ON THE COMMUTING EXTENSIONS OF NEARLY NORMAL OPERATORS

Dedicated to Professor Masanori Fukamiya on his 60th birthday

Takashi Yoshino

(Received April 25, 1972; Revised September 13, 1972)

1. We say that a bounded linear operator A on a Hilbert space H is nearly normal if A commutes with $A^{*} A$. Recall that if B is a normal operator on K and H is an invariant subspace for B, then the operator $A=B \mid H$ is said to be subnormal. If the smallest reducing subspace for B containing H is K, then B is said to be the minimal normal extension of A. This is unique to an isomorphism (cf. [3]). It is well-known that every nearly normal operator is subnormal. The purpose of this paper is to give certain necessary and sufficient conditions under which two nearly normal operators on H have the mutually commuting normal extensions on K.
2. For our purpose, we shall consider the following problem: Given a nearly normal operator A on H, and B, its minimal normal extension on K, when can an operator T on H be extended to an operator T^{e} on K in such a manner that T° commutes with B ? This problem for general subnormal operators was first solved by Bram [1]. We state here it without proof.

Proposition. Let A on H be a subnormal operator with the minimal normal extension B on K. Then the necessary and sufficient condition that an operator T on H has an extension T° on K such that T^{0} commutes with B is that (a) T commutes with A, and (b) there exists a positive constant c such that for every finite set $x_{0}, x_{1}, \cdots, x_{r}$ in H we have

$$
\sum_{m, n=0}^{r}\left\langle A^{m} T x_{n}, A^{n} T x_{m}\right\rangle \leqq c \cdot \sum_{m, n=0}^{r}\left\langle A^{m} x_{n}, A^{n} x_{m}\right\rangle .
$$

If the extension T^{e} exists, it is unique.
Now we state the following lemmas given in [4] without proof.
Lemma 1. If A is a nearly normal operator on H and if E is the projection from H on $\mathscr{N}_{A}=\{x \in H ; A x=0\}$, then $E \in R(A) \cap R(A)^{\prime}$ where
$R(A)$ denotes the smallest von Neumann algebra containing A and $R(A)^{\prime}$ its commutant.

Lemma 2. If A is a nearly normal operator on H such that $\mathscr{N}_{A}=\{0\}$, then, in the polar decomposition $A=V|A|$ of A, V is an isometry and commutes with $|A|$.

To prove the following theorem except the norm condition $\left\|T^{e}\right\|_{K}=$ $\|T\|_{H}$, we have only to show that the operator T satisfies the condition (b) of proposition.

Theorem 1. Let A be a nearly normal operator on H, with the polar decomposition $A=V|A|$, such that $\mathscr{N}_{A}=\{0\}$, and let B on K be the minimal normal extension of A. Then, if an operator T on H commutes with V and $|A|$, then there exists an extension T^{e} on K of T such that T^{e} commutes with B and $\left\|T^{e}\right\|_{K}=\|T\|_{H}$. Moreover, the existence of the extension T^{e} is unique.

Proof. By Lemma 2, V is an isometry and commutes with $|A|$. Let U be the minimal unitary extension on K^{\prime} of V, then, for any finite set $x_{0}, x_{1}, \cdots, x_{r}$ in H, we have

$$
\begin{aligned}
\sum_{m, n=0}^{r} & \left.\left\langle A^{m} T x_{n}, A^{n} T x_{m}\right\rangle_{H}=\left.\sum_{m, n=0}^{r}\left\langle V^{m}\right| A\right|^{m} T x_{n}, V^{n}|A|^{n} T x_{m}\right\rangle_{H} \\
& \left.=\left.\sum_{m, n=0}^{r}\left\langle V^{m} T\right| A\right|^{n} x_{n}, V^{n} T|A|^{m} x_{m}\right\rangle_{H} \\
& \left.=\left.\sum_{m, n=0}^{r}\left\langle U^{m} T\right| A\right|^{n} x_{n}, U^{n} T|A|^{m} x_{m}\right\rangle_{K^{\prime}}=\left\|\sum_{n=0}^{r} U^{* n} T|A|^{n} x_{n}\right\|_{K^{\prime}}^{2} .
\end{aligned}
$$

