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1. Introduction. In former papers [1] and [2] we introduced a

generalization of a class of transforms treated mainly by Y. Tanno [4], [5]

and [6]. The transforms are related to the meromorphic functions

(1.1) F(s) = j Π (1-V«.)W Π Q.s/c
k
) e^

fc=l

where ak and ck are real and 0 5g ak/ck < 1 and Σak~'2 < oo.

Our investigation of F(s) and H(f) where H(t) is denned by

(1.2) [F(iy)Γ= f

was facilitated by the use of the number N= N+ -f iVL (see [1]).
In this paper we shall investigate the convergence of the transform

(1.3) f(x)= fG(x-t)da{t)
J — oo

where a(t) e B.V. (A, B) for all A, B satisfying — oo <A<B <oo, and

G(ί) = H\t), or

(1.4) βx)= f G{x-t)φit)dt,

where <p(t) is locally Lebesgue integrable. We shall use the notations we

used in [1] and [2] without introducing them again.

We shall prove

(1.5) limRm(D)f(x)=φ(x)
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where

i-f-)

Rm(D) = e~*-B Π

lim bm = 0 and

cecx Γ e~cyf(y)dy for c > 0

- c ^ c x I e~cyf(y)dy for c < 0 .

We shall find a similar inversion formula for

(1.8) f(x) =

In section 9 we shall treat the problem when N+ + JVL < 3 (i.e., equal
to 1 or 2) in which cases further assumptions have to be made on φ(t).

2. Convergence of the transform. In this section we shall treat the
convergence of the transform when almost no condition is made on the
determining function ct(t).

THEOREM 2.1. Suppose:

(1) N+ + N- ^ 3 and G(t) € class I.
(2) cί(t) € B.V. in any finite interval.

(3) I G(xo — t)dci(t) converges conditionally.

Then / G(x—t)d<x(f) converges (conditionally) uniformly in every finite

interval.

PROOF. By Theorem 6.1 of [2] H'(t) = G(t)>0 and therefore
(G(x-t)/G(xo-t)) > 0. Using Theorem 4.1 of [2] we have for N+ + JV_ ̂  2

(2.1) lim {G(x-t)/G(xQ-t)} = *-•<*-*•>

and
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(2. 2) lim {G(x-t)/G(xo-t)} = «••<*-*.>.
£—» — o o

The estimations (2. 1) and (2. 2) imply for x in any finite interval

(2. 3) 0 < G(x-t)/G(xo-t) <K.

Using Theorem 4.1 of [2] we have when N+ + iV_ ̂  3

(2. 4) -^ {G(x-t)/G(xa-t)} = θ(~-) , |ί| - oo .

(In fact if μ ι = μ2 = 1, -j-{G{x-t)/G(xo-t)} = O(exp [ - M | ί | ] ) for \t\-> oo
at

for some M > 0).

We can write now

f G(x-t)dct{t)= ϊ (G(x-i)/(G(xo-i))G(^o-i)^(i)

= - J -^- {G{x-t)/G{xo-t)}U G{xo-v) da(v)\

+ e"**-") Γ G(xo-t)da(t).
«/ — oo

Since I G(xo — t) dcί(t) is bounded (2.4) yields the proof of our theorem.
J —oo

dt

THEOREM 2.2. Suppose:

Q.E.D.

(1) G(ί) € c/αss B and G(t) <E c/α*5 II.
(2) cί(t) € B.V. in every finite interval.

(3) I G(x0 — i) dcc(t) converges conditionally.
J —oo

Then I G(x—t) dcί(t) converges conditionally uniformly in any finite interval
• ' - c o

[xu x2] satisfying x0 < xγ < x2 < oo.

PROOF. By Theorem 6.8 of [2] G(t)>0 and therefore 0<G(x-t)/G(xQ-t).
Arguments similar to that of Theorem 2.1 yield the uniform convergence of
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/ G(x—i)da(t) for x in any finite interval and any finite M. By Theorem
J-M
7.2 of [2] we have

(2. 5) 4 log(G(x-t)/G(x0-t)) = L(x
at

Since x > Λ:0 and L(ί) is monotonic increasing for t^t0 \og(G(x—t)/G(x0—t))
is also monotonic increasing for t^—M (for some M) and therefore so is
G(x-t)/G(xo-t).

By the mean value theorem for integrals

J G(x-t)da(t) = f (G(x-t)/G(xo-t))dU G(xo-v)da(v)

r M

= (G(^+M)/G(x o+M)) G(xo-v)da(v) for some ξ < -M.

Q.E.D.

THEOREM 2.3. Suppose:

(1) G(ί) ̂  class III αrcJ ΛΓ+ ̂  3.

