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1. Introduction. In former papers [l1] and [2] we introduced a
generalization of a class of transforms treated mainly by Y. Tanno [4], [5]
and [6]. The transforms are related to the meromorphic functions

(1.1) F(s) = { i[l (1—s/ay)e’™ kf;Il (1—s/cy) es/"}

where a, and ¢, are real and 0 < a,/c, <1 and 3a,™® < oo.
Our investigation of F(s) and H(z) where H(t) is defined by

(1.2) Ry = [ e am)

—o0

was facilitated by the use of the number N= N, + N_ (see [1]).
In this paper we shall investigate the convergence of the transform

(1.3) f@) = [ G0 datt

where a(t)e B.V.(A,B) for all A, B satisfying —oo < A < B < oo, and
G(t) = H'(¢), or

(1. 4) fia) = [ Ga-te@dr,

where @(¢) is locally Lebesgue integrable. We shall use the notations we
used in [1] and [2] without introducing them again.
We shall prove

(1.5) lim R,(D) fix)= ¢(x)
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where
R (D) = e7” kI":[l {(1—D/ay)e™”/(1— D/c)e* "} ;
}J_{g b, =0 and
e[ evsiay g0
L.7) (1-2) fo- "

—ce”f e ' fly)dy for ¢ < 0.

—oo

We shall find a similar inversion formula for

(1.8) flz) = f "ot Gla—t) dad(t).

—oo

In section 9 we shall treat the problem when N, + N_ < 3 (i.e., equal
to 1 or 2) in which cases further assumptions have to be made on @(¢).

2. Convergence of the transform. In this section we shall treat the
convergence of the transform when almost no condition is made on the
determining function a(%).

THEOREM 2.1. Suppose:

1) N, + N_=3 and G(t)e class L
(2) a(t)e B.V. in any finite interval.

3 f G(x,—t)da(t) converges conditionally.

Then f G(x—t)da(t) converges (conditionally) uniformly in every finite

interval.

PROOF. By Theorem 6.1 of [2] H'(t) = G()>0 and therefore
(G(x—1)/G(x,—t)) > 0. Using Theorem 4.1 of [2] we have for N, + N. =2

2.1 lim (G(z—£)/Glay—1)} = ew==

and
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(2.2) tlim {Glx—1)/G(xy—t)} = ™,
The estimations (2.1) and (2.2) imply for x in any finite interval
(2.3) 0 < Glx—12)/G(x,—t) < K.

Using Theorem 4.1 of [2] we have when N, + N. =3

(2. 4) —ddt—{G(x—t)/G(xo—t)} —o( L), it e

(In fact if p = ps = 1, {jt (G(z—1t)/G(xs—1t)} = Oexp [—M|t|]) for |¢]— oo

for some M > 0).
We can write now

[ G 0/G—1) Gyt datty

—o0

f mG(x— £) do(t)
- °° 4 (Gle—1)/Gla—1) ( [ G- da(v)) "
+ grr@=20) f wG(x(,—t) da(t) .

1
Since f G(xy—t) da(t) is bounded (2.4) yields the proof of our theorem.
) QED.

THEOREM 2.2. Suppose :

(1) G@)eclass B and G(t) < class 1L
(2) at)e B.V. in every finite interval.

3 f G(x,—t) daft) converges conditionally.

Then f G(x—t) da(t) converges conditionally uniformly in any finite interval

[z, x,] satisfying x, < x; < x5 < 0.

PROOF. By Theorem 6.8 of [2] G(¢£)>>0 and therefore 0< G(x—t)/G(x,—¢).
Arguments similar to that of Theorem 2.1 yield the uniform convergence of
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f G(x—t)da(t) for x in any finite interval and any finite M. By Theorem
-M

7.2 of [2] we have

(2.5) o log(G(x—1)/G(xy—t)) = L{x—t+0(1))— L({xy—t+0(1)), t—>—oo,

Since x > x, and L(¢) is monotonic increasing for t=¢, log(G(x—t)/G(x,— t))
is also monotonic increasing for ¢ = — M (for some M) and therefore so is
Glx—1)/G(x,—1).

By the mean value theorem for integrals
-M -M ¢
[ Ga—1) date) = f (G(x—t)/G(xo—t»d{ f Gz —v) da(v)}

= (G(x+M)/G(x,+ M)) f gzxo—'v) da(v) for some § < —M.
¢
QED.

THEOREM 2.3. Suppose :

1) G(t)eclass Il and N, = 3.
(2) a(t)e BV. in any finite interval [t,,t,] satisfying T =t, <t, < co.

