MINIMAL SUBMANIFOLDS AND CONVEX FUNCTIONS

Κιγοτακά ΙΙ

(Received February 8, 1972)

In this note we describe some results concerning minimal submanifolds in complete Riemannian manifolds of non-negative curvature. Our main theorem is stated as follows:

MAIN THEOREM. Any compact minimal hypersurface in a complete non-compact Riemannian manifold of non-negative curvature is totally geodesic.

The author was motivated to study minimal submanifolds by Nakagawa-Shiohama [7] in which they suggested to investigate the relation between compact minimal submanifolds and "souls" of complete non-compact Riemannian manifolds of non-negative curvature. For souls, see Cheeger-Gromoll [2] as well as Shiohama [9]. In the course of our investigation we also deal with a property of the distance function α_N from points on a minimal submanifold N to a totally geodesic hypersurface H in a complete Riemannian manifold of non-negative curvature. Roughly speaking, this property is that α_N is superharmonic on N, which may be seen as the dual of the case where the ambient manifold has non-positive curvature, compare Hermann [6]. Making use of this property we are able to determine the relation between N and H under some conditions, for related results see Frankel [3], [4].

In section 1, we describe some lemmas concerning convex sets and convex functions under fairly general situations. Lemmas 1 and 2 are originally mentioned in Cheeger-Gromoll [2], which we will use without proof. Lemma 4 is an important link in our arguments. In section 2, assuming that the ambient manifold has non-negative curvature, we construct several convex functions to apply Lemma 4. Finally in section 3, we consider the non-compact case to obtain our main theorem, see Nakagawa-Shiohama [7] and Shiohama [8]. Lemmas 5 and 10 are originally proved in Cheeger-Gromoll [2]. For all basic concepts and tools in Riemannian geometry that will be used without comment, we refer to Gromoll-Klingenberg-Meyer [5].

I am very grateful to Professor S. Sasaki and Professor S. Tanno for their advice and encouragement. I would also like to thank Mr. T. Sakai and Mr. K. Kenmotsu for many helpful criticisms and suggestions.

1. Preliminaries. The most important notion we use is that of convexity. A subset B of a complete Riemannian manifold M is called strongly convex if for any points $p, q \in B$ there is a unique minimal geodesic $c:[0,1] \to M$ from p to q and $c([0,1]) \subset B$. Recall that there is a positive continuous function $r: M \to (0, \infty]$, the convexity radius, such that any open metric ball $B_{\epsilon}(q) \subset B_{r(p)}(p)$ is strongly convex. We say that a subset C of M is convex if for any $p \in \overline{C}$ there is a number $\varepsilon(p) (0 < \varepsilon(p) < r(p))$ such that $C \cap B_{\epsilon(p)}(p)$ is strongly convex, where \overline{C} is the closure of C. In their paper [2], Cheeger and Gromoll studied the structure of convex sets. One of their results is:

LEMMA 1. (Structure Theorem for Convex Sets) Let C be a connected closed convex subset of a Riemannian manifold M. Then C carries the structure of an imbedded k-dimensional submanifold of M with smooth totally geodesic interior int C and (possibly non-smooth) boundary ∂C .

For our present purpose it will suffice to consider the case where C is *n*-dimensional $(n := \dim M)$. Hyperplanes in a tangent space M_p mean always hyperplanes through the origin *o*. For a hyperplane H_p in M_p , let H_p^+ denote a closed half-space defined by

$${H}_p^+ := \{ v \in {M}_p \, | \, ig< v, \, u ig> \geqq 0 \}$$
 ,

where $u \in M_p$ is a unit normal vector of H_p .

Let $D_r(p)$ denote the open disc in M_p of radius r > 0 centered at o, that is,

$$D_r(p) := \{ V \in M_p | || v || < r \}$$
.

The following lemma was proved in Cheeger-Gromoll [2] under more general conditions.