(2) ct(t) € JB.y. m α/ẑ  finite interval [tu t2] satisfying T ̂  ίi < ί2 < °°

(3) J G(xo — t)d<x(t) converges conditionally for some xo,xQ>T

Then I G(x — t)dcί(i) converges uniformly in the interval [xux2], for
J —oo

PROOF. We may write, since G(ί)= 0 for t >^/(ak"
1 — ck~

1) which is

easily deduced by the method of Theorem 6.8 of [2],

G{x-t) deύj) = I + Γ \G(x-t) dait) = Jx(χ)+ Jlx).

For M large enough the estimation of J2(x) is like that of Theorem 2.1.
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Since G(x — i) is bounded and a{t) for x > T + ^ (ak~
ι — ck~

ι) is of bounded

variation in \ x — ̂ 2(ak~
ι—ck~

ι), M \ J{(x) convergs. Q.E.D.

3. Convergence of the transform (Continued). In this section we shall
discuss transforms for the convergence of which we have to make assumptions
on the determining function.

THEOREM 3.1. Suppose :

(1) G(t)e class II, N+ ^ 3.

(2) oί[t) € B.V. in any finite interval.

(3) I G(x0 — t)doi(t) converges.

(4) cίyt) — o(ekt) , t —> — oo for some negative k.

Then I G(x — t) doc(t) converges uniformly in x for any finite interval.
J -oo

PROOF. Condition (4) is used together with the asymptotic estimate of

G{i) to show convergence of J G(x — t) da(t). That I G{x — i)dcί(t) converges
-oo «/0

follows similarly to the proofs of section 2. Q.E.D.

T H E O R E M 3.2. Suppose:

(1) JNΓ+ + ΛΓ_ ^ 2.
(2) φ(t) £ Li in any finite interval if either G(t) € class I or G(t) € class

II. φ{t) ^ Li[tu t2] for tly t2 satisfying T ^ ίx <Ct2 < °° if G(t)
III.

(3) For sora<> £ > 0 \φ(t)\ ^ Kexp[(cc2-8)t] for t > 0 for t < 0
^ X e x p K ^ + θ ) ^ w/i^ G(t)z class I αw<i |^(ί)l = i^exp[-Mί] /or

M > 0 z£;Â « G(ί) € c/αs5 II or III.

Then I G(x — ί) φ(t) dt converges uniformly in any finite interval when
•/-oo

G(t) € class I or II Λ « J ZW α ^ finite interval [xu x2], xλ > T +

-when G{t)ζ class III.

PROOF. The proof is an immediate result of Theorem 4.1 of [2] and
simple considerations used also in the former section.
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4. Asymptotic properties of the determining and generating function.

For the convolution transform

(4.1) f(x) = j G(x-t)da(t),

f(x) and oί(t) are called generating and determining functions respectively.
LEMMA 4.1. If for some G(£), N+ + N. ^ 3 and ct^oo, then there exists

a constant M > 0 such that for u > M and any a > 0

I d G(u±a)±
G(u) u2

d G(u)
du

(4.2)

and

(4.3)

where K is independent of a.

PROOF. The proof is mainly computational making use of the following
estimates for u> M

(4. 4) I G(u) - (ρ(u)eaιU) | ^ Keku and | G\u) - (p(u)ea*u)' | ^ Keku

where k < av. Q.E.D.

Using the above result for G*(u) — G(—u) we obtain :

LEMMA 4.2. If for some G(ί), ΛΓ+ + iV_^3 αrcd <x>^oo ίΛ^ there exists
a constant M > 0 5MCΛ. £/KZ£ /or u> M and any a > 0

(4.5)
d G( — u —

(4.6)

du G( — u)

du G{ — u —

K

u2

where K does not depend on a.
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THEOREM 4.3. / / G(t) € class I, a(t) € B.V. in every finite interval and
(4. 1) converges, then

( a ) edit) = o(111 - μ i £ α i ί ) , £ - > - o o . ( b ) Λ(ί) = o{t-μ"ea2t), ί ->oo.

( c ) /Or) = 0 ( 0 , x -> - co. ( d ) f(x) = O(ea*x), x -> oo .

PROOF. Since N+ + iV_ ̂  3 we have G(ί) € CX—oo, oo) and

G'(ί) = [eaιtp{t)]f + o(^feί) , t -• oo where yfe < Λx

and />(ί) a polynomial of order μ! (see Theorem 4.1 of [2]). The coefficient
of tβι in />(£) is positive otherwise G(t) > 0 would not be satisfied. Therefore
axp{t)-p'(t) < 0 for t > M which implies G\i) < 0 there. Having G\t) < 0
for t > M implies that G(t) is monotonically decreasing there. Using Lemma
2.1 c of [3, p. 121] we obtain (a). Similarly we derive (b).

