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In this note we describe some results concerning minimal submanifolds
in complete Riemannian manifolds of non-negative curvature. Our main
theorem is stated as follows:

MAIN THEOREM. Any compact minimal hypersurface in a complete
non-compact Riemannian manifold of non-negative curvature is totally
geodesic.

The author was motivated to study minimal submanifolds by Naka-
gawa-Shiohama [7] in which they suggested to investigate the relation
between compact minimal submanifolds and "souls" of complete non-compact
Riemannian manifolds of non-negative curvature. For souls, see Cheeger-
Gromoll [2] as well as Shiohama [9]. In the course of our investigation
we also deal with a property of the distance function aN from points on
a minimal submanifold JV to a totally geodesic hypersurface H in a com-
plete Riemannian manifold of non-negative curvature. Roughly speaking,
this property is that aN is superharmonic on N, which may be seen as
the dual of the case where the ambient manifold has non-positive curva-
ture, compare Hermann [6]. Making use of this property we are able to
determine the relation between N and H under some conditions, for related
results see Frankel [3], [4].

In section 1, we describe some lemmas concerning convex sets and
convex functions under fairly general situations. Lemmas 1 and 2 are
originally mentioned in Cheeger-Gromoll [2], which we will use without
proof. Lemma 4 is an important link in our arguments. In section 2,
assuming that the ambient manifold has non-negative curvature, we con-
struct several convex functions to apply Lemma 4. Finally in section 3,
we consider the non-compact case to obtain our main theorem, see Naka-
gawa-Shiohama [7] and Shiohama [8]. Lemmas 5 and 10 are originally
proved in Cheeger-Gromoll [2]. For all basic concepts and tools in Rieman-
nian geometry that will be used without comment, we refer to Gromoll-
Klingenberg-Meyer [5].
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1. Preliminaries. The most important notion we use is that of con-
vexity. A subset B of a complete Riemannian manifold M is called strongly
convex if for any points p, qe B there is a unique minimal geodesic
c : [0,1] —>M from p to q and c([0, l ] ) c ΰ . Recall that there is a positive
continuous function r:M —* (0, oo], the convexity radius, such that any
open metric ball Bε(q) cz Br{p)(p) is strongly convex. We say that a subset
C of M is convex if for any p eC there is a number ε(p) (0 < ε(p) < r{p))
such that C Π Bε{p)(p) is strongly convex, where C is the closure of C
In their paper [2], Cheeger and Gromoll studied the structure of convex
sets. One of their results is:

LEMMA 1. (Structure Theorem for Convex Sets) Let C be a connected
closed convex subset of a Riemannian manifold M. Then C carries
the structure of an imbedded k-dimensional submanifold of M with smooth
totally geodesic interior int C and (possibly non-smooth) boundary dC.

For our present purpose it will suffice to consider the case where C
is w-dimensional (n:= dimM). Hyperplanes in a tangent space Mp mean
always hyperplanes through the origin o. For a hyperplane Hp in Mp, let
Hp

+ denote a closed half-space defined by

Hp

+:={veMp\(v,u}^0},

where u e Mp is a unit normal vector of Hp.
Let Dr(p) denote the open disc in Mp of radius r > 0 centered at o,

that is,

Dr(p):={VeMp\\\v\\<r}.

The following lemma was proved in Cheeger-Gromoll [2] under more
general conditions.

LEMMA 2. Let C be an n-dimensional closed convex subset of an n-
dimensional Riemannian manifold M. Then for any p e 9C, there is a
closed half-space H^ in Mp such that

C Π Bεip)(p) c exp,, (H; n Dε{p)(p)) .

We call such H£ a supporting half-space of C at p. The non-empty
boundary dC of an %-dimensional closed convex subset C in an ^-dimen-
sional Riemannian manifold M is a (possibly non-smooth) hypersurface of M.

LEMMA 3. Let M and C be as above. If N:= dC is smooth in a
neighbourhood of p e N, then the 2-nd fundamental form lu

N of N with
respect to the unit normal vector u of N at p pointing toward the interior
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of C is negative semi-definite.