LEMMA 2. Let C be an n-dimensional closed convex subset of an ndimensional Riemannian manifold M. Then for any $p \in \partial C$, there is a closed half-space H_p^+ in M_p such that

$$C\cap B_{arepsilon(p)}(p)\subset \exp_p\left(H_p^+\cap D_{arepsilon(p)}(p)
ight)$$
 .

We call such H_p^+ a supporting half-space of C at p. The non-empty boundary ∂C of an *n*-dimensional closed convex subset C in an *n*-dimensional Riemannian manifold M is a (possibly non-smooth) hypersurface of M.

LEMMA 3. Let M and C be as above. If $N := \partial C$ is smooth in a neighbourhood of $p \in N$, then the 2-nd fundamental form l_N^u of N with respect to the unit normal vector u of N at p pointing toward the interior

of C is negative semi-definite.

PROOF. Put

$$egin{aligned} H_p &:= \{ v \in M_p | \langle \ v, \ u
angle = 0 \} = N_p \ , \ H_p^+ &:= \{ v \in M_p | \langle v, \ u
angle \geqq 0 \} \ . \end{aligned}$$

Then H_p^+ is the unique supporting half-space of C at p.

$$H := \exp_p \left(H_p \cap D_{\varepsilon(p)}(p) \right)$$

is a (non-complete) smooth hypersurface of M, which is totally geodesic at p. For sufficiently small ε ($0 < \varepsilon < \varepsilon(p)$) and $v \in H_p$, ||v|| = 1, define a geodesic

$$\gamma: (-\varepsilon, \varepsilon) \to M; \ \gamma(s) := \exp_p(sv) \in H$$

and for a fixed $q: = \exp_p(au) \in \operatorname{int} C \ (0 < a < \varepsilon(p))$, let $c_s: [0, a] \to M$ be the minimal geodesic from q to $\gamma(s)$. Then we have a smooth one-parameter variation \mathscr{V}_H of c_0 defined as follows:

$$\mathscr{V}_{H}$$
: $[0, a] \times (-\varepsilon, \varepsilon) \rightarrow M; \ \mathscr{V}_{H}(t, s) := c_{s}(t)$.

Since H_p^+ is a supporting half-space of C and $q \in \text{int } C, d(p, q) < \varepsilon(p)$, each geodesic $c_s: [0, a] \to M$ intersects N at a unique parameter value $t_s \in (0, a]$ and the function $s \to t_s$ is smooth.

Making use of \mathscr{V}_{H} , we define another variation

$$\mathscr{V}_N: [0, a] \times (-\varepsilon, \varepsilon) \to M; \ \mathscr{V}_N(t, s) := \exp_q\left(\frac{t_s}{a}t\dot{c}_s(0)\right).$$

Let $L_H(s)$ and $L_N(s)$ denote the lengths of geodesics $t \to \mathscr{V}_H(t, s)$ and $t \to \mathscr{V}_N(t, s)$ respectively. Then L_H and L_N are smooth and moreover

$$L_{\scriptscriptstyle H} \geq L_{\scriptscriptstyle N}, \; L_{\scriptscriptstyle H}(0) = L_{\scriptscriptstyle N}(0), \; L_{\scriptscriptstyle H}'(0) = L_{\scriptscriptstyle N}'(0) = 0 \; ,$$

therefore we have

$$L_{H}^{\prime\prime}(0) \geq L_{N}^{\prime\prime}(0)$$
 .

Now let J_H and J_N denote the Jacobi fields along c_0 induced from \mathscr{V}_H and \mathscr{V}_N respectively. Then

$$J_{H}(0) = J_{N}(0)$$
, $J_{H}(a) = J_{N}(a) = v$,

since q and p are not conjugate along c_0 they must coincide;

$$J:=J_H=J_N$$

Since H is totally geodesic at p, by the 2-nd variation formula we have

K. II

$$L_{\scriptscriptstyle H}^{\prime\prime}(0) = \int_{\scriptscriptstyle 0}^{a} [\langle J^{\prime}, J^{\prime}
angle - \langle R(J, \dot{c}_{\scriptscriptstyle 0}) \dot{c}_{\scriptscriptstyle 0}, J
angle] dt$$