We shall prove (d) now, (c) can be proved similarly. We have

f(x) -=\f+[\[ \ Gix-t)dait) = Ilx)+It{x, A) + Ux, A),
iy_oo Jo JX+A\

x > 0 and we shall choose A later (A > 0).

\I2ix,A)\ ^Gix)\aφ)\ + Gi-A)\aix + A)\ +| Γ G\x-t)a{t)dt .
1 Jo

By Theorem 4.1 of [2] both G{t) and G\t) are o(l) as \t\ —> oo and therefore

Git) < Kλ and \G\t)\ < Kx for some Kγ > 0. This implies

(4. 7) II2(x, A)\ ^M{e
a2{x+Λ),

I*(x,A)\ ^ (f Gixo-u) doKu)\ dt

Gixo-t)dait)
χ+A

Substituting in Lemma 4.2 x—x0 = a > 0 and choosing A> M where M is of
Lemma 4.2 we obtain for x—t= —u^= —A
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We have also (G(—A)/G(x0 —x—A)) ^ Kexp[a,(x —x0)] and therefore

(4. 8) I3(x, A) I ̂  M2 e"^-^ .

lx) I ̂  -

ί
-1) da{t)

τϊ~(G(x-t)/G(xo-t)) ί G(x0-
J -oo

v) da{v) dt.

We choose now x0 such that x > x0 > M (M of Lemma 4.1). Substituting
a—x—XQ in estimation (4.2) of Lemma 4.1 we obtain

(G(x-t)/G(xo-t)) ^ K / ( x 0 - t γ a n d I G(x)/G(x0) \^K.
dt

Therefore

(4.9)

Combining (4. 7), (4. 8) and (4. 9) we conclude the proof of this theorem.

THEOREM 4.4. Let G(t) z B, Σ (alc-
ι-ck-

1)=oo, a(t) e B.V. in any finite

interval and (4. 1) converges at x — x0 then (b) and (d) of Theorem 4.3 are
valid.

THEOREM 4.5. Let G(t) e class III, a{t) e B.V. in any interval [tl912]
satisfying T<tι^t^t2<oo and let (4.1) converge for x > T + 2<(ak~

ι — ck~
ι)

then (b) and (d) of Theorem 4.3 are valid.

PROOF OF THEOREMS 4.4 AND 4.5. Similar to that of Theorem 4.3 but
using the methods of Theorems 2.2 and 2.3 to estimate Iλ(x).

5. Definition and some basic properties of Hm(t) and Gm(t). Let {bm}
be a sequence of real numbers satisfying lim bm — 0.

m—>°o

Define RJjs) by

m

Define Fm(s) by
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(5. 2) FJs) = F(s)/Rm(s) = έ* Π [(1-*/«*) es'a'/(l-s/ck) e^'}.
ra + 1

exp[ — bms]F(s) e class F defined in [2],

We can introduce N+(m) and N_(m)

(5.3) N±(m) = limsup{N({ak}ΐ=m+1,x)} ,
±ac-*oo

that is N+ and iVL for the sequences {ak}^=m+1 and {ck}k=m+i
If N+{m) + N.(m) ^ 1 we have

(5.4) H Λ t )

and when iV+(w) + N_(πι) ^ 2

(5.5) G m ( ί ) =

We shall define Mn(m) by

(5.6) M(m) = [ tdHJf)
J —oo

and

(5.7) Mn(m) = J (t-Mlmj)" dHm(t)

when these integrals converge. Using (2. 9) of [2] and the proof of Theorem

2.6 of [2], (5. 6) and (5. 7) converge when N+(m) + N_(m) ^ 1. Obviously

(5. 8) M^m) = bm .

THEOREM 5.1. Let N+(m) + iSL(w) ^ 1 for m>0, then

(5. 9) Hm(t0) ^ (ί0 - bm)-2 M2n(m) , ί0 < bm ,

(5.10) l - H m ( ί o ) ^ ( ί o - & J - 2 M 2 n ( m ) / O Γ ί0 > έ

PROOF. Hm(t) is a distribution function and therefore
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HJt0) = f dHJf) = [' dHm(t + bm)
J — oo J — oo

^ Γ rfHm(ί + bm) ^ (ί0 - bmγ** f ί2" ̂ H(ί + * J

(5.10) is proved similarly.

LEMMA 5.2. // N+(m) + Λ/L(m) ̂  1,

(5.11) M2(m) = Sl= £

PROOF. It is easily seen that

Q.E.D.

