MINIMAL SUBMANIFOLDS AND CONVEX FUNCTIONS

Kiyotaka Ii

(Received February 8, 1972)

In this note we describe some results concerning minimal submanifolds in complete Riemannian manifolds of non-negative curvature. Our main theorem is stated as follows:

Main Theorem. Any compact minimal hypersurface in a complete non-compact Riemannian manifold of non-negative curvature is totally geodesic.

The author was motivated to study minimal submanifolds by Naka-gawa-Shiohama [7] in which they suggested to investigate the relation between compact minimal submanifolds and "souls" of complete non-compact Riemannian manifolds of non-negative curvature. For souls, see CheegerGromoll [2] as well as Shiohama [9]. In the course of our investigation we also deal with a property of the distance function α_{N} from points on a minimal submanifold N to a totally geodesic hypersurface H in a complete Riemannian manifold of non-negative curvature. Roughly speaking, this property is that α_{N} is superharmonic on N, which may be seen as the dual of the case where the ambient manifold has non-positive curvature, compare Hermann [6]. Making use of this property we are able to determine the relation between N and H under some conditions, for related results see Frankel [3], [4].

In section 1, we describe some lemmas concerning convex sets and convex functions under fairly general situations. Lemmas 1 and 2 are originally mentioned in Cheeger-Gromoll [2], which we will use without proof. Lemma 4 is an important link in our arguments. In section 2, assuming that the ambient manifold has non-negative curvature, we construct several convex functions to apply Lemma 4. Finally in section 3, we consider the non-compact case to obtain our main theorem, see Naka-gawa-Shiohama [7] and Shiohama [8]. Lemmas 5 and 10 are originally proved in Cheeger-Gromoll [2]. For all basic concepts and tools in Riemannian geometry that will be used without comment, we refer to Gromoll-Klingenberg-Meyer [5].

I am very grateful to Professor S. Sasaki and Professor S. Tanno for their advice and encouragement. I would also like to thank Mr. T. Sakai
and Mr. K. Kenmotsu for many helpful criticisms and suggestions.

1. Preliminaries. The most important notion we use is that of convexity. A subset B of a complete Riemannian manifold M is called strongly convex if for any points $p, q \in B$ there is a unique minimal geodesic $c:[0,1] \rightarrow M$ from p to q and $c([0,1]) \subset B$. Recall that there is a positive continuous function $r: M \rightarrow(0, \infty]$, the convexity radius, such that any open metric ball $B_{\varepsilon}(q) \subset B_{r(p)}(p)$ is strongly convex. We say that a subset C of M is convex if for any $p \in \bar{C}$ there is a number $\varepsilon(p)(0<\varepsilon(p)<r(p))$ such that $C \cap B_{\varepsilon(p)}(p)$ is strongly convex, where \bar{C} is the closure of C. In their paper [2], Cheeger and Gromoll studied the structure of convex sets. One of their results is:

Lemma 1. (Structure Theorem for Convex Sets) Let C be a connected closed convex subset of a Riemannian manifold M. Then C carries the structure of an imbedded k-dimensional submanifold of M with smooth totally geodesic interior int C and (possibly non-smooth) boundary ∂C.

For our present purpose it will suffice to consider the case where C is n-dimensional $(n:=\operatorname{dim} M)$. Hyperplanes in a tangent space M_{p} mean always hyperplanes through the origin o. For a hyperplane H_{p} in M_{p}, let H_{p}^{+}denote a closed half-space defined by

$$
H_{p}^{+}:=\left\{v \in M_{p} \mid\langle v, u\rangle \geqq 0\right\},
$$

where $u \in M_{p}$ is a unit normal vector of H_{p}.
Let $D_{r}(p)$ denote the open disc in M_{p} of radius $r>0$ centered at o, that is,

$$
D_{r}(p):=\left\{V \in M_{p} \mid\|v\|<r\right\} .
$$

The following lemma was proved in Cheeger-Gromoll [2] under more general conditions.