3 f G(x,—t)da(t) converges conditionally for some x,,xy>T
+ D (@ =)
k=1
Then f G(x—t)da(t) converges uniformly in the interval [x, x,], for

T+ (ay " —c™) < x; < Xy < oo,

k=1

PROOF. We may write, since G(£)=0 for > > (a,"'—c,;”!) which is

k=1

easily deduced by the method of Theorem 6.8 of [2],

M

.[_:G(x—t) dat(t) = U S N f } Ga—t) da(®) = J (@) + Ji(x).

\Jz~ E (@p~1—cp1)
k=1

For M large enough the estimation of Jy(x) is like that of Theorem 2.1.
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Since G(x—t) is bounded and a(t) for x > T + Y (a,"'—c¢,™') is of bounded
k=1

oo

variation in [x— Z(ak“—ck‘l),Ml Ji(x) convergs. Q.E.D.

k=1

3. Convergence of the transform (Continued). In this section we shall
discuss transforms for the convergence of which we have to make assumptions
on the determining function.

THEOREM 3.1. Suppose:

(1) G(t)eclass 1I, N, = 3.
(2) at)e B.V. in any finite interval.

3) f mG(xo —t)da(t) converges.

4) alt) =o(e*"), t—> —oo for some negative k.
Then f G(x—1t)da(t) converges uniformly in x for any finite interval.

PROOF. Condition (4) is used together with the asymptotic estimate of
0 oo

G(t) to show convergence of f G(x—t) dait). That f G(x—t) da(t) converges
-0 0

follows similarly to the proofs of section 2. Q.E.D.

THEOREM 3.2. Suppose:

1) N, +N_.=2.

2) @@)e L, in any finite interval if either G(t) < class 1 or G(t)<e class
IL @(t)e L\[t,, t,] for ¢, ¢, satisfying T =t, <t, < oo if G(¢)e class
1L

(8) For some € >0 |p(t)] = Kexpl(a,—&)¢] for t >0; for t <0 |@)]
= Kexpl(a,+8)t] when G(t)<class 1 and |@(t)| = K exp[— Mt] for
some M > 0 when G(t) < class 11 or IIL

Then f G(x—1t) @(t) dt converges uniformly in any finite interval when

G(t) e class Lor 11 and in any finite interval [x,, x,), £, >T + > (a,'—c, ™)
k=1
when G(¢) € class 11L

PROOF. The proof is an immediate result of Theorem 4.1 of [2] and
simple considerations used also in the former section.
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4. Asymptotic properties of the determining and generating function.
For the convolution transform

4.1 fia) = | “Glac—1) det(t),

flx) and a(t) are called generating and determining functions respectively.

LEMMA 4.1. If for some G(t), N,+ N_=3 and o, o, then there exists
a constant M > 0 such that for u > M and any a >0

l'd Glu+a) K
4.2) idu Gu) = u?
and
' d Gw) K ae
4.3) ' du G(u+a) 1§ w ¢

where K is independent of a.

PROOF. The proof is mainly computational making use of the following
estimates for u > M

4.4) |G(u) — (plw)e™™)| = Ke** and |G'(uw) — (plu)e™™)| = Ke**
where 2 < «,. Q.ED.

Using the above result for G*(u) = G(—u) we obtain :

LEMMA 4.2. If for some G(£), N, + N.=3 and a,>oo then there exists
a constant M >0 such that for u > M and any a >0

| d G(—u—a)|_ K
*.9) e G-w) | =W

and

d G(-u)

*.6) S =R

X2
e*?

where K does not depend on a.
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THEOREM 4.3. If G(¢)<class 1, a(t) e BV. in every finite interval and
(4.1) converges, then

(a) al)=o(|t|™e), t— —oco. (b) a?) = o(t~*e*"), &— oo.
(¢) flx)= Oe™), x— —co. (d) flx)=O(e™), x—oo.

PROOF. Since N, + N_ =3 we have G(¢) € C'(— o0, ) and

G'(t) = [ex p(®)) + o(e*"), t— oo where k< a,

and p(¢) a polynomial of order u, (see Theorem 4.1 of [2]). The coefficient
of ¢t in p(¢) is positive; otherwise G{(¢) > 0 would not be satisfied. Therefore
a, p(t)— p'(t) < 0 for ¢t > M which implies G'(¢) < 0 there. Having G'(£) < 0
for t > M implies that G(¢) is monotonically decreasing there. Using Lemma
2.1c of [3, p.121] we obtain (a). Similarly we derive (b).

