing x and invariant under A is H; in this case we say that H is cyclic with respect to A.

For our purpose, it is natural to assume that the subnormal operator A on H has a cyclic vector x; because, if $\bigvee \{A^n x; n \ge 0\}$ (which denotes the smallest closed subspace containing $A^n x; n \ge 0$) is properly included in H, then it is clearly a non-trivial closed invariant subspace of A.

Bram proved in [1] that when A is normal and acts on H, the fact that H is cyclic with respect to A in the sense just defined is equivalent to the fact that H is cyclic in the usual sense, i.e., that there exists x in H such that H is the smallest closed subspace that contains x and reduces A.

It is known that if B is a normal operator on K with a cyclic vector, then there exists a unitary mapping U of K onto a suitable function space $L^2(d\mu(\lambda); \sigma(B))$ such that UBU^{-1} has the form of "multiplication by λ " ([2]).

Applying this representation theorem of normal operators to the minimal normal extension B on K of a subnormal operator A on H with a cyclic vector, we can show that H admits a representation relative to A onto a subspace $H^2(d\mu(\lambda); \sigma(B))$ of $L^2(d\mu(\lambda); \sigma(B))$.

In the next section, we show this representation of a subnormal operator with a cyclic vector and using this, we give the sufficient conditions of the existence of non-trivial closed invariant subspaces of subnormal operators.

We state here a characterization of subnormal operators given by Halmos [3] and Bram [1] without the proof.

THEOREM 1. (Halmos[3]) An operator A on a Hilbert space H is subnormal if and only if

- (1) $\sum_{m,n=0}^{\tau} (A^n x_m, A^m x_n) \ge 0$ for every finite set $x_0, x_1, \dots, x_{\tau}$ in H, and
- (2) there exists a positive constant c such that

$$\sum_{m,n=0}^{r} (A^{n+1}x_m, A^{m+1}x_n) \le c \cdot \sum_{m,n=0}^{r} (A^n x_m, A^m x_n)$$

for every finite set x_0, \dots, x_r in H.

THEOREM 2. (Bram[1]) Let A be an operator on H, and suppose that $\sum_{m=0}^{r} (A^n x_m, A^m x_n) \ge 0$ for every finite set x_0, x_1, \dots, x_r in H. Then

$$\sum_{m,n=0}^{r} (A^{n+1}x_m, A^{m+1}x_n) \leq ||A||^2 \cdot \sum_{m,n=0}^{r} (A^n x_m, A^m x_n)$$

for every finite set x_0, x_1, \dots, x_r in H.

LEMMA 1. Let H be cyclic with respect to a subnormal operator A on H, and let B, acting on K, be the minimal normal extension of A. Then K is cyclic with respect to B.

PROOF. Let x be a cyclic vector for H with respect to A, i.e., $H = \bigvee \{A^n x; n \ge 0\}$. Let $M = \bigvee \{B^{*m}B^n x; m, n \ge 0\}$. Then, since $B^n x = A^n x$ for all $n \ge 0$, we have $H \subset M$; moreover M reduces B. But B is the minimal normal extension of A so that M = K, K is cyclic with respect to B.

Let x be a cyclic vector for a subnormal operator A on H, let $\mu = (E(\lambda)x, x)$ where $E(\lambda)$ denotes the resolution of the identity for the minimal normal extension B, acting on K, of A and let D_1 be the linear manifold in K consisting of all vectors of the form f(B)x where f is a bounded Borel function on the spectrum $\sigma(B)$ of B.

By Lemma 1, D_1 is dense in K and we see easily that the operator V_1 from D_1 to $L_2(d\mu; \sigma(B))$ defined by $V_1f(B)x=f$ has a unique extension V from the closure $\widetilde{D_1}=K$ of D_1 to the L^2 -closure of the set of all bounded Borel functions, i.e., to $L^2(d\mu; \sigma(B))$ and that V is an isometric isomorphism between K and $L^2(d\mu; \sigma(B))$.