Since, for any fixed non-negative integer k,

$$
\begin{aligned}
& U^{* n} T|A|^{n} x_{n}=U^{* n+k} U^{k} T|A|^{n} x_{n}=U^{* n+k} V^{k} T|A|^{n} x_{n} \\
& \quad=U^{* n+k} T V^{k}|A|^{n} x_{n}=U^{* n+k} T U^{k}|A|^{n} x_{n}=U^{* n+k} T U^{n+k} U^{* n}|A|^{n} x_{n}
\end{aligned}
$$

for all $n=0,1, \cdots, r$, we have, by choosing k such as $n+k=r$ for each n,

$$
\begin{aligned}
& \left\|\sum_{n=0}^{r} U^{* n} T|A|^{n} x_{n}\right\|_{K^{\prime}}^{2}=\left\|U^{* r} T U^{r} \sum_{n=0}^{r} U^{* n}|A|^{n} x_{n}\right\|_{K^{\prime}}^{2} \\
& \quad=\left\|T U^{r} \sum_{n=0}^{r} U^{* n}|A|^{n} x_{n}\right\|_{K^{\prime}}^{2}=\left\|T U^{r} \sum_{n=0}^{r} U^{* n}|A|^{n} x_{n}\right\|_{H}^{2} \\
& \quad \leqq\|T\|_{H}^{2}\left\|U^{r} \sum_{n=0}^{r} U^{* n}|A|^{n} x_{n}\right\|_{H}^{2}=\|T\|_{H}^{2}\left\|U^{r} \sum_{n=0}^{r} U^{* n}|A|^{n} x_{n}\right\|_{K^{\prime}}^{2} \\
& \quad=\|T\|_{H}^{2}\left\|\sum_{n=0}^{r} U^{* n}|A|^{n} x_{n}\right\|_{K^{\prime}}^{2}=\|T\|_{H}^{2} \sum_{m, n=0}^{r}\left\langle A^{m} x_{n}, A^{n} x_{m}\right\rangle_{H} .
\end{aligned}
$$

Hence, by Proposition, there exists uniquely an extension T^{c} on K of T such that T^{e} commutes with B (and hence with B^{*}). For any finite set $x_{0}, x_{1}, \cdots, x_{r}$ in H, we have

$$
T^{e} \sum_{n=0}^{r} B^{* n} x_{n}=\sum_{n=0}^{r} B^{* n} T^{e} x_{n}=\sum_{n=0}^{r} B^{* n} T x_{n}
$$

and

$$
\begin{aligned}
& \left\|T^{e} \sum_{n=0}^{r} B^{* n} x_{n}\right\|_{K}^{2}=\left\|\sum_{n=0}^{r} B^{* n} T x_{n}\right\|_{K}^{2}=\sum_{m, n=0}^{r}\left\langle B^{m} T x_{n}, B^{n} T x_{m}\right\rangle_{K} \\
& \quad=\sum_{m, n=0}^{r}\left\langle A^{m} T x_{n}, A^{n} T x_{m}\right\rangle_{H} \leqq\|T\|_{H_{m, n}^{2}}^{r} \sum_{n=0}^{r}\left\langle A^{m} x_{n}, A^{n} x_{m}\right\rangle_{H} \\
& \quad=\|T\|_{H}^{2}\left\|\sum_{n=0}^{r} B^{* n} x_{n}\right\|_{K}^{2} .
\end{aligned}
$$

Since the linear set \mathscr{D} of vectors of the form

$$
\sum_{n=0}^{r} B^{* n} x_{n}, \quad x_{n} \in H
$$

is dense in K by the minimality of B (\mathscr{D} contains H and reduces B), we have $\left\|T^{e}\right\|_{K} \leqq\|T\|_{H}$ and hence $\left\|T^{e}\right\|_{K}=\|T\|_{H}$.