We shall prove (d) now, (c) can be proved similarly. We have

flx) = {fﬂ + fIM +fw ‘G(x—t) da(t) = I ,(x)+ I,(x, A)+ Iz, A),
x >0 and we shall choose A later (A > 0).
L@, )] = 6@)|aO) + G- Alaz+a)] + [ "G aw .

By Theorem 4.1 of [2] both G(¢) and G'(¢) are o(1) as || — oo and therefore
G(t) < K, and |G'(¢)] < K, for some K, > 0. This implies

@7 Iz A)] = Memers,

oo

[ Is(x, A)| = f g; (G(x—1)/G(xo—1)) - ( f G(xo—u) dd(u)) dt}

oo

+ (G(—A)/G(xo— z—A)) j Glaro—1) dat) ‘ .

z+ A
Substituting in Lemma 4.2 x—x, = a > 0 and choosing A > M where M is of

Lemma 4.2 we obtain for z—t=—-u==—-A

>

(x—12)

ecq(:c—xo)

4 (Gla—1)/Gla-1) =
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We have also (G(—A)/G(x,—ax— A)) = K expla,(x—x,)] and therefore

4.9) Iz, A)| = M,e=@.

@i = G2 | [ G—odat)

0

.

We choose now x, such that x>z, > M (M of Lemma 4.1). Substituting
a=x—x, in estimation (4.2) of Lemma 4.1 we obtain

4 (Gla—1)/Gla,-1) - | [ G datw) ar.

{;t (G(x—t)/G(xo—t))[g K/(x,—t)? and |G(x)/G(x,)| =K.

Therefore
4.9) ()| = M,.

Combining (4.7), (4.8) and (4.9) we conclude the proof of this theorem.

THEOREM 4.4. Let G(t)e B, Y (a,'—c,")=o0, a(t) e B.V. in any finite
k=1
interval and (4.1) converges at x = x,; then (b) and (d) of Theorem 4.3 are
valid.

THEOREM 4.5. Let G(t)eclass 1, a(t)e BV. in any interval [t,,t,]
satisfying T < t, =t = t, < oo and let (4.1) converge for x >T + 3(a,™ ' —c;™")
then (b) and (d) of Theorem 4.3 are valid.

PROOF OF THEOREMS 44 AND 4.5. Similar to that of Theorem 4.3 but
using the methods of Theorems 2.2 and 2.3 to estimate I,(x).

5. Definition and some basic properties of H,(f) and G .(t). Let {b,}
be a sequence of real numbers satisfying lim b,, = O.

Define R,(s) by

. 1) Ry(s) = e T [(L=5/ag) /(1= s/c) 2],

k=1

Define F,.(s) by
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5.2) Fo(s) = F)/Ro(s) = = [ [(1—s/ay) ¢/ (1—s/cy) e .

m+1

exp[—b,s] F(s) € class F defined in [2].
We can introduce N,(m) and N_(m)

(5.3) N.(m)=lim sup{ N({@,}E-m 11, 2)}

that is N, and N_ for the sequences {a;}i-m+1 and {ci}iomsr-
If N.(m)+N_(m)=1 we have

1 d+ioo est
(5.4) Hy(t) = f € ds
d—1oo

21

and when N,(m) + N_(m) =2

1 oo st
(.5) Gult) = 5. [ | Fe(g) ds .

We shall define M,(m) by

oo

5. 6) M,(m) = f td H,(¢)
and
5.7) Mm) = | T (= Mm) dH ()

when these integrals converge. Using (2.9) of [2] and the proof of Theorem
2.6 of [2], (5.6) and (5.7) converge when N.(m) + N_(m)=1. Obviously

5.8) M,(m) = b, .

THEOREM 5.1. Let N.(m)+ N_(m)=1 for m >0, then

(5 9) Hm(tO) é (to__bm)_‘2 MZn(m) s t, < bm >
and
(5. 10) 1—Ho(t) = (bs—b,)" Myu(m) for to> by,.

PROOF. H,(t) is a distribution function and therefore
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to—bm

H (1) = f:de(t) - f_ dH+b.)

= AH, (£ +b,) = (tg—b,)" f % dH(¢ +b,)

t1zlto—bml

= (to—bn) ™" Moy(m) .
(5.10) is proved similarly.

LEMMA 52. If N.(m) + N_(m)=1, then

(56.11) M,(m) = S = i (ar2—c™?).

k=m+1

PROOF. It is easily seen that

My(m) = 5 [ (Fn(s)) oo = 2 (@ —c™?).

Q.E.D.