Lemma 2. Let C be an n-dimensional closed convex subset of an n dimensional Riemannian manifold M. Then for any $p \in \partial C$, there is a closed half-space H_{p}^{+}in M_{p} such that

$$
C \cap B_{\varepsilon(p)}(p) \subset \exp _{p}\left(H_{p}^{+} \cap D_{\varepsilon(p)}(p)\right) .
$$

We call such H_{p}^{+}a supporting half-space of C at p. The non-empty boundary ∂C of an n-dimensional closed convex subset C in an n-dimensional Riemannian manifold M is a (possibly non-smooth) hypersurface of M.

Lemma 3. Let M and C be as above. If $N:=\partial C$ is smooth in a neighbourhood of $p \in N$, then the 2-nd fundamental form l_{N}^{u} of N with respect to the unit normal vector u of N at pointing toward the interior
of C is negative semi-definite.
Proof. Put

$$
\begin{aligned}
H_{p} & :=\left\{v \in M_{p} \mid\langle v, u\rangle=0\right\}=N_{p}, \\
H_{p}^{+} & :=\left\{v \in M_{p} \mid\langle v, u\rangle \geqq 0\right\}
\end{aligned}
$$

Then H_{p}^{+}is the unique supporting half-space of C at p.

$$
H:=\exp _{p}\left(H_{p} \cap D_{\varepsilon(p)}(p)\right)
$$

is a (non-complete) smooth hypersurface of M, which is totally geodesic at p. For sufficiently small $\varepsilon(0<\varepsilon<\varepsilon(p))$ and $v \in H_{p},\|v\|=1$, define a geodesic

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M ; \gamma(s):=\exp _{p}(s v) \in H
$$

and for a fixed $q:=\exp _{p}(a u) \in \operatorname{int} C(0<a<\varepsilon(p))$, let $c_{s}:[0, a] \rightarrow M$ be the minimal geodesic from q to $\gamma(s)$. Then we have a smooth one-parameter variation \mathscr{V}_{H} of c_{0} defined as follows:

$$
\mathscr{V}_{H}:[0, a] \times(-\varepsilon, \varepsilon) \rightarrow M ; \mathscr{V}_{H}(t, s):=c_{s}(t) .
$$

Since H_{p}^{+}is a supporting half-space of C and $q \in \operatorname{int} C, d(p, q)<\varepsilon(p)$, each geodesic $c_{s}:[0, a] \rightarrow M$ intersects N at a unique parameter value $t_{s} \in(0, a]$ and the function $s \rightarrow t_{s}$ is smooth.

Making use of \mathscr{V}_{H}, we define another variation

$$
\mathscr{V}_{N}:[0, a] \times(-\varepsilon, \varepsilon) \rightarrow M ; \mathscr{V}_{N}(t, s):=\exp _{q}\left(\frac{t_{s}}{a} t \dot{c}_{s}(0)\right)
$$

Let $L_{H}(s)$ and $L_{N}(s)$ denote the lengths of geodesics $t \rightarrow \mathscr{V}_{H}(t, s)$ and $t \rightarrow \mathscr{V}_{N}(t, s)$ respectively. Then L_{H} and L_{N} are smooth and moreover

$$
L_{H} \geqq L_{N}, L_{H}(0)=L_{N}(0), L_{H}^{\prime}(0)=L_{N}^{\prime}(0)=0,
$$

therefore we have

$$
L_{H}^{\prime \prime}(0) \geqq L_{N}^{\prime \prime}(0) .
$$

Now let J_{H} and J_{N} denote the Jacobi fields along c_{0} induced from \mathscr{V}_{H} and \mathscr{V}_{N} respectively. Then

$$
J_{H}(0)=J_{N}(0), \quad J_{H}(a)=J_{N}(a)=v
$$

since q and p are not conjugate along c_{0} they must coincide;

$$
J:=J_{H}=J_{N}
$$

Since H is totally geodesic at p, by the 2 -nd variation formula we have

$$
L_{H}^{\prime \prime}(0)=\int_{0}^{a}\left[\left\langle J^{\prime}, J^{\prime}\right\rangle-\left\langle R\left(J, \dot{c}_{0}\right) \dot{c}_{0}, J\right\rangle\right] d t
$$