Remark 1. In above theorem, if T is an isometry, then we have

$$
\begin{aligned}
& \left\|T^{e} \sum_{n=0}^{r} B^{* n} x_{n}\right\|_{K}^{2}=\sum_{m, n=0}^{r}\left\langle A^{m} T x_{n}, A^{n} T x_{m}\right\rangle_{H} \\
& \quad=\sum_{m, n=0}^{r}\left\langle T^{*} T A^{m} x_{n}, A^{n} x_{m}\right\rangle_{H}=\sum_{m, n=0}^{r}\left\langle A^{m} x_{n}, A^{n} x_{m}\right\rangle_{H} \\
& \quad=\left\|\sum_{n=0}^{r} B^{* n} x_{n}\right\|_{K}^{2}
\end{aligned}
$$

and since \mathscr{D} is dense in K, T^{e} is also an isometry on K. If T is normal, then $T^{* e}$ exists and

$$
T^{*} \sum_{n=0}^{r} B^{* n} x_{n}=\sum_{n=0}^{r} B^{* n} T^{*} x_{n}
$$

and hence we have

$$
\begin{aligned}
& \left\langle T^{* e} \sum_{n=0}^{r} B^{* n} x_{n}, \sum_{m=0}^{s} B^{* m} y_{m}\right\rangle_{K}=\left\langle\sum_{n=0}^{r} B^{* n} T^{*} x_{n}, \sum_{m=0}^{s} B^{* m} y_{m}\right\rangle_{K} \\
& \quad=\sum_{n=0}^{r} \sum_{m=0}^{s}\left\langle A^{m} T^{*} x_{n}, A^{n} y_{m}\right\rangle_{H}=\sum_{n=0}^{r} \sum_{m=0}^{s}\left\langle A^{m} x_{n}, A^{n} T y_{m}\right\rangle_{H} \\
& \quad=\left\langle\sum_{n=0}^{r} B^{* n} x_{n}, \sum_{m=0}^{s} B^{* m} T y_{m}\right\rangle_{K}=\left\langle\sum_{n=0}^{r} B^{* n} x_{n}, T^{e} \sum_{m=0}^{s} B^{* m} y_{m}\right\rangle_{K} \\
& \quad=\left\langle T^{e *} \sum_{n=0}^{r} B^{* n} x_{n}, \sum_{m=0}^{s} B^{* m} y_{m}\right\rangle_{K} .
\end{aligned}
$$

Since \mathscr{D} is dense in $K, T^{e *}=T^{* e}$ and hence we have

$$
\begin{aligned}
& \left\|T^{e *} \sum_{n=0}^{r} B^{* n} x_{n}\right\|_{K}^{2}=\left\|\sum_{n=0}^{r} B^{* n} T^{*} x_{n}\right\|_{K}^{2}=\sum_{m, n=0}^{r}\left\langle A^{m} T^{*} x_{n}, A^{n} T^{*} x_{m}\right\rangle_{H} \\
& \quad=\sum_{m, n=0}^{r}\left\langle A^{m} T x_{n}, A^{n} T x_{m}\right\rangle_{H}=\left\|\sum_{n=0}^{r} B^{* n} T x_{n}\right\|_{K}^{2}=\left\|T^{e} \sum_{n=0}^{r} B^{* n} x_{n}\right\|_{K}^{2} .
\end{aligned}
$$

Therefore T^{e} is also normal. If T is a non-negative self-adjoint operator, then we have

$$
\begin{aligned}
& \left\langle T^{e} \sum_{n=0}^{r} B^{* n} x_{n}, \sum_{n=0}^{r} B^{* n} x_{n}\right\rangle_{K}=\left\langle\sum_{n=0}^{r} B^{* n} T x_{n}, \sum_{n=0}^{r} B^{* n} x_{n}\right\rangle_{K} \\
& \quad=\sum_{m, n=0}^{r}\left\langle A^{m} T x_{n}, A^{n} x_{m}\right\rangle_{H}=\sum_{m, n=0}^{r}\left\langle A^{m} T^{1 / 2} x_{n}, A^{n} T^{1 / 2} x_{m}\right\rangle_{H} \\
& \quad=\left\|\sum_{n=0}^{r} B^{* n} T^{1 / 2} x_{n}\right\|_{K}^{2} \geqq 0
\end{aligned}
$$

and hence T^{e} is also a non-negative self-adjoint operator.
As an application of Theorem 1, we have the following.
Theorem 2. Let A be a nearly normal operator on H with the polar decomposition $A=V|A|$ such that $\mathscr{N}_{A}=\{0\}$ and let B on K be the minimal normal extension of A with the polar decomposition $B=U|B|$. Then U is unitary and $V=U \mid H$ and $|A|=|B| \mid H$.