To state and prove the following theorem that establishes the connection
between G(t) and G,(t) we have to introduce the following operator (see
Tanno [3] and [4])

R, (D) = e* ﬁ (1—D/ay) e”*/(1—D/cy) ™

where €*? flx) = fle +k),

c(a c)

(6.12) [A—-D/a)/(1— D/c)]f(x)——f( ) + fwe““’f(y)dy

for 0<a<c< o,

c(a c)

(6.13) (1~ D/a)/(1~D/) fiz) = -5 flz) ~ = [ iy

for —c0o < c<a<0, and for ¢ = oo

[A—D/a)/(1—-D/c)) flx) = 1—-D/a) fix) = flx) — a™' f(x) .
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THEOREM 5.3. If N.(m) + N_(m)=2 then
(5.14) R,.(D)G(x) = G,(x).

PROOF. It is easy to see that R, (D) exp[st]=R,(s) exp[sx] for v,<<Re s<v,,
(where v, = max(ck, —o0) and vy, = mm(ck, )). Formally we have
= estds

Zm . F@s)

_ 1 R.(D)er , ’
T 2mi f_m F(s) T 20 f Fm(s) Cal) -

We have only to justify interchanging R,(D) and the integral sign.
We have to justify that for ¢ >0

o G0 sy -
19 [eman [ gy f oy ), e

which is true by Fubini’s Theorem since N, + N_ = 2.

Similarly we can show when ¢ < 0 the analogous formula to (5.15) holds.
We may repeat the procedure since N,(m) + N_(m)=2. Terms like exp[kD]
and (1—D/a) can enter under the integral sign (the latter using N,(m)+ N_(m)
=2) as was done for convolution of variation diminishing kernels. Q.ED.

R,(D)G(x) = Ru(D) -

REMARK 53. The operators [(1—D/a)/(1—D/c)] defined in (5.12) and
(5.13) can be obtained from (1.7) on which we operate with (1—a~'D) where
D=d/dx.

REMARK 54. The ordering in the sequences {a,} and {c,} make no
difference to F{(s) but different orderings, even though keeping 0 = a,/c; < 1,
yield different sequences of F,(s) and G,(f) and for different orderings
N.(m) + N_(m) can be different numbers. It is not hard to show that if the
number of positive (negative) a,’s is either zero or infinity we can arrange
{a;} and {c;} so that N.(m)= N, (N_(m) = N_.). In fact, any order for which
the subsequences of positive (negative) a,’s or c¢;’s are ordered by their
magnitude yields the above mensioned result. When there are positive (negative)
ay’s in finite number which is the same as the number of positive (negative)
finite ¢,’s, again we can have N,(m)= N, (N_(m)= N_.). We can also
maintain N,(m) + N.om) = N, + N, if N,+N_ = oo. This leaves the case
N, + N_ = n and either N, >0 and the number of positive a,’s is finite or
N_>0 and the number of negative a;’s is finite.
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REMARK 55. In section 9 we shall overcome the difficulty of having
N, + N_= 3 but N.(m) + N_(m) < 3.

6 .Operating with R, (D) on f(x). In this section we shall operate with
R,.(D) on flx)= f G(x—t) da(t) when G(¢), the kernel function, satisfies various

conditions.

THEOREM 6.1. Suppose:

(1) G@)eclass I, N, + N.= 3.
(2) a(t)e B.V. in any finite interval.

3) flx)= f wG(x—t) da(t) converges.
) Nim) + N.(m) =3,

Then
RuDIf@) = [ Guta—1) datt
converges.
For the proof we shall need the following Lemma.
LEMMA 6.2. Let assumptions (1), (2) and (3) of Theorem 6.1 be

satisfied, c&[a,, a,) and G,()=1—c'D) ' G(t), then f G (x—1t)da(t) converges.

PROOF. The meromorphic function F,(s) corresponding to G,(¢) has the
same zeros as F(s) (corresponding to G(¢)) and it may have, at most, one more
zero which is ¢, cé[a,, a,]. By Theorem 4.1 of [2] we can obtain

L (Ga—1)/Gla~1) = O(ﬁ?) ;o JEl e

Therefore the proof of the convergence of f G (x—t)da(t) is immediate.

QED.

PROOF OF THEOREM 6.1. Formally we write
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Ru(D) fz) = Ru(D) f Gl —t) da)
- f R.(D) G(z—1) da(t) = f G, (z—£) da(t).

To justify the interchance of R,(D) and the integral it is enough to
justify it for one term. For 0 <a <c¢ < oo (c >'a,)

6.1 (A=a"D)/A=cDifw) = & f) + O eox [ ey
f Gla—1) da(t) + C(“ ) ¢ f{ wa(y—t)da(t)}e‘c”dy.