and

$$L_{\scriptscriptstyle N}^{\prime\prime}(0) = \int_{\scriptscriptstyle 0}^{\tt a} [\langle J^{\prime},\,J^{\prime}
angle - \langle R(J,\,\dot{c}_{\scriptscriptstyle 0})\dot{c}_{\scriptscriptstyle 0},\,J
angle] dt \,+\, l_{\scriptscriptstyle N}^{\tt u}(v,\,v)$$
 ,

where $J' := \nabla_{i_0} J$. Hence we have

$$l_N^u(v, v) = L_N''(0) - L_H''(0) \leq 0$$
.

DEFINITION. A continuous function α on a Riemannian manifold M is said to be *convex* or *superharmonic* provided that for any $\varepsilon > 0$, there exists a neighbourhood U_p of p in M and a smooth function $\alpha_{p,\varepsilon}$ on U_p which satisfies the following (i) and (ii) or (i) and (ii)' respectively.

(i) $\alpha_{p,\varepsilon}(x) \ge \alpha(x)$ for any $x \in U_p, \alpha_{p,\varepsilon}(p) = \alpha(p)$,

- (ii) $\langle \nabla_X \nabla \alpha_{p,\varepsilon}, X \rangle \leq \varepsilon$ for any $X \in M_p, ||X|| = 1$,
- (ii)' $\Delta \alpha_{p,\varepsilon} \leq \varepsilon$ at p,

where Δ is the Laplacian.

Superharmonic functions satisfy the minimum principle, for the proof see Calabi [1].

LEMMA 4. Let α be a convex function on a Riemannian manifold M and N a minimal submanifold of M. Then the restriction $\alpha | N$ of α on N is superharmonic.

PROOF. Fix an arbitrary $p \in N$. For any smooth function β in a neighbourhood of p in M and any tangent vector $X \in N_p$, we have

$$egin{aligned} &l_{\scriptscriptstyle N}^{(arphi\,eta\,\,eta}\,\,eta\,\,eta\,\,eta\,\,eta\,\,eta}\,\,eta\,\,eta\,\,eta\,\,eta\,\,eta\,\,eta\,\,eta}\,\,eta\,\,eta\,\,eta$$

where $l_N^{(\nabla\beta)\perp}$ is the 2-nd fundamental form of N at p with respect to $(\nabla\beta)^{\perp}$. Fix an orthonormal basis X_1, \dots, X_k of N_p $(k := \dim N)$. Then by the definition of the Laplacian $\stackrel{N}{\Delta}$ of N, we have

$$egin{aligned} & \overset{N}{\Delta}(eta \,|\, N) \,|_{p} \,=\, \sum\limits_{i=1}^{k} ig\langle \overset{N}{
abla}_{X_{i}} \overset{N}{
abla}(eta \,|\, N),\, X_{i} ig
angle \ & =\, \sum\limits_{i=1}^{k} ig\langle
abla_{X_{i}}
abla eta,\, X_{i} ig
angle \,-\, \sum\limits_{i=1}^{k} l_{N}^{(
abla eta \,)\,oldsymbol{\perp}}(X_{i},\, X_{i}) \ & =\, \sum\limits_{i=1}^{k} ig\langle
abla_{X_{i}}
abla eta,\, X_{i} ig
angle \,, \end{aligned}$$

since we have assumed that N is minimal. Now choose $\alpha_{p,\epsilon}$ satisfing (i) and (ii) in Definition. Then we get

$$\sum_{k=1}^{N} (lpha_{p, \epsilon} | N) |_{p} = \sum_{i=1}^{k} \langle
abla_{\chi_{i}}
abla lpha_{p, \epsilon}, X_{i}
angle \leq k \epsilon$$

and the lemma follows.