Proof. Since, by Lemma 2, A, V and $|A|$ satisfy the condition of Theorem 1, A, V and $|A|$ have extensions A^{e}, V^{e} and $|A|^{e}$ respectively such that they commute with B. Moreover, by Remark $1, V^{e}$ is isometric and $|A|^{e}$ is non-negative self-adjoint. For any $x \in H$, we have

$$
\begin{aligned}
V^{e}|A|^{e} x & =V^{e}|A| x=V|A| x=A x=A^{e} x=B x=|A| V x \\
& =|A|^{e} V x=|A|^{e} V^{e} x .
\end{aligned}
$$

Therefore each of $V^{e}|A|^{e}, A^{e}, B$ and $|A|^{e} V^{e}$ is an extension on K of A and commutes with B. Hence, by the uniqueness of the extension of Theorem 1, we have

$$
B=A^{e}=V^{e}|A|^{e}=|A|^{e} V^{e} .
$$

From this, we have easily

$$
|B|=\left|A^{e}\right|=|A|^{e} .
$$

If $B x=0, x=x_{1} \oplus x_{2}, x_{1} \in H, x_{2} \in K \ominus H$, then

$$
\begin{aligned}
0 & =\|B x\|_{K}^{2}=\left\|V^{e}|A|^{e} x\right\|_{K}^{2}=\left\||A|^{e} x\right\|_{K}^{2}=\left\||A|^{e} x_{1} \oplus|A|^{e} x_{2}\right\|_{K}^{2} \\
& =\left\||A|^{e} x_{1}\right\|_{K}^{2}+\left\||A|^{e} x_{2}\right\|_{K}^{2}=\left\||A| x_{1}\right\|_{H}^{2}+\left\||A|^{e} x_{2}\right\|_{K}^{2} \\
& =\left\|V|A| x_{1}\right\|_{H}^{2}+\left\||A|^{e} x_{2}\right\|_{K}^{2}=\left\|A x_{1}\right\|_{H}^{2}+\left\||A|^{e} x_{2}\right\|_{K}^{2}
\end{aligned}
$$

and hence $A x_{1}=0$. Since $\mathscr{N}_{A}=\{0\}, x_{1}=0$. This implies $\mathscr{N}_{B} \subset K \ominus H$. Clearly \mathscr{N}_{B} is a reducing subspace for B and, by the minimality of B, we have $\mathscr{N}_{B}=\{0\}$. Therefore $U=V^{e}$ and U is unitary.

By Theorem 2, we can prove the following converse assertion of Theorem 1.

Theorem 3. Let A be a nearly normal operator on H with the polar decomposition $A=V|A|$ such that $\mathscr{N}_{A}=\{0\}$ and let B on K be the minimal normal extension of A. Then, if an operator T on H has an extension T^{e} on K such that T^{e} commutes with B, then T commutes with V and $|A|$.

Proof. Let $B=U|B|$ be the polar decomposition of B. Then $T^{e} B=B T^{e}$ implies that T^{e} commutes with U and $|B|$ because B is normal. Since, by Theorem 2, $V=U \mid H$ and $|A|=|B| \mid H$, for any $x \in H$, we have

$$
T V x=T^{e} V x=T^{e} U x=U T^{e} x=V T x
$$

and

$$
T|A| x=T^{e}|A| x=T^{e}|B| x=|B| T^{e} x=|A| T x
$$

Therefore T commutes with V and $|A|$.
By Lemma 1 and by the above theorems, we have the following.
Theorem 4. Let A be a nearly normal operator on H with the polar decomposition $A=V|A|$ and let B on K be the minimal normal extension of A. Then a necessary and sufficient condition that an operator T on H has an extension T^{e} on K such that T^{e} commutes with B and $\left\|T^{e}\right\|_{K}=$ $\|T\|_{H}$ is that T commutes with V and $|A|$. If the extension T^{e} exists, it is unique.