We have to show that

s (22

After simplification we have to show

ce® ) mG(y—t) da!(t)\l eV dy = ce*” i mG(y—t) e v dy: do(t)
. ) . J el

(both exist ‘and are equal). - We shall show that for an arbitrary positive
number € there exists A, A > x such that

(a) I(A) = ce [w {wa(y—t) da(t)} e dy <€,
(b) J(A) = et f“ {f“G(y——t)e‘”dy}da(t)<8.
We recall by Theorem 4.3 that

U_ :G(y —1) daft) ' = Kew
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for y > 0 and therefore for big enough A,
I(A) = ce“”f Ke e " dy = Kce®®e™ 94 (c—a,)™t < €.
A
We have also

ce® f Gly—t)e?dy=G(x—t)

where

F\(s) = F(s)(1=s/c),

substituting this we obtain
J(A) = e f "GUA—1f) dalt)
which converges by Lemma 6.2. By Theorem 4.3
fj G(A—t) da(t) = K e

and therefore for big enough A, J(A) = é&.
It is enough to show now that for finite A

A o0 oo A
ce“‘f SJ G(y—t) da(t)} e vdy = ce“f {f Gly—t)e dy} da(t) .
One can choose B and C large enough such that
-B 00
Hf + f } G(y—t) da(t)‘ < & uniformly for ye<(x, A)
—oo c
and therefore

CeCZ

fAHJ{j + {:]‘ Gly—1) dd(t)] e dy\ <E.

z

By Theorem 2.1 we can choose B and C such that
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Hf:B + f”l Gy(&—1) da(e) } < &/2  uniformly for £ ¢[x, A]

and therefore

cemU: + f:}[f Gly—£) e~ dy] dat(t)‘

’ U_ —: + f “}[Gx(x—t) — e h GI(A—t)] da(t) !
&

IA

5 + e —g— < €.

By Fubini’s Theorem
A (o} (o) A
cet f { f Gly—1t) da(t)}e'“’ dy = ce® f { f G(y—1) e~ dy}da(t)
z -B -B lJg

and therefore (6. 2) is proved. QED.

THEOREM 6.3. Suppose :

(1) G@)eclass B and also G(t) € class 11
(2) a(t)e BV. in any finite interval.

3) fm G(x—1t) da(t) converges for x > .
Then

RuD)f@) = [ "Gola—t) dal?) .

For the proof we shall need the following Lemma.

LEMMA 64. Let assumptions (1),(2) and (3) of Theorem 6.3 be satisfied
then

f GHx—t) da(t) converges for x>

where
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Gy =(1- v?)—lG(t) and  c< ()

PROOF. We can show that f G¥(x—t)da(t) converges by a. method
A

similar to that used in the proof of Lemma 6.2, Choose B so large that
t>B+x, G() is monotonically. decreasing and therefore. G(t —y) is
monotonically decreasing in y for ¢t << —B and y =x. We can write mow

G¥x—t)  'ce

Glz—t) = Gla—p) J, ¢ Oy <1.

(6.3) 0<

The proof will be completed by Lemma 2.1a of [3, p. 120] if we prove for
x> 1y >" that Gf(x—t)/G(x,—¢) has no changes of trend for £ < —B. We
define G¥*(x—t) = exp[c'D,]|G¥(x—t), obviously G¥*(¢)eclass B and also to
class II. Therefore
(6.4) “j[ (Gt (x—£)/Glxy—1) = Li*z—t +¢')(1))—‘L(xoi—t+0(1)), t— —oo,

where L(¢) and Lf*(¢) satisfy
(6.5) t= i L) (arac+ LE)N™ — (e +LEN) ™

- iLf*[(ak<ak+Lf*<t>>>*’l — (clex+ LEX@)) ]
+ Ly*@) - (cle+ LE* @)

(6.5) implies L{*(t) = L(t—c *+o0(1)), t - —co or when we choose B large
enough

4 (Gr*(a—1)/Glao—1)

is positive f_qr t<—B and for xz—c'!'>x,>v and therefore so is
%(G;*(xq)/c‘;(x;—t)‘) for x>z >". QED.