and

$$
L_{N}^{\prime \prime}(0)=\int_{0}^{a}\left[\left\langle J^{\prime}, J^{\prime}\right\rangle-\left\langle R\left(J, \dot{c}_{0}\right) \dot{c}_{0}, J\right\rangle\right] d t+l_{N}^{u}(v, v),
$$

where $J^{\prime}:=\nabla_{\dot{c}_{0}} J$. Hence we have

$$
l_{N}^{u}(v, v)=L_{N}^{\prime \prime}(0)-L_{H}^{\prime \prime}(0) \leqq 0
$$

Definition. A continuous function α on a Riemannian manifold M is said to be convex or superharmonic provided that for any $\varepsilon>0$, there exists a neighbourhood U_{p} of p in M and a smooth function $\alpha_{p, \varepsilon}$ on U_{p} which satisfies the following (i) and (ii) or (i) and (ii)' respectively.
(i) $\quad \alpha_{p, \varepsilon}(x) \geqq \alpha(x)$ for any $x \in U_{p}, \alpha_{p, \varepsilon}(p)=\alpha(p)$,
(ii) $\left\langle\nabla_{X} \nabla \alpha_{p, \epsilon}, X\right\rangle \leqq \varepsilon$ for any $X \in M_{p},\|X\|=1$,
(ii) $\Delta \alpha_{p, \varepsilon} \leqq \varepsilon$ at p,
where Δ is the Laplacian.
Superharmonic functions satisfy the minimum principle, for the proof see Calabi [1].

Lemma 4. Let α be a convex function on a Riemannian manifold M and N a minimal submanifold of M. Then the restriction $\alpha \mid N$ of α on N is superharmonic.

Proof. Fix an arbitrary $p \in N$. For any smooth function β in a neighbourhood of p in M and any tangent vector $X \in N_{p}$, we have

$$
\begin{aligned}
l_{N}^{(\nabla \beta) \downarrow}(X, X) & :=\left\langle\nabla_{X} \nabla \beta, X\right\rangle \\
& =\left\langle\nabla_{X} \nabla \beta, X\right\rangle-\left\langle\nabla_{X} \stackrel{N}{\nabla}(\beta \mid N), X\right\rangle,
\end{aligned}
$$

where $l_{N}^{(\nabla \beta) \perp}$ is the 2 -nd fundamental form of N at p with respect to $(\nabla \beta)^{\perp}$. Fix an orthonormal basis X_{1}, \cdots, X_{k} of $N_{p}(k:=\operatorname{dim} N)$. Then by the definition of the Laplacian $\stackrel{N}{\Delta}$ of N, we have

$$
\begin{aligned}
\left.\stackrel{N}{\Delta}(\beta \mid N)\right|_{p} & =\sum_{i=1}^{k}\left\langle\nabla_{X_{i}}{ }^{N}(\beta \mid N), X_{i}\right\rangle \\
& =\sum_{i=1}^{k}\left\langle\nabla_{X_{i}} \nabla \beta, X_{i}\right\rangle-\sum_{i=1}^{k} l_{N}^{(\mathbb{\beta}) \perp}\left(X_{i}, X_{i}\right) \\
& =\sum_{i=1}^{k}\left\langle\nabla_{X_{i}} \nabla \beta, X_{i}\right\rangle,
\end{aligned}
$$

since we have assumed that N is minimal. Now choose $\alpha_{p, \varepsilon}$ satisfing (i) and (ii) in Definition. Then we get

$$
\left.{ }_{\Delta}^{N}\left(\alpha_{p, \varepsilon} \mid N\right)\right|_{p}=\sum_{i=1}^{k}\left\langle\nabla_{X_{i}} \nabla \alpha_{p, \varepsilon}, X_{i}\right\rangle \leqq k \varepsilon
$$

and the lemma follows.
Under the same assumption as Lemma 4, if $\alpha \mid N$ attains the minimum at some $p \in N$, then $\alpha \mid N$ is constant. In particular if N is compact, then $\alpha \mid N$ is constant. Lemma 4 makes it possible to relate minimal submanifolds with convex functions. For example, let M be a complete simply connected Riemannian manifold of non-positive curvature. Then for fixed $p \in M$, the distance function $x \rightarrow-d(x, p)$ is convex. By Lemma 4, the well-known result follows, i.e., M contains no compact minimal submanifold of positive dimension.
2. Applications for manifolds of non-negative curvature. Now let us construct convex functions in complete Riemannian manifolds of nonnegative curvature. The following lemma is a rather special case of a result mentioned in Cheeger-Gromoll [2].