Proof. Let E be the projection from H on \mathscr{N}_{A}, then, by Lemma 1, $E \in R(A) \cap R(A)^{\prime}$. Since $\mathscr{N}_{A}=\mathscr{N}_{\mid A}$, we have

$$
A=A_{1} \oplus 0, \quad|A|=\left|A_{1}\right| \oplus 0 \quad \text { and } \quad V=V_{1} \oplus 0
$$

on

$$
H=(I-E) H \oplus E H
$$

and V_{1} is an isometry, $\mathscr{N}_{\left|A_{1}\right|}=\{0\}, E \in R(|A|)$ and hence $A_{1}=V_{1}\left|A_{1}\right|$ is the polar decomposition of A_{1}. Since, clearly, A_{1} is nearly normal and since $\mathscr{N}_{A_{1}}=\mathscr{N}_{\left|A_{1}\right|}=\{0\}$, if B_{1} is the minimal normal extension on K_{1} of A_{1}, then, by the same reason as in the proof of Theorem 2, $\mathscr{N}_{B_{1}}=\{0\}$, and hence, by the minimality of $B, \mathscr{N}_{B}=\mathscr{N}_{A}$, that is,

$$
B=B_{1} \oplus 0 \quad \text { on } \quad K=K_{1} \oplus E H
$$

Let F be the projection from K on \mathscr{N}_{B}, then clearly $F \in R(B)$.
Sufficiency: If T commutes with V and $|A|$, then we have

$$
T=T_{1} \oplus T_{2} \quad \text { on } \quad H=(I-E) H \oplus E H
$$

because $E \in R(|A|)$ and hence T_{1} commutes with V_{1} and $\left|A_{1}\right|$. By Theorem 1, T_{1} has the unique extension T_{1}^{e} on K_{1} such that T_{1}^{e} commutes with B_{1} and $\left\|T_{1}^{e}\right\|_{K_{1}}=\left\|T_{1}\right\|_{(I-E) H}$. Therefore

$$
T^{e}=T_{1}^{e} \oplus T_{2} \quad \text { on } \quad K=K_{1} \oplus E H
$$

is the required unique extension of T which commutes with B and $\left\|T^{e}\right\|_{K}=\|T\|_{H}$.

Necessity: If T^{e} on K is the extension of T on H which commutes with B, then we have

$$
T^{e}=T^{e \prime} \oplus T^{e \prime \prime} \quad \text { on } \quad K=K_{1} \oplus E H
$$

because $F K=E H$ and $F \in R(B)$ and hence $T^{e \prime}$ commutes with B_{1}. Hence, by Theorem 3, $T^{\prime}=T^{e \prime} \mid(I-E) H$ commutes with V_{1} and $\left|A_{1}\right|$ and hence

$$
T^{\prime} \oplus T^{e \prime \prime} \quad \text { on } \quad H=(I-E) H \oplus E H
$$

commutes with V and $|A|$. Easily we have $T=T^{\prime} \oplus T^{e \prime \prime}$ which completes the proof.

As a special case of Theorem 4, we have the following.
Corollary 1. Let V be an isometry on H with the minimal unitary extension U on K. Then a necessary and sufficient condition that an operator T on H has an extension T^{e} on K such that T^{e} commutes with U and $\left\|T^{e}\right\|_{K}=\|T\|_{H}$ is that T commutes with V. If the extension T^{e} exists, it is unique.

Remark 2. In [2], Douglas also proved this corollary as an application of the result of Sz.-Nagy and Foias concerning the co-isometric extensions of contractions.

As an application of Theorem 4, we have the following.
Corollary 2. Let A be a nearly normal operator on H with the polar decomposition $A=V|A|$ and let W be an isometry on H. Then, if W commutes with A, then W commutes with V and $|A|$ also.

Proof. Let B be the minimal normal extension on K of A. Then, since W is an isometry and since W commutes with A, we can easily show that W satisfies the conditions of proposition. And hence W has the unique extension W^{e} on K which commutes with B. Therefore, by Theorem 4, W commutes with V and $|A|$.
3. Our main theorem in this paper is the following.

Theorem 5. Let $A_{i}, i=1,2$ be nearly normal operators on H with the polar decompositions $A_{i}=V_{i}\left|A_{i}\right|, i=1,2$, respectively. Then the necessary and sufficient condition under which $A_{i}, i=1,2$ have the mutually commuting normal extensions $C_{i}, i=1,2$, respectively, acting on the minimal extension space K in the sense that K is the smallest space which contains H and reduces $C_{i}, i=1,2$, respectively, is that (a) V_{2} commutes with V_{1} and $\left|A_{1}\right|$, and (b) $\left|A_{2}\right|$ commutes with V_{1} and $\left|A_{1}\right|$.

