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1. We say that a bounded linear operator A on a Hilbert space H
is nearly normal if A commutes with A*A. Recall that if B is a normal
operator on K and H is an invariant subspace for B, then the operator
A = B|H is said to be subnormal. If the smallest reducing subspace for
B containing H is K, then B is said to be the minimal normal extension
of A. This is unique to an isomorphism (cf. [3]). It is well-known that
every nearly normal operator is subnormal. The purpose of this paper
is to give certain necessary and sufficient conditions under which two

nearly normal operators on H have the mutually commuting normal ex-
tensions on K.

2. For our purpose, we shall consider the following problem: Given
a nearly normal operator A on H, and B, its minimal normal extension
on K, when can an operator T on H be extended to an operator T° on
K in such a manner that T° commutes with B? This problem for general
subnormal operators was first solved by Bram [1]. We state here it
without proof.

PROPOSITION. Let A on H be a subnormal operator with the minimal
normal extension B on K. Then the mnecessary and sufficient condition
that an operator T on H has an extension T° on K such that T° commutes
with B is that (a) T commutes with A, and (b) there exists a positive
constant ¢ such that for every finite set ,, «,, +++, ., in H we have

S ATz, ATz, < ¢ S (A™z,, Az, .

m,n=0 m,n=0

If the extension T° exists, it is unique.
Now we state the following lemmas given in [4] without proof.

LemMMA 1. If A is a nearly mormal operator on H and if E is the
projection from H on A4, = {x€ H; Ax = 0}, then Eec R(A) N R(A) where
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R(A) denotes the smallest von Neumann algebra containing A and R(A)
its commutant.

LEMMA 2. If A is a nearly normal operator on H such that .4, = {0},
then, in the polar decomposition A =V |A| of A,V is an isometry and
commutes with |A|.

To prove the following theorem except the norm condition ||T¢||x =
[|T|lx» we have only to show that the operator T satisfies the condition
(b) of proposition.

THEOREM 1. Let A be a mearly normal operator on H, with the polar
decomposition A = V|A|, such that 45 = {0}, and let B on K be the
minimal normal extension of A. Then, if an operator T on H commutes
with V and |A|, then there exists an extension T° on K of T such that
T* commutes with B and ||T°||x = || T||z. Moreover, the existence of the
extension T° is unique.

ProoF. By Lemma 2, V is an isometry and commutes with |A|. Let
U be the minimal unitary extension on K’ of V, then, for any finite set
Xy, &, *++, &, in H, we have

20<Ame,,, AT, >y = z (V™| AT, V* | A" T, n

= §_‘, VT |A|"2,, V*"T | A|™®p)u
m,n=0

= 3 (UT|APw, UT| Aoy = || 3, U T A5,
m,n=0 n=0

Since, for any fixed non-negative integer k,
U*nTlAl'na;“ — U*%+k UleAlnx” — U*?H—kaTlA[nx“
— U*'n+kTVklAI'nx” — U*n+kTUk lAlﬂx” o U*'n.+kTU‘n+k U*'nlAI‘nwn

for all n =0,1,.--,7, we have, by choosing & such as n + k = r for
each n,

IZ—“ *"TIAI"“?» — H U*TU" Z U*» ]A‘n
— H TU" 3 U lA]”x,. 5 U ]A]"m,.
ST 1|0 5 U™ Al = 1T {Uz U ALz,

Tn

= 17153

2 r
=TI S (A, A% -
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Hence, by Proposition, there exists uniquely an extension T° on K of T
such that T° commutes with B (and hence with B*). For any finite set
X, &, +++, %, in H, we have

T Zr‘, B*"y, = i B*Teg, = i B*"Tgx,
n=0 n=0 n=0

and

2 2

i = 3 (B"Tx,, B*Te,>x

m,n=0

“T‘* i B*"x,

K

E <Amem AnTx’IE)H = HT'H2 Z <Amxn’ A” m>H

i :

= IT 1] & B>

K

Since the linear set & of vectors of the form
i‘, B**x,, x,€H
n=0

is dense in K by the minimality of B (& contains H and reduces B),
we have || T*||x < || T'||z and hence ||T¢||x = || T||x-

REMARK 1. In above theorem, if T is an isometry, then we have

|

Te i B*n

%, | S (A" Tz, Ao, x
K

m,n=0

Z {T*TA™x,, A%,y = 2 <A Xy, AT n

m,n=0

i n=0
and since & is dense in K, T* is also an isometry on K. If T is normal,
then T*¢ exists and

ke Z B**g, = Z B*”T*

n=0

and hence we have
<T*BiB*nx”, iB*mym> — <i_‘B*nT*xn’ ZB"B*mym>

- <z Bz, 3B Ty,) = <2 B, T 3 B*™0,.)
n=0 m=0 K n=0 m=0 K
= (T 3. B*"ay, 33 B*"0)
n=0 m=0
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Since =7 is dense in K, T** = T*® and hence we have

|

Te* zrl B*nx” 2

n=0 K

ﬁ‘,B*"T*x,,”; = S (A"T*x,, AT*5,)5x
n=0 m,n=0

r

= 3 (A™Tx,, AT,y =

m,n=0

3 B*"Tx,,”z - “ T° S B*"g,|
n=0 K n=0

2
K

Therefore T° is also normal. If T is a non-negative self-adjoint operator,
then we have

<Te Zr' B*nxn, 7 B*nx"> — <i\‘ B*nTxn, i B*nxn>K
n=0 0 K

n= n=0 n=0
= M%O<A"’ T2, A*Cpyy = miio<Am Ty, AT'Px,S,
= i“ B*nTuzxn ’2 >0
n=0 K

and hence T° is also a non-negative self-adjoint operator.
As an application of Theorem 1, we have the following.