To state and prove the following theorem that establishes the connection
between G(t) and Gm(t) we have to introduce the following operator (see
Tanno [3] and [4])

Rm(D) = e»«° Π {l
k = l

where ekDf(x) =flx + k),

(5.12) [{l-D/a)/{l-D/c)]fίx) = ^βx) + &=*)-e°* f e~c« f(y) dy

for 0 < a < c < oo ,

(5.13) [(l-D/a)/a-D/c)]f(x) = ^

for — oo<c<<z<0, and for c = ±

(J:) = (l-D/a)f(x) = f(x)
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T H E O R E M 5.3. If N+(m) + N_{m) ^ 2 then

(5.14) Rm(D)G(x) = Gm(x).

PROOF. It is easy to see that Rm(D) exp[st] — Rm(s) eκp[sx\ for γ1<Re5<γ2>
(where γx = max(cfc, — oo) and γ2 = m i n ^ , oo)). Formally we have

C t-cO ck>0

1 Γ RJD)es* , 1 Γ e
F(s)

e

ΎM = Gm{x)'
We have only to justify interchanging RJJJ) and the integral sign.
We have to justify that for c > 0

(5. !5)

which is true by Fubini's Theorem since N+ + iV_ §^ 2.
Similarly we can show when c < 0 the analogous formula to (5.15) holds.

We may repeat the procedure since N+(m) + N_(m) ^ 2. Terms like exp[&D]
and (1 — D/d) can enter under the integral sign (the latter using N+(m) + N_(m)
5g 2) as was done for convolution of variation diminishing kernels. Q.E.D.

REMARK 5.3. The operators [(l-D/a)/(l-D/c)] defined in (5.12) and
(5.13) can be obtained from (1.7) on which we operate with (1 — a~ιD) where
D = d/dx.

REMARK 5.4. The ordering in the sequences {ak} and {ck} make no
difference to F(s) but different orderings, even though keeping 0 ^ cιk/ck < 1,
yield different sequences of Fm(s) and Gm(t) and for different orderings
N+(m) + N\_(πi) can be different numbers. It is not hard to show that if the
number of positive (negative) aks is either zero or infinity we can arrange
{ak} and [ck] so that N+(m) = N+ (N_(m) = NJ). In fact, any order for which
the subsequences of positive (negative) aks or cks are ordered by their
magnitude yields the above mensioned result. When there are positive (negative)
tffc's in finite number which is the same as the number of positive, (negative)
finite cks, again we can have N+(tri) = N+ (JVL(m) = NJ). We can also
maintain N+(m) + N-(m) = N+ + iV, if N+ + N_ = oo. This leaves the case
N+ + iSL = n and either N+ > 0 and the number of positive aks is finite or
JV_ > 0 and the number of negative aks is finite.
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REMARK 5.5. In section 9 we shall overcome the difficulty of having
N+ + Λ/l ^ 3 but N+(m) + N-(m) < 3.

6 .Operating with Rm(D) on f(x). In this section we shall operate with

Rm(D) on f{x) — I G(x—t)da{f) when G{f), the kernel function, satisfies various
' ' - o o

conditions.

THEOREM 6.1. Suppose :

(1) G(t) z class I, N+ + Λ/l ^ 3.
(2) #(£) € β.y. z/2 any finite interval.

(3) /(.r) = J G{x-t)da(t) converges.

(4) N+(m) + JNL(m) ̂  3.

Then

RM{D)fix)= [ Gm(x-t)da(t)
J -oo

converges.

For the proof we shall need the following Lemma.

LEMMA 6.2. Let assumptions (1), (2) and (3) of Theorem 6.1 be

satisfied, c<£[oίu a2] and G^t^il — c'^y1 G(t), then iG^x—ήdcίit) converges.
J -oo

PROOF. The meromorphic function ^1(5) corresponding to Gγ(f) has the
same zeros as F(s) (corresponding to G(t)) and it may have, at most, one more
zero which is c,c&[ctucί2]. By Theorem 4.1 of [2] we can obtain

d ί 1 \
dt \\t\ )

Therefore the proof of the convergence of I Gx(x—i)doί(f) is immediate.

Q.E.D.

P R O O F O F T H E O R E M 6.1. Formally we write
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Rm(D)f(χ) = Rm(D) J G(x-i)da(t)

= f Rm(D)G(x-t)da(t) = f Gm(x-t)da(t).