Under the same assumption as Lemma 4, if $\alpha | N$ attains the minimum at some $p \in N$, then $\alpha | N$ is constant. In particular if N is compact, then $\alpha | N$ is constant. Lemma 4 makes it possible to relate minimal submanifolds with convex functions. For example, let M be a complete simply connected Riemannian manifold of non-positive curvature. Then for fixed $p \in M$, the distance function $x \to -d(x, p)$ is convex. By Lemma 4, the well-known result follows, i.e., M contains no compact minimal submanifold of positive dimension.

2. Applications for manifolds of non-negative curvature. Now let us construct convex functions in complete Riemannian manifolds of nonnegative curvature. The following lemma is a rather special case of a result mentioned in Cheeger-Gromoll [2].

LEMMA 5. Let C be an n-dimensional connected closed convex subset with $\partial C \neq \emptyset$ of an n-dimensional complete Riemannian manifold M of nonnegative curvature. Then the function

$$\alpha: C \to R$$
; $\alpha(x) := d(x, \partial C)$

is convex.

PROOF. Since α is continuous, it will suffice to show that α is convex in int $C = C - \partial C$.

Fix $q \in \text{int } C$, $b := d(q, \partial C) > 0$, and let $c: [0, b] \to M$ be a shortest connection between q and ∂C . c runs in int C except $p := c(b) \in \partial C$. Put

$$egin{aligned} H_p &:= \{v \in M_p | \langle v, \, \dot{c}(b)
angle = 0\} \ , \ H_p^+ &:= \{v \in M_p | \langle v, \, - \dot{c}(b)
angle \geqq 0\} \ . \end{aligned}$$

First we show that H_p^+ is the unique supporting half-space of C at p. If there is a unit vector $w \in M_p$ such that

$$\langle w, \dot{c}(b) \rangle < 0, W_{\varepsilon} := \{ \exp_{v}(tw) | t \in [0, \varepsilon] \} \not\subset C$$

for any $\varepsilon > 0$, then we can choose an arbitrary small $\delta > 0$ such that the minimal geodesic from $c(b - \delta)$ to W_{ε} ($\varepsilon < \varepsilon(p)$) is orthogonal to W_{ε} at $\exp_p(t_{\delta}w)$ ($0 < t_{\delta} < \varepsilon$) and $\exp_p(t_{\delta}w) \notin C$. But this contradicts that c is a shortest connection between q and ∂C . Fix $a \in (0, b)$ and extend c on the interval [-a, b]. Let $X_1, \dots, X_{n-1}, \dot{c}$ be an orthonormal parallel fields along c. Since c([-a, b]) is compact, there is a small r > 0 such that

$$F: D_r(c) \rightarrow M; F(v) := \exp(v)$$

K. II

is a diffeomorphism into M, where

$$D_r(c) := \bigcup_{t \in [-a,b]} \{v \in M_{c(t)} | v \perp \dot{c}(t), ||v|| < r \}.$$

For any $x \in F(D_r(c))$ let

$$F^{-1}(x) = \sum_{i=1}^{n-1} \pi_i(x) X_i(t_x) \qquad (\pi_i(x) \in \mathbf{R})$$

and define a smooth curve

$$c_x: [t_x, b] \to M; \ c_x(t) := F \left\{ \sum_{i=1}^{n-1} \pi_i(x) X_i(t) \right\} \,.$$

Then the length function

$$L: F(D_r(c)) \rightarrow R$$
; $L(x) := [length of c_x]$

is smooth in $B_r(q)$. Since c_x connects x and a point on $H := \exp_p (H_p \cap D_r(p))$ and H_p^+ is a supporting half-space, we have

$$L(x) \ge \alpha(x)$$
 for any $x \in B_r(q)$, $L(q) = \alpha(q)$.