Lemma 5. Let C be an n-dimensional connected closed convex subset with $\partial C \neq \varnothing$ of an n-dimensional complete Riemannian manifold M of nonnegative curvature. Then the function

$$
\alpha: C \rightarrow \boldsymbol{R} ; \quad \alpha(x):=d(x, \partial C)
$$

is convex.
Proof. Since α is continuous, it will suffice to show that α is convex in $\operatorname{int} C=C-\partial C$.

Fix $q \in \operatorname{int} C, b:=d(q, \partial C)>0$, and let $c:[0, b] \rightarrow M$ be a shortest connection between q and ∂C. c runs in int C except $p:=c(b) \in \partial C$. Put

$$
\begin{aligned}
H_{p} & :=\left\{v \in M_{p} \mid\langle v, \dot{c}(b)\rangle=0\right\}, \\
H_{p}^{+} & :=\left\{v \in M_{p} \mid\langle v,-\dot{c}(b)\rangle \geqq 0\right\} .
\end{aligned}
$$

First we show that H_{p}^{+}is the unique supporting half-space of C at p. If there is a unit vector $w \in M_{p}$ such that

$$
\langle w, \dot{c}(b)\rangle<0, W_{\varepsilon}:=\left\{\exp _{p}(t w) \mid t \in[0, \varepsilon]\right\} \not \subset C
$$

for any $\varepsilon>0$, then we can choose an arbitrary small $\delta>0$ such that the minimal geodesic from $c(b-\delta)$ to $W_{\varepsilon}(\varepsilon<\varepsilon(p))$ is orthogonal to W_{ε} at $\exp _{p}\left(t_{\delta} w\right)\left(0<t_{\delta}<\varepsilon\right)$ and $\exp _{p}\left(t_{\delta} w\right) \notin C$. But this contradicts that c is a shortest connection between q and ∂C. Fix $a \in(0, b)$ and extend c on the interval $[-a, b]$. Let $X_{1}, \cdots, X_{n-1}, \dot{c}$ be an orthonormal parallel fields along c. Since $c([-a, b])$ is compact, there is a small $r>0$ such that

$$
F: D_{r}(c) \rightarrow M ; F(v):=\exp (v)
$$

is a diffeomorphism into M, where

$$
D_{r}(c):=\bigcup_{t \in[-a, b]}\left\{v \in M_{c(t)} \mid v \perp \dot{c}(t),\|v\|<r\right\}
$$

For any $x \in F\left(D_{r}(c)\right)$ let

$$
F^{-1}(x)=\sum_{i=1}^{n-1} \pi_{i}(x) X_{i}\left(t_{x}\right) \quad\left(\pi_{i}(x) \in \boldsymbol{R}\right)
$$

and define a smooth curve

$$
c_{x}:\left[t_{x}, b\right] \rightarrow M ; c_{x}(t):=F\left\{\sum_{i=1}^{n-1} \pi_{i}(x) X_{i}(t)\right\} .
$$

Then the length function

$$
L: F\left(D_{r}(c)\right) \rightarrow \boldsymbol{R} ; \quad L(x):=\left[\text { length of } c_{x}\right]
$$

is smooth in $B_{r}(q)$. Since c_{x} connects x and a point on $H:=\exp _{p}\left(H_{p} \cap D_{r}(p)\right)$ and H_{p}^{+}is a supporting half-space, we have

$$
L(x) \geqq \alpha(x) \text { for any } x \in B_{r}(q), L(q)=\alpha(q) .
$$

Now for any parallel vector field X along c with $X \perp \dot{c}$ we have by the 2 -nd variation formula