To justify the interchance of Rm(D) and the integral it is enough to
justify it for one term. For 0 < a < c < oo (c > ct2)

/ \ /%oo

(6.1) [(l-a-ιD)/(l-c-ιDj\f(x) = °~fix) + ~^^^-eex I f(y)e~cydy
a a Jχ

= c

a f G(x-t)da(t) + ̂ ~-C~-eexj If G(y-i)da(t) e~cydy.

We have to show that

- ^ G ( Λ ; - 0 + " ^ " - - ̂ cx ί GCy-ί) "̂C2/ dy da(f).

After simplification we have to show

cecx \ \ G(y-t)da(t)\ e~cy dy = cecx I I G(y-t)e~cy dy\da(t)

(both exist and are equal). We shall show that for an arbitrary positive
number 8 there exists A,A>x such that

oo / oo \

(a ) I(A) ΞΞΞ cecx f j Γ G(y-t) da(f) e~cy dy <€,

(b) J(A) = cecxf \f G(y-t)e~cy dy\dcί(i)<ε .

We recall by Theorem 4.3 that

< Kea*y
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for y > 0 and therefore for big enough A,

/(A) ^ cecx ί Kea*y e~cy dy = Kcecxe{ai~c)Λ {c-a2)~l < S .
JA

We have also

cecx f G(y-t) e~cy dy = Gγ{x-t)

where

substituting this we obtain

J(A) = e«*-A) ί GlA-t) da(t)
•/-oo

which converges by Lemma 6.2. By Theorem 4.3

Γ G^A-^daify^Ke^

and therefore for big enough A, J(A) :g 8.

It is enough to show now that for finite A

cec
CA{ Γ ) Γ ί CΛ )
I \\ G{y-t) da(t) e~cydy = cecx I I G{y-t) e'cy dy \ da(t) ,

One can choose B and C large enough such that

G{y-t)dcKf) < £ uniformly for 3> € (x, A)

and therefore

\ί +(
By Theorem 2.1 we can choose B and C such that

<€.
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r < ε/2 uniformly for ξ <= [x, A]

and therefore

-1£
^ * " ^ " ecix'A) G ^ ^ -

= = 2

By Fubini's Theorem

and therefore (6. 2) is proved.

THEOREM 6.3. Suppose :

/ 1/ G(y-tϊe~cydy\dcc^

Q.E.D.

(1) G(t) € cία55 B and also G{t) z class II.
(2) a(t) € B.V. in any finite interval.

(3) I G(x—t) da(t) converges for x > γ.
J-oo

Then

Rm{D)f{x) = f Gm{x-t)da{t).

For the proof we sĥ fcl need the following Lemma.

LEMMA 6.4. Let assumptions (1), (2) and (3) o/ Theorem 6.3 δ* satisfied
then

I
J —

Gf{x—t) da(t) converges for x>Ύ

where
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and ce{c

PROOF. We can show that / Gf(x—t) da(t) converges by a method

similar to that used in the proof of Lemma 6.2,. Choose B so large that
t>B + x, G(f) is monotonically decreasing and therefore G(t — y) is
monotonically decreasing in y for t < —B and y ^x. We can write now

The proof will be completed by Lemma 2.1a of:[3, p. 120] if we prove for
x>xQ>Ί that Gϊ{x—t)/G{xo — t) has no changes of trend for t < —B. We
define Gΐ*{x—t) = exρ[c~ιDx]Gf(x—t), obviously Gf*(t) £ class B and also to
class II. Therefore

(6.4) 4 {Gt*{x-t)/G{xs>-tί) = Lϊ*(x-t+o(ΐ))-L(x0-t+o(X)), t — -oo,

at

where L(t) and Lf*(ί) satisfy

oo

(6.5) t = Σ, m)[(ak{ak + L(f)))-1 - (ck(ck'$

(6.5) implies Lt*(t) = L(t — c~ι + o(l)), t—>— oo or when we choose B large
enough

is positive for t<—B and for .r—c"1 > x0 > γ and therefore so is

^(G*(x-t)/G(xo-ty) for Λr>io>Ύ. Q.Έ.D.

PROOF OF THEOREM 6.3. One easily see that

eADf(x) = ί eADG{x-i)da(t) - Γ G(x+A-t)da{t)
J —OO J —OO
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and that the last integral converges for x>h—A.
Since Gm(t) satisfy the same conditions as G(t) it is enough to show

(6.6) cecx ί e~cy dy ί G(y~t)da(t) = cecx J I f Giy-t^e^ dy -da{t)

and

(6.7) ( l~ ^ r ) / G<*-0daίt) = J ^ 1 - -^-) G(:r-ί)] Λ<ί),

where az {ak} and c€ [ck\. The equation (6.7) whiόh is needed when the ck

corresponding to a is oo is proved as in Theorem 5.2 a of [3, p. 129]. To prove
(6. 6) we see that both double integrals converge, that on the right because of
Lemma 6.4 and that on the left because of Theorem 4.4-; The* proof of (6.6)
follows now similarly to that of Theorem 6.1. Q.E.D.