PROOF. Put

Hp:={veMp\(v,u} = 0} = NP,

H+:={veMp\<v,uy^0}.

Then H+ is the unique supporting half-space of C at p.

H:=expp(HpΠDε{p)(p))

is a (non-complete) smooth hypersurface of M, which is totally geodesic
at p. For sufficiently small e (0 < ε < ε(p)) and veHp, \\v\\ — 1, define
a geodesic

7: (—6, ε) —> M; y(s): = exτρp(sv) e H

and for a fixed q: = exγ>p(au) e int C (0 < a < e(p)), let c8: [0, a] —• M be the
minimal geodesic from # to y(s). Then we have a smooth one-parameter
variation % of c0 defined as follows:

% : [0, α] x (-ε, ε) ->M; 5^(ί, β) := c.(ί) .

Since £Γ/ is a supporting half-space of C and q e int C, d(p, q) < ε(p),
each geodesic e8: [0, α] —> ikf intersects iSΓ at a unique parameter value
ts e (0, a] and the function s —> ts is smooth.

Making use of %, we define another variation

5^: [0, α] x (-ε, ε) -> M; 3^(ί, s) := exp? (^-ίc.ί

Let LH(s) and L^(s) denote the lengths of geodesies t —* 3^(ί, s) and
ί —* %(t, s) respectively. Then LH and LN are smooth and moreover

LH ^ LN, LH(0) = L^(0), L^(0) - L;(0) - 0 ,

therefore we have

L2(θ) ^

Now let J"̂  and JN denote the Jacobi fields along c0 induced from 5^-
and ^ r respectively. Then

/ir(O) = JN(0) , /^(α) - JN(a) - v ,

since q and p are not conjugate along c0 they must coincide;

J '. = JH = e/^

Since H is totally geodesic at p, by the 2-nd variation formula we
have
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J'> - <R(J, co)c0, J)]dt
JO

and

L'M = Γ[</', J*> ~ <R(J, W , J>]dt + lUv, v) ,
Jo

where Jf: = Ve c/. Hence we have

l"N(v, v) = L'm - Lfm ^ 0 .

DEFINITION. A continuous function a on a Riemannian manifold M
is said to be convex or superharmonic provided that for any ε > 0, there
exists a neighbourhood Up ofpinM and a smooth function aPtt on Up

which satisfies the following (i) and (ii) or (i) and (ii)' respectively.
(i) aPtβ(x) ^ a{x) for any xe Uv, <xp,ε(p) = a(p),
(ii) <VxVαp,ε, X} ^ ε for any XeMp, \\X\\ = 1,
(ii)' Δap>ε ^ ε at p,

where Δ is the Laplacian.

Superharmonic functions satisfy the minimum principle, for the proof
see Calabi [1].

LEMMA 4. Let a be a convex function on a Riemannian manifold
M and N a minimal submanifold of M. Then the restriction a\N of a
on N is superharmonic.

PROOF. Fix an arbitrary pe N. For any smooth function β in a
neighbourhood of p in M and any tangent vector XeNp, we have

where l%β)L is the 2-nd fundamental form of iSf at p with respect to (V/9)1.
Fix an orthonormal basis Xl9 » ,Xk of Np (k:= dimiSΓ). Then by t h e

N

definition of the Laplacian Δ of JV, we have

= Σ <v,
k

= Σ<v,
i=ί

since we have assumed that JV is minimal. Now choose ap>ε satisfing (i)
and (ii) in Definition. Then we get
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ί(a».\N)\, = Σ <Vχ.Vα:p>ε) X<> £ kε

and the lemma follows.
Under the same assumption as Lemma 4, if a \ N attains the minimum

at some pe N, then a\N is constant. In particular if N is compact, then
a\N is constant. Lemma 4 makes it possible to relate minimal sub-
manifolds with convex functions. For example, let M be a complete simply
connected Riemannian manifold of non-positive curvature. Then for fixed
peM, the distance function x —• — d(x, p) is convex. By Lemma 4, the
well-known result follows, i.e., M contains no compact minimal submanifold
of positive dimension.

