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Introduction. It is well known that the Hausdorff dimension of the
singular set of a Schottky group is positive and smaller than 2 ([5]).
Moreover, it is also shown that there exists a Schottky group with
a fundamental domain bounded by four circles whose singular set has
positive 1-dimensional Hausdorff measure ([2]). Recently one of the present
authors proved the existence of Kleinian groups whose singular sets have
positive (3/2)-dimensional measure ([4]). The fundamental domains of
groups mentioned above are domains bounded by a finite number of
mutually disjoint circles. From these facts, it is natural for us to set
up the following problem: Does the Hausdorff dimension of the singular
sets of finitely generated Kleinian groups with fundamental domains
bounded by mutually disjoint circles climb up, when the number of the
boundary circles increases? What is the supremum of the Hausdorff
dimensions determined by all such groups?

In this paper we shall give the result that the Hausdorff dimension
increases strictly according to increment of the number of boundary circles.

1. Statement of theorem. Let us denote by B the unbounded domain
in the complex plane whose boundary consists of N(^ 1) mutually disjoint
circles {Ki}?=1. We shall form a discontinuous group of linear transforma-
tions with the fundamental domain B in the following. Take p pairs of
boundary circles from {K{}f=ι and denote them by {Hi9 iϊ/}?=1. Let Si (1 ^
i ^ p) be a hyperbolic or loxodromic transformation which transforms
the outside of Hi onto the inside of H . We denote by Sfι the inverse
transformation of S^ Consider the N — 2p(^ 0) remaining boundary
circles among {ίΓJf=1 and denote them by {Kf}q

j=1, where N = 2p + q.
Let Sf (1 ^ j ^ q) be an elliptic transformation with period 2 which
transforms the outside of Kf onto the inside of Kf. A group G, generated
by {Si}i=ι and {5*}J=i, is a discontinuous group with a fundamental domain
B. In the special case of N = 2p, G is a Schottky group, which contains
the elementary group of the case p = 1. If N is odd, there exists
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necessarily at least one elliptic transformation with period 2 and G is
a Kleinian group. If p = 0 especially, G is generated by the only elliptic
transformations {S*}J=1 with period 2. From now on G will always denote
such a group unless otherwise is stated.

Let Gi(i — 1, 2) be two discontinuous groups defined in the above with
fundamental domain B^i — 1, 2). Assume that all of the boundary circles
of Bί and B2 are mutually disjoint. Then it is easily seen that the free
product of Gi and G2, denoted by G, form a discontinuous group with a
fundamental domain Bx Π B2 ([6], [7]). Following Ford ([6]), we call G the
combination group of d and G2.

Let us denote by E and Et(i = 1, 2) the singular sets of G and Gt(i —
1, 2), that is, the totality of limit points of G and Gi(i — 1, 2), respectively.
It is evident that E1 U E2 is a proper subset of 2?. Hence it holds

d(E) ^ d{E^ i = 1, 2 ,

where CZ(JE) and (2(2̂ ) denote the Hausdorff dimension of E and Ei9 respec-
tively. Here the Hausdorff dimension of a point set F in the 2-plane is
defined as the unique non-negative number d(F) satisfying

Md(F) = 0, if d > d(F)

and

Md(F) - + oo, if 0^d<d(F) ,

where Md(F) denotes the d-dimensional Hausdorff measure of F.
The purpose of this paper is to prove the following theorem.

THEOREM. Suppose that the number of the boundary circles of either
Bt or B2 is at least two. Then it holds

d(E) > max (d(E^ d{E2)) .

Before proving our theorem, we shall give the well-known results as
corollaries of our theorem.

COROLLARY 1. ([5], [9]) Let E be the singular set of a non-cyclic
Schottky group G. Then it holds

d(E) > 0

and hence the capacity of E is positive.

PROOF. Since G is non-cyclic, there are at least two hyperbolic or
loxodromic generators, say ϊ\ and T2, of G. Let Gx and G2 denote the
cyclic groups generated by Tι and Γ2, respectively, and let E1 and E2

denote their singular sets, respectively. Denoting E3 the singular set
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of the combination group of G1 and G2, we have from our theorem

d(E3) > d{E,) = 0 .