THEOREM 6.5. Suppose:

(1) G(t)z class HI and Λ/+ ̂  3v
(2) oί{t) € B.V. for t in any finite interval to the right of T.

(3) Γ G(x-t) da(t) converges for x, > T + Σ (a*~ι ~ck~ι)

Then

the integral converges uniformly for x in any finite interval right of

T+bm+ Σ (ΛΓ1-<*-')>:

LEMMA 6.6. Lei assumptions (1), (2) and (3) of Theorem 6.5 be satisfied,
oo

then \Gλ(x—t)dcί(f) converges for x>TJr^j{ak~
ι—ck~

ι) where GΛ(x)

= ίl-—\'1G(x) and c > a2.

PROOF OF THEOREM 6.5 AND LEMMA 6.6. .Similar to that of former
Theorems and Lemmas of this section using here G(t)z class III and G(f) = 0
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THEOREM 6.7. Suppose:

(1) G(t)z class Π.
(2) a(t)^B.V. in any finite interval and for some K>0 and p> 0

K*)l ^Kept for t<0.

(3) J G{x-t)da(t) converges.
J -oo

Then

Rm(D)f{x)= f GJx-t)da(t).

PROOF. By Theorem 3.1 I G(x—i)da(t)\ converges uniformly in any

J —oo

finite interval. Following the proof of Theorem 6.1 we can complete the proof

of this theorem.

7. The basic inversion Theorems. We shall invert in this section the

transform

(7.1) /(*) = / G(χ-t)φ(t)dt

where N+ -f iVL ^ 3. Similar results will be achieved for N+ -f iVL ̂  1 in

section 9 but then asymptotic restrictions have to be given on φ(t) which will

imply that if N+ + JVL ̂  3 the results of section 9 are a special case of those

in this section.

For the proof we shall need the following Lemma, which will be helpful

also in the following sections.

LEMMA 7.1. Suppose N+(m) + N-(m) ^ 2 , 8 > 0 and c is finite, then

(7. 2) lim Γ Gm(t) e~ct dt = 0
m^°°J|ίI>δ

and

(7.3) lim [ tG'm(t)e-ctdt = 0.
m-*°°J\t\>δ

PROOF. Choose m so large that aλ{m) < c < cc2(m) (that is ax and ct2
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corresponding to the sequence {ak}Z+i) and choose also η > 0 such that oc^tn)
< c—2η < c-\-2η < oc2(m).

Since for 11 \ ^ δ we have

/sinh2 778

we obtain

Γ Gm(ί) *"c l dt ^ [ Gm(ί) <Γcί sinh2 77ί (sinh Tyg)"
J\t\^8 J-00

+ Fm(c-2η) FJc

and since for every finite a limFm(α) = 1 we conclude the proof of (7.2); the
TO—>oo

proof of (7. 3) is similar. Q.E.D.

T H E O R E M 7.2. Suppose:

(1) G(ί) € c/α55 I, JV+.+ Λ/1 ^ 3.

(2) φ(t) € L^A, J5) /or any A, J3 satisfying - o o < A < β < o o .

(3) /(.r)= \ G(x-t)φ(i)dt converges.

(4) <p(£) Z5 continuous at t=x and for some p and k \ <p(t) \ ^ K cosh />ί.
(5) 2SΓ+(m) + ΛL(m) ̂  3.

THEOREM 7.3. Suppose:

(1) G(ί) € t:/α55 Π.

(2) Assumptions (2), (3) αw<i (4) of Theorem 7.2 are satisfied.

Then

limRm(D)f(x) = φ(x).

Til—>oo

THEOREM 7.4. Suppose:

(1) G(t)£dass IΠ, JV+ + JSL ^ 3.
(2) ^(ί) ^ LX(A, β) /or aw3/ A, β satisfying T < A < B < oo.

oo

(3) /(Λ?) = I G(x-t) φ(t) dt converges at x > T + JZ OAΓ 1 -*^" 1 ) .
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(4) Assumption (4) (for t> 0) and (5) of Theorem 7.2 are satisfied.

Then

Mm Rm(D) f(x) = φ(x).

REMARK 7.5. For Theorem 7.4 we can always have such an arrangement

of ak's so that N+(m) ^ 3 if N+ ^ 3. See also Remark 5.4.