Proof. Necessity: For each $i=1,2$, let $C_{i}=W_{i}\left|C_{i}\right|$ be the polar decomposition of C_{i} and let B_{i} on K_{i} be the minimal normal extension of A_{i} with the polar decomposition $B_{i}=U_{i}\left|B_{i}\right|$. Then we have

$$
C_{i}=B_{i} \oplus B_{i}^{\prime}, \quad W_{i}=U_{i} \oplus U_{i}^{\prime} \quad \text { and } \quad\left|C_{i}\right|=\left|B_{i}\right| \oplus\left|B_{i}^{\prime}\right|
$$

on

$$
K=K_{i} \oplus\left(K \ominus K_{i}\right)
$$

Since, by the proof of Theorem 4,

$$
A_{i} \mid H \Theta \mathscr{N}_{A_{i}}=\left(V_{i} \mid H \Theta \mathscr{N}_{A_{i}}\right)\left(\left|A_{i}\right| \mid H \Theta \mathscr{N}_{A_{i}}\right)
$$

is the polar decomposition of $A_{i} \mid H \ominus \mathscr{N}_{A_{i}}$ and $B_{i} \mid K_{i} \ominus \mathscr{N}_{A_{i}}$ is the minimal normal extension of $A_{i} \mid H \ominus \mathscr{N}_{A_{i}}$, by Theorem 2, we have

$$
V_{i}\left|H \ominus \mathscr{N}_{A_{i}}=\left(U_{i} \mid K_{i} \ominus \mathscr{N}_{A_{i}}\right)\right| H \ominus \mathscr{N}_{A_{i}}
$$

and

$$
\left|A_{i}\right|\left|H \ominus \mathscr{N}_{A_{i}}=\left(\left|B_{i}\right| \mid K_{i} \Theta \mathscr{N}_{A_{i}}\right)\right| H \ominus \mathscr{N}_{A_{i}}
$$

Hence we have

$$
V_{i}=U_{i}\left|H=W_{i}\right| H \quad \text { and } \quad\left|A_{i}\right|=\left|B_{i}\right|\left|H=\left|C_{i}\right|\right| H .
$$

Since $C_{1} C_{2}=C_{2} C_{1}$, we have

$$
W_{2} W_{1}=W_{1} W_{2}, \quad W_{2}\left|C_{1}\right|=\left|C_{1}\right| W_{2}, \quad\left|C_{2}\right| W_{1}=W_{1}\left|C_{2}\right|
$$

and

$$
\left|C_{2}\right|\left|C_{1}\right|=\left|C_{1}\right|\left|C_{2}\right|
$$

Therefore, for any $x \in H$, we have

$$
\begin{gathered}
V_{2} V_{1} x=W_{2} V_{1} x=W_{2} W_{1} x=W_{1} W_{2} x=V_{1} V_{2} x, \\
V_{2}\left|A_{1}\right| x=W_{2}\left|C_{1}\right| x=\left|C_{1}\right| W_{2} x=\left|A_{1}\right| V_{2} x \\
\left|A_{2}\right| V_{1} x=\left|C_{2}\right| W_{1} x=W_{1}\left|C_{2}\right| x=V_{1}\left|A_{2}\right| x
\end{gathered}
$$

and

$$
\left|A_{2}\right|\left|A_{1}\right| x=\left|C_{2}\right|\left|C_{1}\right| x=\left|C_{1}\right|\left|C_{2}\right| x=\left|A_{1}\right|\left|A_{2}\right| x
$$

Sufficiency: Let B_{1} on K_{1} be the minimal normal extension of A_{1}. Then, by Theorem 4, A_{2}, V_{2} and $\left|A_{2}\right|$ have the unique extensions A_{2}^{e}, V_{2}^{e} and $\left|A_{2}\right|^{e}$ on K_{1}, respectively, such that they commute with B_{1}. For each $i=1,2$, let E_{i} be the projection from H on $\mathscr{N}_{A_{i}}$, then we have easily $\mathscr{N}_{A_{i}}=\mathscr{N}_{\left|A_{i}\right|}$ and $E_{i} \in R\left(\left|A_{i}\right|\right)$. Since $\left|A_{1}\right|\left|A_{2}\right|=\left|A_{2}\right|\left|A_{1}\right|$, we have $E_{1} E_{2}=$ $E_{2} E_{1}$ and hence, by the hypothesis and by Lemmas 1 and 2, we have