Noting that E^EZi we have immediately that d(E) > 0. q e.d.
A discontinuous group of linear transformations is called a Kleinian

group if its singular set has at least three points. Myrberg ([9]) proved
that a Kleinian group contains always a Schottky group as a subgroup.
Consequently we have

COROLLARY 2. ([5], [9]) Let E be the singular set of any Kleinian
group. Then d(E) > 0 and hence the capacity of E is positive.

2. Propositions and Lemma for the proof of theorem. Let us denote
by U a generator of Gy or its inverse and by SΊ = {£7} the totality of such
U, that is, the generator system. Similarly V and ^/2 = {V} are defined
with respect to G2. We denote by ToS the composition of two transfor-
mations T and S, that is, ToS(z) = T(S(z)). Then any element S(φ
identity) of G has the form

(1) S= T,oT2o... oTm,

where Tk e ^ U ̂ 2 for k = 1, 2, , m and {Tk)~γ Φ Tk+1 for k = 1, 2, . . ,
m — 1. If S has the form (1), S is called an element of grade m in G
and is denoted by S = S(m). Let us denote by BS{m) the radius of the
isometric circle of the linear transformation S(m), that is,

for

Next we put for any μ ^ 0

(2) LJfi,μ)= Σ [Λ*,.,]",
5 (m) e G

where the sum is taken over all elements of grade m in G. Further we
shall define for any μ ^ 0

(3) L(G,μ)=±Lu(G,μ).

Quite similarly, we can define Lm(Gi9 μ) and L(Giy μ) for i = 1, 2.
Following two propositions play the important role in the proof of our

theorem.
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PROPOSITION 1. ([1], [3]) Let G be a discontinuous group with a funda-
mental domain B whose boundary circles consist of at least two circles,
and let E be its singular set. Let μ be a non-negative number. Then the
following two statements are equivalent to each other:

( i ) L(G,2μ) < + co,
(ii) Mμ(E) = 0,

where Mμ{E) denotes the μ-dimensional Hausdorff measure of E.

PROPOSITION 2. ([3]) Under the same assumption as in Proposition
1, it holds

0 < Md(E) < + co ,

where d is the Hausdorff dimension of E.

Using the above propositions, we obtain the following lemma.

LEMMA. Denote by d± = d(E^ the Hausdorff dimension of Et and put
μ' = 2dlβ Then it holds

(4) lim L(Gl9 μ'+ δ) = + co .

PROOF. Assume that this lemma is not true. Then there exist a
decreasing sequence {μn}n=i of positive numbers and a constant M > 0 such
that

μn —• μf a s n —• co

and

L(Gl9 μn) ^ M for n = 1, 2, .

From (3), we have

Σ LJβu μn) £ M
m = l

for any I and any n. When I is fixed, the left side of the above inequality
is a continuous function of μ. Hence, tending μn to μ\ we have

Σ LJβu μ')^M.
m = l

Since I is any fixed positive integer, we have

L(Glf μ')^M.

Hence from Proposition 1 we obtain

d = 0 ,

which contradicts Proposition 2. Thus our lemma is proved. q.e.d.
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3. Proof of theorem. Now let us begin the proof of our theorem.
Without loss of generality we may assume that the number of the boundary
circles of Bx is more than one and d{E^ ^ d(E2). We put

S{m) = {T,oT2o ... o ϊ > ( T v + 1 o . . . o Tn) = SMoS(m^ ,

and consider the radii RS( „ R8( , and RS( _ . of the isometric circles of
S(m), S{u) and S(m_v), respectively. As to these values, the following relation
holds ([6]):

where S(m_1/)(oo) and Sj K0 0) denote the images of oo by S(m-U) and S^|,
the inverse of S{v), respectively. Now we shall divide the sum Lm(G, μ)
into the following partial sums:

( 6 ) Lm(G,μ)= Σ [Bs{m)V

= Σ ( 0 ) [RS{m)V + Σ ( 1 ) [ ^ ( m ) ] " + ... + Σ ( m ) [RS{m)V

Here Σ ( v ) (i> = 0,1, •••, m) denotes the sum taken over all elements of
the following form:

(7) S{m) = (ϋio . . . o f f j o ^ o ^ o . . . oTm)

where ?7Λ e ^ (1 ^ Λ ̂  v), F, + 1 G g 2̂ and Γ* € f^i U ̂ s (^ + 2 ^ fc ^ m) and
hence ί/(v, and S(m_,_υ are elements of grade v and m — J; — 1 in Gx and
G, respectively.

Now take a sufficiently large number |0 > 1 such that all of the
boundary circles of B are contained in the inside of a circle with the
radius p/2 and the center at the origin. Further take a positive constant
λ < 1 such that 0 < λ < Rv for any V e j ^ 2 . Then using the relations (5)
and (7), we obtain

( 8 ) RS(m) = ~ZRuM ' ^(m-,-1)

for v = 1, 2, . . , m — 2. Substituting (8) into (6), we have the following
inequality:

( 9 ) Lm(G, μ) > ( ^ y W C i . i«)^m-2(G, i") + L%(GU μ)L^{G, μ)

+ + ^w- 3(Gi, j")ii(G, μ) + L^iGu μ)L,(G9 μ)}
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for m ^ 3. The verification of (9) is easy if the number of the boundary-
circles of B2 is at least two. In the case that its number is only one,
we consider the generator system

g>2 = {V; V = S o UoSΓ1, Ue ^ }

instead of g 2̂ = {S?}. Then the fundamental domain B2 of G2 generated
by ^2 is bounded by the same number of boundary circles as the one of
B^ Since G ι*G 23Gi*G 2, the following discussion holds also for <JΓI*G2,

where G1*G2 denotes the combination group of G^ and G2. Summing up
the term Lm{G, μ) from 1 to n with respect to m, we obtain from (9) the
following inequality:

(10) ±Lm(G,μ)>±Lm(G,μ)
m = l m=3

l (G, μ)\ψ>Lm{Gu μ)} + L2(G, j"){Σ (<?i, μ)}

L._2(G, μ)L1(Gl9

Setting Pn(μ)=ΣΛ=iLm(G, μ) and Qn(μ) = Σ>l=ιLm(Gl9 μ) for n = l, 2,
and using n + 2 instead of w in (10), we have

(11) Pn+2(μ) > (A)"{irXG, /^)Q.(^) + Ir.ίG, ^ Q - ! ^ ) + •(

+ Ln(G, μ)Q1(μ)} .

On the other hand we have from Lemma that for any large number
M there exist a small number δ depending only on M and a large positive
integer nQ depending on M and 3 such that

(12) Qn(2d1 + δ)> M for any n> n0 .

Putting μ = 2dλ + δ in (11), we obtain from (12)

4 ) M { L ί ( G , 2 d ί + δ ) + •••

+ Ln_no(G, a t + a)}

for any w > n0. If we put a = (X/p2)2dί+δ M and nγ = n0 + 2 in (13), we
have for any w ^ ^

(14) Pn(2dι + δ)> aP^βd, + δ) .

After Λ times repetitions of (14) for n = toi + ί (0 ^ Z < ^ ) , we reach
to the following inequality:
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(15) Pn(2d1 + δ) > akPι(2d1 + δ) ^ αfcL1(2ώ1 + δ) .

We may consider that a > 1, for we can take a sufficiently large number
M for fixed λ and p. Since L1{2d1 + <5) > 0, it holds from (3) and (15)

L(G, 2dγ + δ) = lim Pn(2d1 + δ) = + oo .
Λ-»oo

Hence it holds for some <5 > 0

(16) L(G, 2d, + δ) = + oo .

We obtain from Proposition 1 and (16)

Mdl+±(E) > 0 ,

which implies that d(E) ^ d + δ/2. Since δ > 0, it holds

d(E) > d1 .

Thus our theorem is completely proved. q.e.d.
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