PROOF OF THEOREMS 7.2, 7.3 AND 7.4. By the corresponding theorems

of section 6 we have

(7.4) Rm(D)f(x) = [ GJjt-t) ψ(t) dt.

Using I Gm(t) dt =1 and (7.2) for c=0 we have for a point of continuity x

of φ(i)

(7.5) dt

Also tjie above arguments imply

(7.6) φ(x)= ί GJx-t)φ(x)dt
J —oo

m

To complete the proof we have only to show that for all δ

(7.7) (
\x-t\>δ

which is an easy consequence of (7. 2).

For Theorem 7.4 we have to use the proof of Theorem 2.3 which implies

G m (-δ) = 0 for m big enough. Q.E.D.

8. Inversion Theorems. In this section inversion theorems will be

established for
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(8.1) flx) = ί Gix-t)ectdcKf).
J -oo

THEOREM 8.1. Suppose:

(1) G(t) £ class I, N+ + N. ^ 3.

(2) Λ(£) € ZΪ.TΛ in any finite interval.

(3) (8.1) converges.

(4) J\Γ+(m) + JNL(m) ̂  3.

(5) xγ and x2 are points of continuity of cί(t).

Then for m big enough we have

A. ax < c < cί2 implies

fe-c*Rm(D)f(x)dx

= [ GJxt-t)e-*»-l>ct(t)dt- ί GJx^e-^-

= ct(x2) — cί(x^) + o(l) , m —> oo .

B. ci2 = c implies the existence of Λ( + OO) and

fe-"Rm(D)f(x)dx
Jχι

= Λ(OO) — a(xγ)

C. c^g#! implies the existence ofa{— oo)

•̂  —oo

= Λ^x) — CC(— oo) + o(l), m -

PROOF. First, we have tσ note that it is enough to assume that (8.1)

converges for some x0, since
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J G(x-t) ect defy) = f G(x-ί) <Λ8(ί)

where /S(ί) = / ecu doi{u) is of bounded variation in any finite interval which
Jo

permits the use of Theorem 2.1 as well as Theorem 6.1. As a result of
Theorem 4.1 of [2] the function G(x—t)ect is monotonic for t€(M,°°) and
(— oo, —M) for some large M and for every real c. (In the proof one has to
distinguish five cases (1) c < cίu (2) c = au (3) ai < c < a,, (4) <X> = c and
(5) #2 > c.) The monotonicity of exp[cί] G(x—t) implies by Lemma 2.1c of
[3, pp. 121-122]:

( a ) For aγ < c < a2

a(t) = o(G(x 0 - ί )^ c ί rS 1*1 — °°

( b ) For c ^ Λ 2 Λ(OO) = limΛ(ί) exists and

[<oo)-Λ(ί)] = o(G(x0-t)ectyι, | ί | -> oo .

( c ) For c fg rt1? Λ(— OO) = lim a(t) exists and

By Theorem 6.1

fe-c*Rm(D)f(x)dx= Γ f Gm{x-t)e-c^da{t)

= Γ f -i- [Gm(x-t) e-*'~n ait) dt
JX, /-=o O Λ -

M(X2 -1) e-«**-v a(t)dt - (G^X, -1) e~^'"£)<ί) dt.

The change in the order of integration is clearly permissible since one can
see easily that the inner integral converges uniformly in the finite interval
x£ [xux2]. The rest of the proof of A is by using Theorem 7.2. The proof
of B and C follows steps similar to those of the proof of Theorem 6.1 a of
[3, pp. 132-134] which are justified by lemmas and theorems of this paper.

Q.E.D.
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Similarly one can prove the following theorems using, of course, the
corresponding Theorems for classes II and III instead of class I.

THEOREM 8.2. Suppose :

(1) G(t)z class II.
(2) Assumptions (2), (3), (4) and (5) of Theorem 8.1 are satisfied.
(3) \a[t)\ ^ Kept for some p<0 and t < 0.

Then (A) and (B) of Theorem 8.1 are valid.

THEOREM 8.3. Suppose :

(1) G(t) € class III.
(2) a(t) e B.V. t ^ (A, B) for any A, B satisfying T<A<B<oo.

(3) (8.1) converges for x > T +

(4) JV+(m) + N-(m) ^ 3 .
(5) cc(t) is continuous at xx and x2.

Then (A) and (B) of Theorem 8.1 are valid for xux2, > T

9. Some generalizations and remarks.

( a ) In Remark 5.4 we noticed that we may arrange the sequences {ak}
and {ck} so that, except in one case, N+(nϊ)+N-(m) = N+ + N.. We shall show
here how to invert the transform even in this case.