2. Applications for manifolds of non-negative curvature. Now let
us construct convex functions in complete Riemannian manifolds of non-
negative curvature. The following lemma is a rather special case of a
result mentioned in Cheeger-Gromoll [2].

LEMMA 5. Let C be an n-dimensional connected closed convex subset
with dC Φ 0 of an n-dimensional complete Riemannian manifold M of
nonnegative curvature. Then the function

a:C-+R a(x): - d(x, dC)

is convex.

PROOF. Since a is continuous, it will suffice to show that a is convex
in int C = C - dC.

Fix q e int C, b : = d(q, dC) > 0, and let c: [0, b] —• M be a shortest con-
nection between q and dC. c runs in int C except p : = c(b) e dC. Put

First we show that H+ is the unique supporting half-space of C at p.
If there is a unit vector weMp such that

O , c(δ)> < 0, Wε: - {exp,(ίw) 11 e [0, ε]} <£ C

for any ε > 0, then we can choose an arbitrary small δ > 0 such that
the minimal geodesic from c(b — δ) to Wε (ε < ε(p)) is orthogonal to Wε at
expp (tδw) (0 <tδ< ε) and expp (tδw) <£ C. But this contradicts that c is a
shortest connection between q and dC. Fix α e (0, b) and extend c on the
interval [-α, 6]. Let X, ••, Z ^ , c be an orthonormal parallel fields
along c. Since c([-α, δ]) is compact, there is a small r > 0 such that

F: J9r(c) — ikf F{v): = exp (v)
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is a diffeomorphism into M, where

2?r(c): =

For any x e F(Dr(c)) let

Dr(c):= U {veMeW\v±δ(t),\\v\\<r}.
te[-a,b~\

r4(α?) e
* = 1

and define a smooth curve

cx: [tx, b]-+M; c.(t) : =

Then the length function

L: F(Dr{c)) — R L(x): = [length of cJ

is smooth in Br(q). Since ĉ  connects x and a point on H: = expp (fl, Π -Dr
and iϊpf" is a supporting half-space, we have

L(x) ^ α(α;) for any x e Br(q), L(q) =

Now for any parallel vector field X along c with l i e we have by
the 2-nd variation formula

<VX(O)VL, X(0)> = Γ[<X', Z'> - (R(X, 6)6, X}]dt £ 0 ,
Jo

because ί ί is totally geodesic at p and the curve t —> F(tX(0)) is a geodesic
which is orthogonal to c at q. Clearly

<VJ(0)VL, c(0)> = 0 ,

hence a is convex.
Under the same situation as Lemma 5, it follows that for any a Ξ> 0

the subset

Ca:= {xeC\d(x,dQ ^ α}

is closed and convex.
Combining Lemmas 4 and 5 we have:

THEOREM 6. Let M be an n-dimensional complete Riemannian mani-
fold of non-negative curvature, C an n-dimensional connected closed convex
subset of M with dC Φ 0 , and N a minimal submanifold of M which is
contained in C. Suppose that on N there exists a closest point to dC,
then each point of N lies at the same distance from dC

In particular, a compact minimal submanifold contained in C lies at
the same distance from dC. If N intersects with dC, then N is contained
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in dC. Theorem 6 may be seen as a generalization of Theorem 5.3 in
Yano-Ishihara [10], in which they consider the case where M is the n-
dimensional sphere Sn and C a closed hemi-sphere.

Combining Theorem 6, Lemmas 3 and 5 we have:

THEOREM 7. Let M be an n-dimensional complete Riemannian mani-
fold of non-negative curvature, C an n-dimensional connected closed convex
subset of M with dC Φ 0 , and N a minimal hypersurface of M which is
contained in C. Suppose that on N there exists a closest point to dC,
then N is totally geodesic.