$$
\begin{gathered}
A_{1}=A_{1}^{\prime} \oplus A_{1}^{\prime \prime} \oplus 0 \oplus 0, \quad V_{1}=V_{1}^{\prime} \oplus V_{1}^{\prime \prime} \oplus 0 \oplus 0, \\
\left|A_{1}\right|=\left|A_{1}^{\prime}\right| \oplus\left|A_{1}^{\prime \prime}\right| \oplus 0 \oplus 0, \quad A_{2}=A_{2}^{\prime} \oplus 0 \oplus A_{2}^{\prime \prime \prime} \oplus 0, \\
V_{2}=V_{2}^{\prime} \oplus 0 \oplus V_{2}^{\prime \prime \prime} \oplus 0 \text { and } \quad\left|A_{2}\right|=\left|A_{2}^{\prime}\right| \oplus 0 \oplus\left|A_{2}^{\prime \prime \prime}\right| \oplus 0
\end{gathered}
$$

on

$$
H=\left(I-E_{1}\right)\left(I-E_{2}\right) H \oplus\left(I-E_{1}\right) E_{2} H \oplus E_{1}\left(I-E_{2}\right) H \oplus E_{1} E_{2} H .
$$

And, by the proof of Theorem 4, we have

$$
B_{1}=B_{1}^{(1)} \oplus 0 \quad \text { on } \quad K_{1}=K_{1}^{(1)} \oplus E_{1} H,
$$

where $B_{1}^{(1)}$ is the minimal normal extension of $A_{1}^{\prime} \oplus A_{1}^{\prime \prime}$. Therefore $\left(I-E_{1}\right)\left(I-E_{2}\right) H$ and $\left(I-E_{1}\right) E_{2} H$ are invariant subspaces of $B_{1}^{(1)}$. These imply that

$$
K_{1}^{\prime}=\vee\left\{B_{1}^{(1) * n} x ; \quad x \in\left(I-E_{1}\right)\left(I-E_{2}\right) H, \quad n \geqq 0\right\}
$$

is a reducing subspace of $B_{1}^{(1)}$ and $\left(I-E_{1}\right) E_{2} H \subset K_{1}^{(1)} \ominus K_{1}^{\prime}$. And hence, we have

$$
B_{1}^{(1)}=B_{1}^{\prime} \oplus B_{1}^{\prime \prime} \quad \text { on } \quad K_{1}^{(1)}=K_{1}^{\prime} \oplus K_{1}^{\prime \prime}
$$

and, by the construction of K_{1}^{\prime} and by the minimality of $B_{1}^{(1)}, B_{1}^{\prime}$ and $B_{1}^{\prime \prime}$ are the minimal normal extensions of A_{1}^{\prime} and $A_{1}^{\prime \prime}$, respectively. Therefore, by Theorem 1 and by the uniqueness of the extension of Theorem 4, we have

$$
A_{2}^{e}=A_{2}^{\prime e} \oplus 0 \oplus\left(A_{2}^{\prime \prime \prime} \oplus 0\right), \quad V_{2}^{e}=V_{2}^{\prime e} \oplus 0 \oplus\left(V_{2}^{\prime \prime \prime} \oplus 0\right)
$$

and

$$
\left|A_{2}\right|^{e}=\left|A_{2}^{\prime}\right|^{e} \oplus 0 \oplus\left(\left|A_{2}^{\prime \prime \prime}\right| \oplus 0\right) \quad \text { on } \quad K_{1}=K_{1}^{\prime} \oplus K_{1}^{\prime \prime} \oplus E_{1} H
$$

and, by Remark 1, $V_{2}^{\prime e}$ is isometric and $\left|A_{2}^{\prime}\right|^{e}$ is non-negative self-adjoint. For any $x \in H$, we have

$$
V_{2}^{e}\left|A_{2}\right|^{e} x=V_{2}^{e}\left|A_{2}\right| x=V_{2}\left|A_{2}\right| x=A_{2} x=\left|A_{2}\right| V_{2} x=\left|A_{2}\right|^{e} V_{2}^{e} x
$$