Now for any parallel vector field X along c with $X \perp \dot{c}$ we have by the 2-nd variation formula

$$\langle
abla_{{}_{\mathcal{X}(0)}}
abla L, \, X(0)
angle = \int_{_0}^{_b} [\langle X', \, X'
angle - \langle R(X, \, \dot{c}) \dot{c}, \, X
angle] dt \leq 0$$
 ,

because H is totally geodesic at p and the curve $t \to F(tX(0))$ is a geodesic which is orthogonal to c at q. Clearly

$$\langle
abla_{\dot{c}(0)}
abla L$$
 , $\dot{c}(0)
angle = 0$,

hence α is convex.

Under the same situation as Lemma 5, it follows that for any $a \ge 0$ the subset

$$C^a := \{x \in C \, | \, d(x, \, \partial C) \ge a\}$$

is closed and convex.

Combining Lemmas 4 and 5 we have:

THEOREM 6. Let M be an n-dimensional complete Riemannian manifold of non-negative curvature, C an n-dimensional connected closed convex subset of M with $\partial C \neq \emptyset$, and N a minimal submanifold of M which is contained in C. Suppose that on N there exists a closest point to ∂C , then each point of N lies at the same distance from ∂C .

In particular, a compact minimal submanifold contained in C lies at the same distance from ∂C . If N intersects with ∂C , then N is contained

in ∂C . Theorem 6 may be seen as a generalization of Theorem 5.3 in Yano-Ishihara [10], in which they consider the case where M is the *n*-dimensional sphere S^n and C a closed hemi-sphere.

Combining Theorem 6, Lemmas 3 and 5 we have:

THEOREM 7. Let M be an n-dimensional complete Riemannian manifold of non-negative curvature, C an n-dimensional connected closed convex subset of M with $\partial C \neq \emptyset$, and N a minimal hypersurface of M which is contained in C. Suppose that on N there exists a closest point to ∂C , then N is totally geodesic.

PROOF. Let $a := d(N, \partial C)$. Then N is contained in the closed convex subset $C^a := \{x \in C \mid d(x, \partial C) \ge a\}$. Let D be a connected component of C^a which contains N. Then D is an (n - 1)- or n-dimensional (possibly nonsmooth) submanifold with totally geodesic interior. In the case dim D =n - 1, N is contained in D as an open submanifold, hence the theorem follows. On the other hand, if dim D = n, then $\partial D \neq \emptyset$ and by Theorem 6, N is contained in ∂D as an open submanifold. Since N is minimal, by Lemma 3 the proof is completed.

A Riemannian manifold M with non-empty boundary ∂M is said to be convex, if the 2-nd fundamental form of ∂M with respect to the inward normal vector on ∂M is negative semidefinite. Making use of the same argument as above, we have:

PROPOSITION 8. Let M be a convex Riemannian manifold of nonnegative curvature, and N a minimal submanifold of M. Suppose that on N there exists a closest point to ∂M , then N lies at the same distance from ∂M . Moreover if N is a hypersurface, then it is totally geodesic.

Now let us consider the relation between minimal submanifolds and totally geodesic hypersurfaces. Let H be a hypersurface in a complete Riemannian manifold M. Then for any $p \in H$ there is a small $\delta(p) > 0$ such that $B_{\delta}(p) - H$ has exactly two connected components for any $0 < \delta < \delta(p)$.

We shall say that a submanifold N of M satisfies the condition (H) relative to H provided that for any $p \in N \cap H$, there is a small $0 < \delta'(p) < \delta(p)$ such that $N \cap B_{\delta'(p)}(p)$ lies in the closure of a connected component of $B_{\delta'(p)}(p) - H$.