LEMMA 2. If A is a subnormal operator on H with a cyclic vector x in H and if $H^2(d\mu; \sigma(B))$ be the L²-closure of the set P of all complex polynomials in λ , defined on the spectrum $\sigma(B)$ of the minimal normal extension B, acting on K, of A with respect to the Lebesgue-Stieltjes measure $d\mu = d(E(\lambda)x, x)$, then H and $H^2(d\mu; \sigma(B))$ are isomorphic by the mapping V defined as above.

PROOF. Since $H = \bigvee \{A^n x; n \ge 0\}$, for any y in H, there exists some sequence p_n in P such that $y = \lim_{n \to \infty} p_n(A)x$, and since $p_n(A)x = p_n(B)x$ for all $n \ge 0$, we have

$$\int |p_n(\lambda) - p_m(\lambda)|^2 d(E(\lambda)x, x) \to 0 \text{ as } m, n \to \infty,$$

so that there exists a function p_y in $H^2(d\mu; \sigma(B))$ such that

$$\int |p_{y}(\lambda) - p_{n}(\lambda)|^{2} d(E(\lambda)x, x) \to 0 \text{ as } n \to \infty.$$

Since the existence of p_y is independent of the choice of the sequence p_n in P, the operator V defined by $Vy = p_y$ is well-defined and clearly V is an isometry from H into $H^2(d\mu; \sigma(B))$.

Conversely, by the definition of $H^2(d\mu; \sigma(B))$, for any p in $H^2(d\mu; \sigma(B))$, there exists a sequence p_n in P such that

$$\int |p(\lambda) - p_n(\lambda)|^2 d \mu \to 0 \text{ as } n \to \infty.$$

Hence, $\{p_n(B)x\}$ is a Cauchy sequence in H, and hence there exists a vector y in H such that $\|p_n(A)x - y\| \to 0$ as $n \to \infty$. This means that the operator V is an isometry from H onto $H^2(d\mu; \sigma(B))$, and the proof is completed.

THEOREM 3. If A is a subnormal operator on H with a cyclic vector x in H and if T is a bounded linear operator on H which commutes with A, then T is subnormal and there exists a Borel measurable function $p_r(\lambda)$ in

$$H^{\infty}(d\mu;\sigma(B)) = H^2(d\mu;\sigma(B)) \cap L^{\infty}(d\mu;\sigma(B))$$

such that $Ty = p_T(B)y$ for all y in H, where B denotes the minimal normal extension of A and $d\mu = d(E(\lambda)x, x)$, $E(\lambda)$ denotes the spectral measure of B.

PROOF. Since $H = \bigvee \{A^n x ; n \ge 0\}$, $Tx = \lim_{n \to \infty} p_n(A)x$ for some sequence $\{p_n(A)\}$, $p_n \in P$ and since $p_n(A)x = p_n(B)x$, we have

$$\int |p_n(\lambda) - p_m(\lambda)|^2 d(E(\lambda)x, x) \to 0 \text{ as } m, n \to \infty,$$

so that there exists a Borel measurable function p_T in $H^2(d\mu; \sigma(B))$ such that

$$\int |p_T(\lambda)|^2 d(E(\lambda)x, x) < \infty \text{ and } \int |p_T(\lambda) - p_n(\lambda)|^2 d(E(\lambda)x, x) \to 0$$

as $n \to \infty$ (see [5; page 348]) and hence

$$x \in D(p_T(B)) = \{ y \in K ; \int |p_T(\lambda)|^2 d(E(\lambda)y, y) < \infty \} \text{ and } p_n(A)x = p_n(B)x \rightarrow p_T(B)x$$
 from which we have $Tx = p_T(B)x$.

Since T commutes with A, for any p in P, we have $Tp(A)x = p(A)Tx = p(B)p_T(B)x = p_T(B)p(B)x = p_T(B)p(A)x$. Hence, if $y \in H$, and $q_n(A)x \to y$ with q_n in P, then $p_T(B)q_n(A)x = Tq_n(A)x \to Ty$ because T is bounded, and since $p_T(B)$ is closed, it follows that $H \subset D(p_T(B))$ and $p_T(B)y = Ty$ for all y in H. Hence, also, since $TH \subset H$, we have $H \subset D(p_T(B)^n) = D(p_T(B)^{*n})$ for all non-negative integers n, and $p_T(B)^n y = T^n y$ for all y in H.