$$
\left\langle\nabla_{X(0)} \nabla L, X(0)\right\rangle=\int_{0}^{b}\left[\left\langle X^{\prime}, X^{\prime}\right\rangle-\langle R(X, \dot{c}) \dot{c}, X\rangle\right] d t \leqq 0,
$$

because H is totally geodesic at p and the curve $t \rightarrow F(t X(0))$ is a geodesic which is orthogonal to c at q. Clearly

$$
\left\langle\nabla_{i(0)} \nabla L, \dot{c}(0)\right\rangle=0,
$$

hence α is convex.
Under the same situation as Lemma 5, it follows that for any $a \geqq 0$ the subset

$$
C^{a}:=\{x \in C \mid d(x, \partial C) \geqq a\}
$$

is closed and convex.
Combining Lemmas 4 and 5 we have:
Theorem 6. Let M be an n-dimensional complete Riemannian manifold of non-negative curvature, C an n-dimensional connected closed convex subset of M with $\partial C \neq \varnothing$, and N a minimal submanifold of M which is contained in C. Suppose that on N there exists a closest point to ∂C, then each point of N lies at the same distance from ∂C.

In particular, a compact minimal submanifold contained in C lies at the same distance from ∂C. If N intersects with ∂C, then N is contained
in ∂C. Theorem 6 may be seen as a generalization of Theorem 5.3 in Yano-Ishihara [10], in which they consider the case where M is the n dimensional sphere S^{n} and C a closed hemi-sphere.

Combining Theorem 6, Lemmas 3 and 5 we have:
Theorem 7. Let M be an n-dimensional complete Riemannian manifold of non-negative curvature, C an n-dimensional connected closed convex subset of M with $\partial C \neq \varnothing$, and N a minimal hypersurface of M which is contained in C. Suppose that on N there exists a closest point to ∂C, then N is totally geodesic.

Proof. Let $a:=d(N, \partial C)$. Then N is contained in the closed convex subset $C^{a}:=\{x \in C \mid d(x, \partial C) \geqq a\}$. Let D be a connected component of C^{a} which contains N. Then D is an $(n-1)$ - or n-dimensional (possibly nonsmooth) submanifold with totally geodesic interior. In the case $\operatorname{dim} D=$ $n-1, N$ is contained in D as an open submanifold, hence the theorem follows. On the other hand, if $\operatorname{dim} D=n$, then $\partial D \neq \varnothing$ and by Theorem $6, N$ is contained in ∂D as an open submanifold. Since N is minimal, by Lemma 3 the proof is completed.

A Riemannian manifold M with non-empty boundary ∂M is said to be convex, if the 2 -nd fundamental form of ∂M with respect to the inward normal vector on ∂M is negative semidefinite. Making use of the same argument as above, we have:

Proposition 8. Let M be a convex Riemannian manifold of nonnegative curvature, and N a minimal submanifold of M. Suppose that on N there exists a closest point to ∂M, then N lies at the same distance from ∂M. Moreover if N is a hypersurface, then it is totally geodesic.

Now let us consider the relation between minimal submanifolds and totally geodesic hypersurfaces. Let H be a hypersurface in a complete Riemannian manifold M. Then for any $p \in H$ there is a small $\delta(p)>0$ such that $B_{\delta}(p)-H$ has exactly two connected components for any $0<\delta<\delta(p)$.

We shall say that a submanifold N of M satisfies the condition (H) relative to H provided that for any $p \in N \cap H$, there is a small $0<\delta^{\prime}(p)<$ $\delta(p)$ such that $N \cap B_{\delta^{\prime}(p)}(p)$ lies in the closure of a connected component of $B_{i^{\prime}(p)}(p)-H$.

Theorem 9. Let H be a totally geodesic hypersurface in a complete Riemannian manifold M of non-negative curvature, and N a minimal submanifold of M which satisfies the condition (H) relative to H. Suppose that on N there is a closest point to H, then N lies at the same distance from H.