PROOF OF THEOREM 6.3. One easily see that

4 flz) = f "Gz — 1) da(t) = f “Gla+ A—t) da(t)

—oo
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and that the last integral converges for x > 8—A.
Since G,(¢) satisfy the same conditions as G(¢) it is enough to show

(6.6) %ecx fm e dy ﬁiG(y—t) da(t) = ce™ j: “m G(y—t)e™ dy}‘da(t)

and
67 (1- 5) f :G(x—t) dalt) = f :[(1 - —f—) G(x—t)] dait),

where a < {a,} and ce {c,}. The equation (6.7) which is needed when the c;

corresponding to a is oo is proved as in Theorem 5.2a of [3, p. 129]. To prove

(6.6) we see that both double integrals converge, that on the right because of

Lemma 6.4 and that on the left because of Theorem 4.4: The! proof of (6.6)

follows now similarly to that of Theorem 6.1.° Q.ED.
THEOREM 6.5. Suppose:

(1) G@)e class Ul and N, = 3.
2) a(t)e BV. for t in any finite interval to the right of T.
3) G(x t) da(t) converges for x> T+ Z(ak l—c ™).

—o0 .lcl

Then
RuD) fi@) = | "G t) datit)

the integral converges uniformly’ for' x in any finite interval right of”

T+b,+ 2 (ai'—cy ™).

k=m+1

LEMMA 66 Let assumptwns 1), (2) and (3) of Theorem 6.5 be satisfied,
then f G(z—t)da(t) converges Jor x>T + Z(q,c '— ™) where Gy(x)
. e "\

= (1—~— G(x) and ¢ > a,.

PROOF OF THEOREM 6.5 AND LEMMA 6.6. Similar to that of former
Theorems and Lemmas of this section using here G(¢)< class III and G(z) =

for t> Z (ax™ ' —ci D).

k=1 -
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THEOREM 6.7. Suppose :

1) G@)eclass 1L
(2) a(t)e B.V. in any finite interval and for some K >0 and p>0
|at)| = Ke* for t <O0.

3 f G(x—t) da(t) converges.
Then

RuD)f@) = [ Gula—t) da).

PROOF. By Theorem 3.1 f G(x—t)da(t) | converges uniformly in any

finite interval. Following the proof of Theorem 6.1 we can complete the proof
of this theorem.

7. The basic inversion Theorems. We shall invert in this section the
transform

(7.1) flx) = f OG(.'I:— 1) @(t)dt

where N, + N_=3. Similar results will be achieved for N, + N.=1 in
section 9 but then asymptotic restrictions have to be given on @(¢) which will
imply that if N, + N_ =3 the results of section 9 are a special case of those
in this section.

For the proof we shall need the following Lemma, which will be helpful -
also in the following sections.

LEMMA 7.1. Suppose N,(m) + N_(m)=2, 8 >0 and c is finite, then

(7.2) lim [ G.()etdt=0
moe Jit>s

and

(7.3) lim | ¢Gat)edt=0.

mooe J 5

PROOF. Choose m so large that a,(m)<c < ay(m) (that is @, and a,
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corresponding to the sequence {a};.) and choose also 7 > 0 such that «a,(m)
< c—2n < c+2n < ay(m). _
Since for |t| =8 we have

e ° = e °sinh? n¢/sinh? 73

we obtain

Gut)e*tdt = f G,L(t) e ¢t sinh? 9t (sinh 78)~% dt

1t1=8

_ 1 [ 1 1 2 ]
= Usinh oy | Fulet2n) | Fale—2n) ~ Fulo)

and since for every finite a lim F,,(a) = 1 we conclude the proof of (7.2); the
proof of (7.3) is similar. Q.ED.

THEOREM 7.2. Suppose:

(1) G(t)eclass I, N, + N.=3.
(2) @(t)e Ly(A, B) for any A, B satisfying —oo < A < B < oo.

3) flx)= [ G(x—t) @(t) dt converges.

(4) @(t) is continuous at t=x and for some p and k |p(t)|= K cosh pt.
(6) N.(m)+ N_(m)=3.

Then
lim R,(D) flz) = ¢(x) .
THEOREM 7.3. Suppose:

1) G(t)eclass 1.
(2) Assumptions (2), (3) and (4) of Theorem 7.2 are satisfied.

Then
lim R(D) flz) = ¢(z) .

THEOREM 74. Suppose :

1) G@)eclass III, N, + N. = 3.
(2) @(¢)e L(A, B) for any A, B satisfying T < A < B < oo.

3 Ax)= fG(x t) p(t) dt converges at x> T + Z(ak I—c™).

—co k=1
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(4) - Assumption (4) (for t > 0) and (5) of Theorem 7.2 are satisfied.
Then
lim R,,(D) fiz) = p(x) .

REMARK 7.5. For Theorem 7.4 we can always have such an arrangement
of a,’s so that N.(m)=3 if N, =3. See also Remark 54.