Let $N = \bigvee \{ p_T(B)^* y; y \in H, n \ge 0 \}$, then clearly we have $H \subset N \subset K$. If y_0, y_1, \dots, y_r in H, then we have

$$\sum_{m,n=0}^{r} (T^{m} y_{n}, T^{n} y_{m}) = \sum_{m,n=0}^{r} (p_{T}(B)^{m} y_{n}, p_{T}(B)^{n} y_{m})$$

$$= \left\| \sum_{n=0}^{r} p_{T}(B)^{*n} y_{n} \right\|^{2} \ge 0.$$

Hence, by Theorem 1 and 2, T is subnormal. By Theorem 2, it follows that for any finite set y_0, y_1, \dots, y_r in H, we have

$$\sum_{m,n=0}^{r} (T^{m+1}y_n, T^{n+1}y_m) \leq ||T||^2 \cdot \sum_{m,n=0}^{r} (T^m y_n, T^n y_m),$$

i.e.,
$$\sum_{m,n=0}^{r} (p_{T}(B)^{m+1}y_{n}, p_{T}(B)^{n+1}y_{m}) \leq ||T||^{2} \cdot \sum_{m,n=0}^{r} (p_{T}(B)^{m}y_{n}, p_{T}(B)^{n}y_{m}),$$

or
$$\|p_T(B) \cdot \sum_{n=0}^r p_T(B)^{*n} y_n\|^2 \le \|T\|^2 \cdot \|\sum_{n=0}^r p_T(B)^{*n} y_n\|^2$$
,

which shows that $p_T(B)$ is bounded on a dense linear subset of N.

Since $p_T(B)$ is closed, $N \subset D(p_T(B))$ and $\|p_T(B)y\| \le \|T\| \cdot \|y\|$ for all y in N. We observe that N reduces $p_T(B)$ and also B. Hence, by the minimality of B, N=K and $K=D(p_T(B))$. This implies that $p_T(B)$ is bounded on K and hence $p_T(\lambda) \in L^{\infty}(d\mu;\sigma(B))$ which completes the proof.

COROLLARY 1. If A is a subnormal operator on H with a cyclic vector and if T is a bounded linear operator on H which commutes with A and A^* , then T is normal.

PROOF. By Theorem 3, T and T^* are subnormal. Since every subnormal operator S on H is hyponormal (i.e., $||Sx|| \ge ||S^*x||$ for all $x \in H$), T is normal.

As the consequence, we see easily that if A is a subnormal operator with a cyclic vector and if R(A)' is the commutant of the von Neumann algebra R(A) generated by a single operator A, then R(A)' is abelian, in particular, if A is normal, then R(A) is maximal abelian.

Let A be a subnormal operator on H with a cyclic vector x, B its minimal normal extension and let $\alpha(A)$ be the set of all bounded linear operators on H which commutes with A, then, by Theorem 3, for any T in $\alpha(A)$, there exists a Borel measurable function $p_T(\lambda)$ in $H^{\infty}(d\mu; \sigma(B))$ such that $Ty = p_T(B)y$ for all y in H. Let $L_{\alpha(A)}$ be the set of all functions $p_T(\lambda)$, $T \in \alpha(A)$, then we can show

LEMMA 3.
$$L_{\alpha(A)} = H^{\infty}(d\mu; \sigma(B))$$
.