Suppose that the negative ak's are finite and that n = iV_ > 0 (Λ/L is of
course finite here). Take the n smallest positive cfc's ckχ , , ckn and write

= Γ
S (i-•£

which is permitted by the method of Theorem 6.1. Now

G(x—t) = G#(x—i)

is a kernel satisfying N+ = N+ + n = N+ + ΛL and now we can use Theorems
6.1 and 7.2 to find φ(t) and tf(ί) from /*(ί) instead of /(ί). When there are
only finite positive aks and iV+ > 0 a similar technique is employed.

( b ) When N+ + ΛL = 2 the inversion theory of section 7 still holds if
satisfies the following :
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( i ) For G(i) z class I | φ(t) | ^ K exp[(tf! + £) ί], £ < 0 and

\φ(t)\ ^ iCexp[(tf2-£)£], ί > 0 for some K a n d θ > 0.

(ii) For G(t) z class II | φ{t) | ^ i£ exp[(tf2 -£)*] , ί > 0 and

1^(01 ^ ^^~ p ί , ί < 0 for some K > 0, />> 0 and 8 > 0.

(iii) Fσr G(t) € class III

Under these assumptions we obtain for x

/(X)= Γ G{χ-t)φ{t)dt
J — oo

I G{x-t)φ(t)dt
J-oo

/
^ K l G(x-t)e("'-*)ldt +

) = o(l), x -> oo for all G(ί)

) ^ .SΓ e^-ε)x [ G(v) e-^-e)υ dv ̂  K2 e'"'

For G(ί)e class I we can prove \f(x)\ t=sKsexp[(cci+6)x], x-^ —oo. Let

f G*(x-t)φ(t)dt.
J -oo

Then G#(x—t) satisfies N+ + N- ̂  3, and the inversion operator is applicable
to

( c ) When N+ + N-. = l we can obtain a result similar to those of section
7 if φ(t) is continuous and satisfies I, II or IΠ of (b) when G(t) € class I, II or
III respectively.



CONVERGENCE AND INVERSION OF CONVOLUTION TRANSFORMS 219

f(χ)= f φ{x-t)dH(t)

^K ί e(α'-ε>(*-'> dH(t) + KΪ e<«.«><*-<> dH(t).
J — oo J X

Using (2.9) of [2] which implies Hit) g K exp[(<x>-S) t] and 1 - Hit)
^Xexp[(<^! -4- S)t\ and by the method of (a) and (b) find a transform

f^(x) = ί G*(x-t)φ(i)dt for which G* satisfies N+ + iSL ^ 3.
•/-oo

We should note here that the restriction that φ(f) is continuous is not

necessary. It will suffice that the Lebesgue-Stieltjes integral fix) = I <p(x—t)dH(t)
•/ — oo

converge for all x when G(t)ζ class I and for x> A for some A > 0 otherwise.

( d ) It should be noted that improvement of some Theorems here would
be possible if we knew that Gm(t) were monotonic in (— oo, — δ) and (δ, oo)
and not only for (—00, —Am) (Am, 00). That refers to the theorems of section
7. Theorems 8.1 and 8.3 are the best possible in the sense that whenever the
convergence occured the inversion was valid.

( e) The class of transforms

(9.1) F\s) = J (1-5'AO/(1-*W)
fc = l

where Σak~
2 < 00, 0 ̂  ak/ck < 1, N+ + iV_ > 2 (and therefore N+ + N. ^ 4 ) ,

which includes the class treated by Y. Tanno in [4] and [5], satisfies tG'(t) < 0
for t ^F 0 and tG'2m(t) < 0 for ί ^ O . The proof follows the one used for a
subclass by Hirschman and Widder [3, p. 221]. The above fact enables us to
replace assumption 4 of Theorem 7.2 by

Ύ j [φfr+y) - <PW\ dy = °(X)> h -> o,

when our class is defined by (9.1).
The proof is as follows :

x+δ

Iι = I G2m(χ-t)[φit) - φ(x)] dt
Jx-δ

= G2m(δ) Λ(8) - G2m(δ) < - δ ) + 1 G;m(x-i) < ί - x ) dt- δ ) + J G;m(*-*
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where ait—x)= I [φ{τ) — φ(x)~\dτ and \a(t — x)\ = o(t — x) , t-+x9

J x

I, ̂  ε ί G'im(x-tXx-t) dt + o(l) ̂  £+

By (7. 6) we see that it is enough to prove (7. 7).

f Gm{χ-t)φ(t)dt
J\x-t\>δ

= f Gm(x-t) a(t) dt + o(

where

a(t) = I 9?(t;) J77 .

Using Theorems 4.3(a) and (b) we obtain (7. 7) by integration by parts.
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