PROOF OF THEOREMS 7.2, 7.3 AND 74. By the corresponding theorems
of section 6 we have

7.4 RuD)f@) = [ Gola=0) g0y .

Uéing f G.(t)dt =1 and (7.2) for ¢=0 we have for a point of continuity x
of @(t) '

fbm(i—t)[¢(t)—‘<p(x)] dt l =& z};m(x— t)ydt = &.

z—8

(7.5)

z-8

Also the above arguments imply.
(7.6) o) = [ Cula—1) pl) dt
+8
= | Gux—t)plx)dt+o(l), m— oo,
z—8
To complete the proof we have only to show that for all 8

7.7) f| G n g di=o1),  moen,

which is an easy consequence of (7.2). _ » o
For Theorem 7.4 we have to use the proof of Theorem 2.3 which implies
G,.(—38) = 0 for m big enough. Q.E.D.

8. Inversion Theorems. In this section inversion theorems will be
established for
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®.1) flz) = f Glz—t) et datf).

THEOREM 8.1. Suppose :

1) G@)eclass I, N, + N.=3.

(2) at)e B.V. in any finite interval.

(3) (8.1) converges.

(4) N,(m) + N_(m)=3.

(5) z, and x, are points of continuity of a(t).

Then for m big enough we have

A. a, <c<a, implies

[ Ru(D) fi) d

Yz,

= f Gu(xy—t) e a(t) dt — f G (x,—t) e ™ a(t)dt
= a(x,) — alx,) + o(1), m— oo,

B. a,=c implies the existence of a(+ ) and

f e R,(D) fz) dx

- [ "G (@~ t) e O(a(o0) — alt)) dt
= afo0) — a(x;) + o(1), m— oo,

C. c=a, implies the existence of a(— o) and
x

f <= R,(D) flz) dz

= [ Gutm—p) e t(aty—a(—co) ds
= a{x,) — a(—) + o(1), m— oo,

PROOF. First, we have to note that it is enough to assume that (8.1)
converges for some x,, since
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f Gla—1t) e dait) = f Gla—t)dBit)

¢

where B(t) = f e*da{u) is of bounded variation in any finite interval which
0

permits the use of Theorem 2.1 as well as Theorem 6.1. As a result of
Theorem 4.1 of [2] the function G(x—t)e® is monotonic for #e< (M, o) and
(—oo, —M) for some large M and for every real c¢. (In the proof one has to
distinguish five cases (1) c<a, @) c=a, B a, <c<a, (4) a,=c and
(5) @, >c¢.) The monotonicity of exp[ct] G(x—¢) implies by Lemma 2.1c of
[3, pp. 121-122] :

(a) For a, <c<a,
a(t) = o(G(zy—t) ), || — 0.
(b) Forc=a, alw)= llril alt) exists and
[a(eo)—a(®)] = o(G(xo—t) €)™,  [t| — oo
(c) Forc=a, a(—o)= tlf.f‘ a(t) exists and
l[a(t)—a(—o0)] = o(G(xo—t) €)™,  |t| —>oo.

By Theorem 6.1

f “oes R (D) Alx) dix = f : f_:Gm(x—t) -0 dar's)

T

= f f 58;{ [Gu(x—t) e "] alt) dt
_ f G, (za—1t) e~ a(t)dt — f G, (z,—1) e~ -da(t) dt.

The change in the order of integration is clearly permissible since one can
see easily that the inner integral converges uniformly in the finite interval
xe[x,z,]. The rest of the proof of A is by using Theorem 7.2. The proof
of B and C follows steps similar to those of the proof of Theorem 6.1a of
[3, pp. 132-134] which are justified by lemmas and theorems of this paper.

Q.ED.
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Similarly one can prove the following theorems using, of course, the
corresponding Theorems for classes II and III instead of class L

THEOREM 82. Suppose :

1) G(t)eclass 1L.
(2) Assumptions (2), (3), (4) and (5) of Theorem 8.1 are satisfied.
(3) |ai)| = Ke* for some p<<0 and t <O.

Then (A) and (B) of Theorem 8.1 are valid.

THEOREM 8.3. Suppose :

1) G@&) e class 1L
(2) alt)ye BV. te (A, B) for any A, B satisfying T < A < B < oo.

(3) (8.1) converges for x>T + 3 (ay™'—ci™").

k=1
(4) N,(m) + N_(m)=3.
(5) alt) is continuous at x, and zx,.

Then (A) and (B) of Theorem 8.1 are valid for x,,x,, > T.

9. Some generalizations and remarks.

(a) In Remark 54 we noticed that we may arrange the sequences {a}
and {c;} so that, except in one case, N,(m)+ N_(m )=N,+ N_. We shall show
here how to invert the transform even in this case.