PROOF. If $p \in H^{\infty}(d\mu; \sigma(B))$, then, by the definition of $H^{\infty}(d\mu; \sigma(B))$, there exists a sequence p_n in P such that

$$\int |p_n(\lambda) - p(\lambda)|^2 d(E(\lambda)x, x) \to 0 \text{ as } n \to \infty.$$

Since $p \in L^{\infty}(d\mu; \sigma(B))$, we can define the bounded linear operator p(B) on K such that $||p_n(B)x - p(B)x|| \to 0$ as $n \to \infty$ and $p(B)x \in H$. (because $p_n(B)x = p_n(A)x \in H$). Since $H = \bigvee \{A^n x; n \ge 0\}$ and for any q in P, $p(B)q(A)x = p(B)q(B)x = q(B)p(B)x = q(A)p(B)x \in H$, by the boundedness of p(B), we have $p(B)y \in H$ for all $y \in H$. Therefore the restriction p(B)|H of p(B) on its invariant subspace H clearly commutes with A, i.e., $p(B)|H \in \alpha(A)$, and, by the definition of $L_{\alpha(A)}$, $p \in L_{\alpha(A)}$. The converse inclusion is clear by Theorem 3.

52

Let $\widetilde{r_0}(\sigma(A))$ be the uniform closure of the set $r_0(\sigma(A))$ of all rational functions with no pole in the spectrum $\sigma(A)$ of an operator A. If $r(\lambda) \in \widetilde{r_0}(\sigma(A))$, then $r(A) \in \alpha(A)$ and hence, if A is a subnormal operator on H with a cyclic vector, then, by Theorem 3 and Lemma 3, $r(\lambda) \in H^{\infty}(d\mu; \sigma(B))$. However, it might not be true that $\widetilde{r_0}(\sigma(B)) \subset H^{\infty}(d\mu; \sigma(B))$ where B is the minimal normal extension of A.

THEOREM 4. If A is a subnormal operator on H with a cyclic vector and if B is its minimal normal extension on K, then $\widetilde{r_0}(\sigma(B)) \subset H^{\infty}(d\mu; \sigma(B))$ if and only if $\sigma(A) = \sigma(B)$.

PROOF. Since $r_0(\sigma(A)) \subset H^{\infty}(d\mu; \sigma(B))$, we have only to show that $r_0(\sigma(B)) \subset H^{\infty}(d\mu; \sigma(B))$ implies $\sigma(A) = \sigma(B)$.

It is known that $\sigma(B) \subset \sigma(A)$ by Halmos [4] and that $\sigma(A) \subset \sigma(B) \cup h(B)$ by Bram[1], where h(B) denotes the union of all holes of $\sigma(B)$. Hence we have only to show that $r_0(\sigma(B)) \subset H^{\infty}(d\mu; \sigma(B))$ implies $h(B) \subset \rho(A)$, where $\rho(A)$ denotes the resolvent set of A.

If λ_0 is an arbitrary point in h(B) and if $r(\lambda) = (\lambda - \lambda_0)^{-1}$, then $r(\lambda) \in r_0(\sigma(B))$ and hence $r(\lambda) \in H^{\infty}(d\mu; \sigma(B))$. Therefore, by Lemma 3, there exists an operator T in $\alpha(A)$ such that Ty = r(B)y for all $y \in H$. Hence, for any $y \in H$, we have

$$(A - \lambda_0 I)Ty = T(A - \lambda_0 I)y = r(B)(B - \lambda_0 I)y$$

= $\int r(\lambda)(\lambda - \lambda_0)dE(\lambda)y = y$.

This means that $A - \lambda_0 I$ has a bounded inverse T, i.e., $\lambda_0 \in \rho(A)$. Therefore $h(B) \subset \rho(A)$.

EXAMPLE. To show that a subnormal operator A need not be normal even when A has a cyclic vector and $\sigma(A) = \sigma(B)$, where B is the minimal normal extension of A, let D be the closed unit disk, μ the normalized Lebesgue measure in D, $K = L^2(d\mu; D)$, $B = L_z$, i.e., $L_z f(z) = z \cdot f(z)$ for all $f(z) \in L^2(d\mu; D)$. Let H be the L^2 -closure of the set P of all complex polynomials in z, defined on D, with respect to μ , and set $A = L_z | H$, then clearly A is a subnormal operator on H with a cyclic vector u(z) = 1 and its minimal normal extension is B on K. Since $\sigma(B) = D$, $h(B) = \emptyset$. And hence, by the same reason as in the proof of Theorem 4, $\sigma(A) = \sigma(B)$.