PROOF. Let a := d(N, dC). Then JV is contained in the closed convex
subset Ca := {xe C\d(x, dC) ^ a}. Let D be a connected component of Ca

which contains N. Then D is an (n — 1)- or ^-dimensional (possibly non-
smooth) submanifold with totally geodesic interior. In the case dim D =
n — 1, N is contained in D as an open submanifold, hence the theorem
follows. On the other hand, if dim D = n, then dD Φ 0 and by Theorem
6, N is contained in dD as an open submanifold. Since N is minimal, by
Lemma 3 the proof is completed.

A Riemannian manifold M with non-empty boundary dM is said to be
convex, if the 2-nd fundamental form of dM with respect to the inward
normal vector on dM is negative semidefinite. Making use of the same
argument as above, we have:

PROPOSITION 8. Let M be a convex Riemannian manifold of non-
negative curvature, and N a minimal submanifold of M. Suppose that
on N there exists a closest point to dM, then N lies at the same distance
from dM. Moreover if N is a hypersurface, then it is totally geodesic.

Now let us consider the relation between minimal submanifolds and
totally geodesic hyper surf aces. Let H be a hypersurface in a complete
Riemannian manifold M. Then for any peHthere is a small δ(p) > 0 such
that Bδ(p) — H has exactly two connected components for any 0 < δ < δ(p).

We shall say that a submanifold N of M satisfies the condition (H)
relative to Hprovided that for any peNf] H, there is a small 0 < δ'(p) <
δ(p) such that Nf] Bδ,(p)(p) lies in the closure of a connected component
of Bδ,{p){p) - H.

THEOREM 9. Let H be a totally geodesic hypersurface in a complete
Riemannian manifold M of non-negative curvature, and N a minimal
submanifold of M which satisfies the condition (H) relative to H. Suppose
that on N there is a closest point to H, then N lies at the same distance
from H.
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PROOF. By Lemma 5, the distance function

a: M -> R a(x): = d(x, H)

is seen to be convex in M — H. Fix an arbitrary p e H and choose δ(p) <
r(p) as above, where r(p) is the convexity radius of M at p. Let iJ+δ

denote one of the connected components of Bδ(p) — H (0 < d < <5(p)). Since
H is totally geodesic, the closure H+δ of i ϊ ^ is an ^-dimensional closed
convex subset of M (n: — dim M) and for any x e H+δ/2 the shortest con-
nection from x to dH^δ coincides with the shortest connection from x to
H. Hence the distance function

ap: H+δJ2 -> R av(x): = d{x,

coincides with a\H+δ/2 and is convex. It follows that by Lemma 4, if N
satisfies the condition (H) relative to H, then a\His superharmonic, and
the theorem follows.

3. An application for non-compact manifolds of non-negative cur-
vature. Recall that a ray in a complete non-compact Riemannian mani-
fold M is a normal geodesic 7: [0, oo)—•Jlf, each segment of which is
minimal.

With each ray 7 in M we associate a function pr as follows: For
t ^ 0, let

pt(x):= d(x,y(t)) -t (xeM) .

It follows from the triangle inequality that the family {pt} is uniformly
equi-continuous. For fixed x, the function t-+pt(x) is decreasing on [0, oo)
and bounded below by — d(x, 7(0)). Hence, for t—*c>o9{pt} converges uni-
formly on compact subsets to a continuous function pr on M.

The following lemma was proved in Cheeger-Gromoll [2] and used
effectively to construct the structure theorem of complete non-compact
Riemannian manifolds of non-negative curvature.

LEMMA 10. Let M be a complete non-compact Riemannian manifold
of non-negative curvature. Then for any ray y in M the associated func-
tion pr is convex.

Now we are able to generalize Theorem 2.1 and Theorem 2.2 in Naka-
gawa-Shiohama [7] as follows:

THEOREM 11. Any compact minimal submanifold of a complete non-
compact Riemannian manifold M of non-negative curvature is contained
in a level surface of ργ, where 7 is any ray in M.

Finally our main theorem follows by Lemma 10 and Theorem 7, for
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the proof it will suffice to notice that the subset

Ct:= {xeM\pr(x) ^t}

is closed and convex.
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