Suppose that the negative a,’s are finite and that n = N_ >0 (N_ is of
course finite here). Take the 7n smallest positive ¢;’s ¢, , -+ -, cr, and write

fuey= (1= 2) o (1= 2) o= [ (1= 2) G-naate

1 —oo 1=1 k;

which is permitted by the method of Theorem 6.1. Now

I (1= 2) -0 - Gua—t

Ky

is a kernel satisfying N, = N, + n = N, + N_ and now we can use Theorems
6.1 and 7.2 to find @(2) and a(t) from fy(¢) instead of f(z). When there are
only finite positive a;’s and N, > 0 a similar technique is employed.

(b) When N, + N_. =2 the inversion theory of section 7 still holds if
@(t) satisfies the following :
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(i) For G(t)eclass I  [@(t)] = Kexpl(a,+€)¢], ¢ <0 and
|@(t)| = Kexp[(a,—&)¢t], t>0 for some K and & > 0.
(ii) For G(¥)eclass I |g(t)| = Kexpl(a,—&)¢], ¢>0 and
leit)] = Ke™®, t<0 for some K>0, p>0 and &> 0.
(iii) For G(¢) € class III
|@(t)] = Kexpl(a,—8&)¢t], t>1T.

Under these assumptions we obtain for £ — oo
Az)= [ Ga—nglt)de

oo (]
=K f Glx—t) et dt + f Glx—1t) p(t)dt
0 —~c0

= I,(x) + I(x)
I(x) =0(1), x— o for all G(¢)

[(x) =K e(‘""””f Gv)e 9 dv =K, e 9",

For G(t)eclass I we can prove |fix)| = K;exp[(a,+&)x], x— —oco. Let
ce {ce}

Ful@) = (1 - 2)—1f<x>

c
= fm (1— %)-IG(x—typ(t) dt

- f “Gulx—1) plt) dt

Then Gy(x—t) satisfies N, + N_.= 3, and the inversion operator is applicable

to fx(@).

(c) When N,+N_=1 we can obtain a result similar to those of section
7 if @(t) is continuous and satisfies I, Il or I of (b) when G(¢t)eclass L, II or
IIT respectively.
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oo

fx) = f oz —t) dH(t)

oo

=K f e gEH() + K f e+ 960 JF().

Using (2.9) of [2] which implies H(¢) = Kexp[(a,—&)¢] and 1 — H(¢)
= Kexp[(a, + &¢] and by the method of (a) and (b) find a transform

Jx(x) :f Gy(x—1t) @(t) dt for which G, satisfies N, + N_ = 3.
We should note here that the restriction that ¢@(#) is continuous is not
necessary. It will suffice that the Lebesgue-Stieltjes integral fx)= f plx—t)dH(¢)

converge for all x when G(¢) € class I and for x> A for some A >0 otherwise.

(d) It should be noted that improvement of some Theorems here would
be possible if we knew that G,(f) were monotonic in (—oo, —8) and (8, e0)
and not only for (—oo, —A,) (An, ). That refers to the theorems of section
7. Theorems 8.1 and 8.3 are the best possible in the sense that whenever the
convergence occured the inversion was valid.

(e) The class of transforms
9.1) R = 11 (=s'/a)/(A=s'/er)

where > a,? < oo, 0=a;/c, <1, N, + N. > 2 (and therefore N, + N_=4),
which includes the class treated by Y. Tanno in [4] and [5], satisfies tG'(¢) < O
for £ % 0 and tG;.(t) < 0 for £ % 0. The proof follows the one used for a
subclass by Hirschman and Widder [3, p. 221]. The above fact enables us to
replace assumption 4 of Theorem 7.2 by

W [ W) —p@idy = o), koo,

when our class is defined by (9.1).
The proof is as follows :

T+8

I, = f  Gulz—1lol) — plo) dt

= Gon(8) AB) — Gn(8) a(—8) + f Gz —t) alt—) dt

lz—t]<8
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t
where ot(t—x)=f [p(7)—p(x)] dT and |a(t—x)| = o(t—x), t— x,

I = ef Ginlx—t)x—t)dt + o1) =& + o(1), m—> .

By (7.6) we see that it is enough to prove (7.7).

f G (x—1t) p(t) dt
|x—t]>8

= | Gru(x—t)at) dt + o(1), m— oo,

|z—t|>8

where

(1]
(21

——
- w
—

[51]
[6]
171

4
at) = f p(v) dv .
0
Using Theorems 4.3(a) and (b) we obtain (7.7) by integration by parts.
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