If we set $z=r \exp(i\theta)$, then $d\mu(z)=\frac{1}{\pi}r dr d\theta$; and hence,

$$\int_{D} z z^{n} d\mu(z) = \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} r^{n+1} e^{i(n+1)\theta} r \ dr \ d\theta$$

$$= \frac{1}{\pi} \int_0^1 r^{n+2} dr \cdot \int_0^{2\pi} e^{i(n+1)\theta} d\theta = 0$$

for all $n \ge 0$. This implies that $\overline{z} \perp H$ and $\overline{z} \in K$. Therefore $H \subseteq K$ and A is non-normal by the minimality of B.

THEOREM 5. If B is the minimal normal extension of a subnormal operator A on H and if $\widetilde{r_0}(\sigma(B)) \cap \overline{\widetilde{r_0}(\sigma(B))} \neq \{c \cdot 1\}$ (the bar denotes the complex conjugate), then there exists a non-trivial closed invariant subspace of H for A.

PROOF. For any fixed non-zero vector x in H, we may assume that $H = \bigvee \{A^n x; n \ge 0\}$, because if $\bigvee \{A^n x; n \ge 0\} \subseteq H$, then $\bigvee \{A^n x; n \ge 0\}$ is clearly a non-trivial closed invariant subspace of A.

In the case where $\sigma(A) = \sigma(B)$, for any $r(\lambda)$ in $r_0(\sigma(B)) \cap r_0(\sigma(B))$, $r(\lambda) \neq c \cdot 1$, we have $r(A), r(A)^* \in \alpha(A)$ and $r(A) \neq c \cdot I$; and hence r(A) is normal by Corollary 1. In this case, clearly, A has reducing subspaces.

In the other case, we have $\sigma(A) \cap h(B) \neq \emptyset$ by the same reason as in the proof of Theorem 4. Since $Ay_n - \gamma y_n = By_n - \gamma y_n$ for all y_n in H, $\sigma_{ap}(A) \subset \sigma_{ap}(B)$ and easily we have $\sigma_p(S) \cup \sigma_c(S) \subset \sigma_{ap}(S)$ for any bounded linear operator S, where $\sigma_p(S)$, $\sigma_c(S)$ and $\sigma_{ap}(S)$ denote the point spectrum, the continuous spectrum and the approximate point spectrum of S, respectively. From this, we have $\gamma \in \sigma_r(A)$ if $\gamma \in \sigma(A) \cap h(B)$, where $\sigma_r(A)$ denotes the residual spectrum of S. Hence $\overline{\gamma} \in \sigma_p(A^*)$. Let $M = \{ y \in H; A^*y = \overline{\gamma}y \}$, then the subspace $H \ominus M$ is clearly a non-trivial closed invariant subspace of S.

It is known that if $\sigma(B)$ has two dimensional Lebesgue measure zero, then $\widetilde{r_0}(\sigma(B)) = C(\sigma(B))$, where $C(\sigma(B))$ denotes the set of all continuous functions on $\sigma(B)$ (see[7]). Hence, we have

COROLLARY 2. (Wermer [6]) If B is the minimal normal extension of a subnormal operator A and if the spectrum $\sigma(B)$ has two dimensional Lebesgue measure zero, then there exists a non-trivial closed invariant subspace of A.

REMARK 1. It is clear that $H^{\infty}(d\mu; \sigma(B)) = L^{\infty}(d\mu; \sigma(B))$ if and only if A is normal and also that $H^{\infty}(d\mu; \sigma(B)) \cap \overline{H^{\infty}(d\mu; \sigma(B))} = \{c \cdot 1\}$ if and only if the von Neumann algebra R(A) generated by a single operator A is the full operator algebra on H.