Proof. By Lemma 5, the distance function

$$
\alpha: M \rightarrow \boldsymbol{R} ; \quad \alpha(x):=d(x, H)
$$

is seen to be convex in $M-H$. Fix an arbitrary $p \in H$ and choose $\delta(p)<$ $r(p)$ as above, where $r(p)$ is the convexity radius of M at p. Let $H_{p, \delta}^{+}$ denote one of the connected components of $B_{\delta}(p)-H(0<\delta<\delta(p))$. Since H is totally geodesic, the closure $\overline{H_{p, \delta}^{+}}$of $H_{p, \delta}^{+}$is an n-dimensional closed convex subset of $M(n:=\operatorname{dim} M)$ and for any $x \in H_{p, \delta / 2}^{+}$the shortest connection from x to $\partial \overline{H_{p, \delta}^{+}}$coincides with the shortest connection from x to H. Hence the distance function

$$
\alpha_{p}: H_{p, \delta / 2}^{+} \rightarrow \boldsymbol{R} ; \quad \alpha_{p}(x):=d\left(x, \partial \overline{H_{p, \delta}^{+}}\right)
$$

coincides with $\alpha \mid H_{p, \delta / 2}^{+}$and is convex. It follows that by Lemma 4, if N satisfies the condition (H) relative to H, then $\alpha \mid H$ is superharmonic, and the theorem follows.
3. An application for non-compact manifolds of non-negative curvature. Recall that a ray in a complete non-compact Riemannian manifold M is a normal geodesic $\gamma:[0, \infty) \rightarrow M$, each segment of which is minimal.

With each ray γ in M we associate a function ρ_{γ} as follows: For $t \geqq 0$, let

$$
\rho_{t}(x):=d(x, \gamma(t))-t \quad(x \in M) .
$$

It follows from the triangle inequality that the family $\left\{\rho_{t}\right\}$ is uniformly equi-continuous. For fixed x, the function $t \rightarrow \rho_{t}(x)$ is decreasing on $[0, \infty)$ and bounded below by $-d(x, \gamma(0))$. Hence, for $t \rightarrow \infty,\left\{\rho_{t}\right\}$ converges uniformly on compact subsets to a continuous function ρ_{r} on M.

The following lemma was proved in Cheeger-Gromoll [2] and used effectively to construct the structure theorem of complete non-compact Riemannian manifolds of non-negative curvature.

Lemma 10. Let M be a complete non-compact Riemannian manifold of non-negative curvature. Then for any ray γ in M the associated function ρ_{r} is convex.

Now we are able to generalize Theorem 2.1 and Theorem 2.2 in Naka-gawa-Shiohama [7] as follows:

Theorem 11. Any compact minimal submanifold of a complete noncompact Riemannian manifold M of non-negative curvature is contained in a level surface of ρ_{r}, where γ is any ray in M.

Finally our main theorem follows by Lemma 10 and Theorem 7, for
the proof it will suffice to notice that the subset

$$
C_{t}:=\left\{x \in M \mid \rho_{r}(x) \geqq t\right\}
$$

is closed and convex.

References

[1] E. Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J., 25 (1958), 45-56.
[2] J. Cheeger and D. Gromoll, On the structure of complete manifolds of non-negative curvature, Ann. of Math., 96 (1972), 413-443.
[3] T. Frankel, Manifolds with positive curvature, Pacific J. Math., 11 (1961), 165-174.
[4] , On the fundamental group of a compact minimal submanifold, Ann. of Math., 83 (1966), 68-73.
[5] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics 55 (1968), Springer-Verlag.
[6] R. Hermann, A uniqueness theorem for minimal submanifolds, J. Diff. Geom., 2 (1968) 191-195.
[7] H. Nakagawa and K. Shiohama, Notes on minimal immersions, J. Math. Soc. Japan, 23 (1971), 409-416.
[8] K. Shiohama, Minimal immersions of compact Riemannian manifolds in complete noncompact Riemannian manifolds, Kôdai Math. Sem. Rep., 22 (1970), 77-81.
[9] , On complete non-compact Riemannian manifolds with certain properties, Tôhoku Math. J., 22 (1970), 76-94.
[10] K. Yano and S. Ishihara, Submanifolds with parallel mean curvature vector, J. Diff. Geom., 6 (1971), 95-118.

Mathematical Institute
Tômoku University
Sendai, Japan