because, by Lemma 2, $V_{2}^{\prime} \oplus V_{2}^{\prime \prime \prime}$ commutes with $\left|A_{2}^{\prime}\right| \oplus\left|A_{2}^{\prime \prime \prime}\right|$. Hence $V_{2}^{e}\left|A_{2}\right|^{e},\left|A_{2}\right|^{e} V_{2}^{e}$ and A_{2}^{e} are extensions on K_{1} of A_{2} and clearly they commute with B_{1}. Therefore, by the uniqueness of the extension of Theorem 4, we have

$$
A_{2}^{e}=V_{2}^{e}\left|A_{2}\right|^{e}=\left|A_{2}\right|^{e} V_{2}^{e}
$$

and hence A_{2}^{e} is a nearly normal operator on K_{1} with the polar decomposition $A_{2}^{e}=V_{2}^{e}\left|A_{2}\right|^{e}$, that is, $\left|A_{2}\right|^{e}=\left|A_{2}^{e}\right|$. Let C_{2} be the minimal normal extension of A_{2}^{2}, acting on K. Then, by Theorem 4, B_{1} has the unique extension C_{1} on K which commutes with C_{2}. By the same reason as above, we have

$$
C_{2}=C_{2}^{\prime} \oplus 0 \oplus C_{2}^{\prime \prime \prime} \oplus 0 \quad \text { on } \quad K=K^{\prime} \oplus K_{1}^{\prime \prime} \oplus K^{\prime \prime \prime} \oplus E_{1} E_{2} H,
$$

where C_{2}^{\prime} and $C_{2}^{\prime \prime \prime}$ are the minimal normal extensions of $A_{2}^{\prime e}$ and $A_{2}^{\prime \prime \prime}$, respectively, and hence we have

$$
C_{1}=B_{1}^{\prime e} \oplus B_{1}^{\prime \prime} \oplus 0 \oplus 0 \quad \text { on } \quad K=K^{\prime} \oplus K_{1}^{\prime \prime} \oplus K^{\prime \prime \prime} \oplus E_{1} E_{2} H .
$$

By Remark 1, $B_{1}^{\prime e}$ is normal and hence C_{1} is normal. Now we have only to prove the minimality of K. Let L be the smallest subspace containing H which reduces C_{1} and C_{2}. Then we have $K_{1} \subset L \subset K$ because K_{1} is the minimal normal extension space of A_{1} and hence we have

$$
C_{2}=\left(C_{2} \mid L\right) \oplus\left(C_{2} \mid K \ominus L\right) \quad \text { on } \quad K=L \oplus(K \ominus L),
$$

where $C_{2} \mid L$ and $C_{2} \mid K \ominus L$ are normal. For any $x \in K_{1}$,

$$
A_{2}^{\ell} x=C_{2} x=\left(C_{2} \mid L\right) x .
$$

Since C_{2} is the minimal normal extension of $A_{2}^{e}, L=K$. This completes the proof.

As a special case of Theorem 5, we have the following.
Corollary 3. (cf. [2]) A necessary and sufficient condition under which isometries $V_{i}, i=1,2$ on H have the mutually commuting unitary extensions $U_{i}, i=1,2$, respectively, acting on the minimal extension space K in the sense that K is the smallest space which contains H and reduces U_{1} and U_{2} is that V_{1} commutes with V_{2}.

By Corollary 2 and by Theorem 5, we have the following.
Corollary 4. Let A be a nearly normal operator on H and let V be an isometry on H. Then a necessary and sufficient condition under which A and V have the mutually commuting normal extensions B and U (in fact, U is unitary), respectively, acting on the minimal extension space K in the sense that K is the smallest space which contains H and reduces B and U is that A commutes with V.

References

[1] J. Bram, Subnormal operators, Duke Math. Journ., 22 (1955), 75-94.
[2] R. G. Douglas, On the operator equation $S^{*} X T=X$ and related topics, Acta. Sci. Math., 29 (1969), 19-32.
[3] P. R. Halmos, Normal dilations and extensions, Summa. Brasiliensis Math., 2 (1950), 125-134.
[4] T. Yoshino, Nearly normal operators, Tôhoku Math. J., 20 (1968), 1-4.
The College of General Education
Tôhoku University
Kawauchi, Sendai, Japan