As an application of the representation theorem of a subnormal operator A on H with a cyclic vector, we can give the description of the existence of a non-trivial closed invariant subspace of A in terms of $L^2(d\mu; \sigma(B))$, $H^2(d\mu; \sigma(B))$ and $H^\infty(d\mu; \sigma(B))$ as follows:

A subnormal operator A on H with a cyclic vector x in H has a non-trivial closed invariant subspace if and only if

(*) there exists a function q, not identically zero, in $H^2(d\mu; \sigma(B))$ such that

$$[L^{2}(d\mu;\sigma(B)) \ominus \overline{H^{\infty}(d\mu;\sigma(B))} \cdot q] \cap H^{2}(d\mu;\sigma(B)) \neq \{0\},$$

where the bar denotes the complex conjugate and B is the minimal normal extension on K of A.

As special cases of the condition (*), we have (case 1) there exists a function q in $H^2(d\mu; \sigma(B))$ such that

 $\widehat{H^{\circ}(d\mu;\sigma(B))} \cdot q \cap [L^2(d\mu;\sigma(B)) \ominus H^2(d\mu;\sigma(B))] \neq \{0\}$ and (case 2) there exists a function q in $H^2(d\mu;\sigma(B))$ such that

$$H^{\sim}(\overline{d_{\mu};\sigma(B)}) \cdot q \cap H^2(d_{\mu};\sigma(B)) \neq \{c \cdot q\}.$$

In the case 1, the subnormal operator A has a non-trivial closed invariant subspace M such that M is the closure of the range of some operator T in $\alpha(A)$. In fact, by the assumption, there exists a non-constant function p in $H^{\infty}(d\mu;\sigma(B))$ such that $\overline{p} \cdot q \in [L^2(d\mu;\sigma(B)) \bigoplus H^2(d\mu;\sigma(B))]$; and hence, for a vector p in p corresponding to p by Lemma 2 and an operator p(B)|H in p (p(B)|H)*p=0. Let p=1. Let p=1 in p=1 in p=1, then p=2 is the desirous subspace.

In the case 2, the subnormal operator A on H has a non-trivial closed invariant subspace M such that $M = \{y \in H; ||Ty|| = ||T^*y||\}$ for some T in $\alpha(A)$. Hence, we have

THEOREM 6. If A is a subnormal operator on H and if there exists a non-zero vector y in H such that $||Ty|| = ||T^*y||$ for some T in $\alpha(A)$, $0 \neq T \neq c \cdot I$, then A has a non-trivial closed invariant subspace.

PROOF. We may assume that A has a cyclic vector and that T is non-normal. Let $M = \{y \in H; \|Ty\| = \|T^*y\|\}$, then M is non-trivial by the assumption. Since, by Theorem 3, T is subnormal and hence T is hyponormal, i.e., $(S=)T^*T-TT^* \geq 0$. Therefore M is the null space of the non-negative self-adjoint operator S and is a closed subspace of H. Let B be the minimal normal extension on K of A, then, by Theorem 3, there exists a function $p_T(\lambda)$ in $H^\infty(d\mu;\sigma(B))$ such that $Ty=p_T(B)y$ for all y in H. The invariantness of M, under A, follows from $p_T(B)^*Ay=p_T(B)^*By=Bp_T(B)^*y=Ap_T(B)^*y\in H$ for all y in M because, for any y in H, $p_T(B)^*y\in H$ if and only if $\|Ty\|=\|T^*y\|$.

REFERENCES

- [1] J. BRAM, Subnormal operators, Duke Math. Journ., 22 (1955), 75-94.
- [2] P. R. HALMOS, Introduction to Hilbert space and the theory of spectral multiplicity, New York, 1951.
- [3] P. R. HALMOS, Normal dilations and extensions of operators, Summa. Brasiliensis Math., 2 (1950), 125-134.
- [4] P. R. HALMOS, Spectra and spectral manifolds, Ann. Soc. Polonaise Math., 25 (1952), 43-49.
- [5] F. RIESZ et B. Sz.-NAGY, Leçons d'analyse fonctionnélle, Budapest, 1965.
- [6] J. WERMER, Report on subnormal operators, Report of an International Conference on Operator Theory and Group Representations, New York, 1955.
- [7] J. WERMER, Banach Algebra and Analytic Functions, Advances in Mathematics, No. 1, Fasc. 1, Academic Press, 1961.

The College of General Education Tôhoku University Sendai, Japan