THEOREM 9. Let H be a totally geodesic hypersurface in a complete Riemannian manifold M of non-negative curvature, and N a minimal submanifold of M which satisfies the condition (H) relative to H. Suppose that on N there is a closest point to H, then N lies at the same distance from H. **PROOF.** By Lemma 5, the distance function

$$\alpha: M \to \mathbf{R}$$
; $\alpha(x) := d(x, H)$

is seen to be convex in M - H. Fix an arbitrary $p \in H$ and choose $\delta(p) < r(p)$ as above, where r(p) is the convexity radius of M at p. Let $H_{p,\delta}^+$ denote one of the connected components of $B_{\delta}(p) - H$ ($0 < \delta < \delta(p)$). Since H is totally geodesic, the closure $\overline{H_{p,\delta}^+}$ of $H_{p,\delta}^+$ is an *n*-dimensional closed convex subset of M ($n := \dim M$) and for any $x \in H_{p,\delta/2}^+$ the shortest connection from x to $\partial \overline{H_{p,\delta}^+}$ coincides with the shortest connection from x to H. Hence the distance function

$$\alpha_p: H_{p,\delta/2}^+ \longrightarrow R$$
; $\alpha_p(x) := d(x, \partial \overline{H_{p,\delta}^+})$

coincides with $\alpha | H_{p,\delta/2}^+$ and is convex. It follows that by Lemma 4, if N satisfies the condition (H) relative to H, then $\alpha | H$ is superharmonic, and the theorem follows.

3. An application for non-compact manifolds of non-negative curvature. Recall that a ray in a complete non-compact Riemannian manifold M is a normal geodesic $\gamma: [0, \infty) \to M$, each segment of which is minimal.

With each ray γ in M we associate a function ρ_{γ} as follows: For $t \ge 0$, let

$$\rho_t(x) := d(x, \gamma(t)) - t \qquad (x \in M)$$
.

It follows from the triangle inequality that the family $\{\rho_t\}$ is uniformly equi-continuous. For fixed x, the function $t \to \rho_t(x)$ is decreasing on $[0, \infty)$ and bounded below by $-d(x, \gamma(0))$. Hence, for $t \to \infty$, $\{\rho_t\}$ converges uniformly on compact subsets to a continuous function ρ_r on M.

The following lemma was proved in Cheeger-Gromoll [2] and used effectively to construct the structure theorem of complete non-compact Riemannian manifolds of non-negative curvature.

LEMMA 10. Let M be a complete non-compact Riemannian manifold of non-negative curvature. Then for any ray γ in M the associated function ρ_{γ} is convex.

Now we are able to generalize Theorem 2.1 and Theorem 2.2 in Nakagawa-Shiohama [7] as follows:

THEOREM 11. Any compact minimal submanifold of a complete noncompact Riemannian manifold M of non-negative curvature is contained in a level surface of ρ_{τ} , where γ is any ray in M.

Finally our main theorem follows by Lemma 10 and Theorem 7, for

the proof it will suffice to notice that the subset

$$C_t := \{x \in M | \rho_r(x) \ge t\}$$

is closed and convex.

References

- E. CALABI, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45-56.
- [2] J. CHEEGER AND D. GROMOLL, On the structure of complete manifolds of non-negative curvature, Ann. of Math., 96 (1972), 413-443.
- [3] T. FRANKEL, Manifolds with positive curvature, Pacific J. Math., 11 (1961), 165-174.
- [4] _____, On the fundamental group of a compact minimal submanifold, Ann. of Math., 83 (1966), 68-73.
- [5] D. GROMOLL, W. KLINGENBERG AND W. MEYER, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics 55 (1968), Springer-Verlag.
- [6] R. HERMANN, A uniqueness theorem for minimal submanifolds, J. Diff. Geom., 2(1968) 191-195.
- [7] H. NAKAGAWA AND K. SHIOHAMA, Notes on minimal immersions, J. Math. Soc. Japan, 23 (1971), 409-416.
- [8] K. SHIOHAMA, Minimal immersions of compact Riemannian manifolds in complete noncompact Riemannian manifolds, Kôdai Math. Sem. Rep., 22 (1970), 77-81.
- [9] _____, On complete non-compact Riemannian manifolds with certain properties, Tôhoku Math. J., 22 (1970), 76-94.

[10] K. YANO AND S. ISHIHARA, Submanifolds with parallel mean curvature vector, J. Diff. Geom., 6 (1971), 95-118.

Mathematical Institute Tôhoku University Sendai, Japan