THEOREM 2. Let A be a nearly mormal operator on H with the polar
decomposition A = V| A| such that 4, = {0} and let B on K be the mini-
mal normal extension of A with the polar decomposition B= U|B|. Then
U is unitary and V= U|H and |A| = |B| |H.

PrROOF. Since, by Lemma 2, A, V and |A| satisfy the condition of
Theorem 1, A, V and |A| have extensions A°, V* and |A|° respectively
such that they commute with B. Moreover, by Remark 1, V* is isometric
and |A|* is non-negative self-adjoint. For any x<c H, we have

VAl'w =V |Alx = V|Alx = Ax = A’c = Bx = |A|Vx

= |Al*'Ve = |A]'Vx.
Therefore each of V¢|A|°, A°, B and |A|*V*® is an extension on K of A
and commutes with B. Hence, by the uniqueness of the extension of
Theorem 1, we have
B: Ae — VeIAIe — lA|eVe .
From this, we have easily
|B|=|A"] = |A".
If Bt =0, s =2, P, v.€c H, 2,6 K& H, then
0=[[Bz|lk = |V ]|Al2|k = [[|[Al]k = ||| A%, D A%
= [[[Al [k + ||| Az = |[|Al2[x + |[[ A%k
= VAl + || [Al]l% = [|Ax (% + [ | A%k
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and hence Awx, = 0. Since .+ = {0}, , = 0. This implies +;cCc K© H.
Clearly .#; is a reducing subspace for B and, by the minimality of B,
we have .43 = {0}. Therefore U= V* and U is unitary.

By Theorem 2, we can prove the following converse assertion of
Theorem 1.

THEOREM 3. Let A be a nearly normal operator on H with the polar
decomposition A = V|A| such that A4 = {0} and let B on K be the
minimal normal extension of A. Then, if an operator T on H has an
extension T° on K such that T° commutes with B, then T commutes with
V and |A]|.

ProoF. Let B = U|B| be the polar decomposition of B. Then
T:B = BT*® implies that 7T° commutes with U and |B| because B is
normal. Since, by Theorem 2, V= U|H and |A|= |B| |H, for any
xe H, we have

TVe = TV = T°Ux = UT°c = VTx
and
T|Alx=T°|Alxe =T°|Ble = |B|T¢ = |A|Tx .

Therefore T commutes with V and |A].
By Lemma 1 and by the above theorems, we have the following.

THEOREM 4. Let A be a nearly normal operator on H with the polar
decomposition A = V|A| and let Bon K be the minimal normal extension
of A. Then a necessary and sufficient condition that an operator T on
H has an extension T° on K such that T° commutes with B and ||T°||x =
|| Tz is that T commutes with V and |A|. If the extension T° exists, it
is unique.

ProorF. Let E be the projection from H on .#7, then, by Lemma 1,

Eec R(A) N R(A). Since 47 = 47, we have
A=A00 |A=]|A|©0 and V=V, D0
on
H=(I—-E)H®EH

and V, is an isometry, 47, = {0}, E€ R(JA|) and hence A, = V,|4,]| is
the polar decomposition of A,. Since, clearly, A, is nearly normal and
since A, = A7, = {0}, if B, is the minimal normal extension on K, of

A,, then, by the same reason as in the proof of Theorem 2, _#3 = {0},
and hence, by the minimality of B, .#3 = .47, that is,

B=B &0 on K=K @EH.
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Let F' be the projection from K on .43, then clearly Fe R(B).
Sufficiency: If T commutes with ¥V and |A|, then we have

T=T@®T, on H=(I— E)H@EH

because E€ R(|A|) and hence T, commutes with V, and |A4,|. By Theorem
1, T, has the unique extension T¢ on K, such that T commutes with B,
and || T¢ ||, = [| T\ llz—myz. Therefore

T =T:®T, on K=K,@EH

is the required unique extension of T which commutes with B and
T = I T||a-

Necessity: If T° on K is the extension of T on H which commutes
with B, then we have

T =T*®T” on K=K @EH

because FK = EH and F e R(B) and hence T* commutes with B,. Hence,
by Theorem 3, T’ = T*|(I — E)H commutes with V, and |A4,| and hence

T"@T" on H=(I— E)H@EH

commutes with V and |A|. Easily we have T = T' @ T*" which completes
the proof.
As a special case of Theorem 4, we have the following.

COROLLARY 1. Let V be an isometry on H with the minimal unitary
extension U on K. Then a necessary and sufficient condition that an
operator T on H has an extension T° on K such that T° commutes with
Uand ||T||x = || T ||z ts that T commutes with V. If the extemnsion T°
exists, it 1s unique.

REMARK 2. In [2], Douglas also proved this corollary as an application
of the result of Sz.-Nagy and Foias concerning the co-isometric extensions
of contractions.

As an application of Theorem 4, we have the following.

COROLLARY 2. Let A be a mnearly normal operator on H with the
polar decomposition A = V|A| and let W be an isometry on H. Then,
if W commutes with A, then W commutes with V and |A| also.

ProoF. Let B be the minimal normal extension on K of A. Then,
since W is an isometry and since W commutes with A, we can easily
show that W satisfies the conditions of proposition. And hence W has
the unique extension W* on K which commutes with B. Therefore, by
Theorem 4, W commutes with ¥V and |A|.
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3. Our main theorem in this paper is the following.

THEOREM 5. Let A;, © = 1,2 be nearly normal operators on H with
the polar decompositions A; = V;|A;|, © = 1,2, respectively. Then the
necessary and sufficient condition wunder which A;, 1=1,2 have the
mutually commuting normal extensions C;, 1 = 1,2, respectively, acting
on the minimal extension space K im the sense that K 1is the smallest
space which contains H and reduces C;, i = 1, 2, respectively, is that (a)
V., commutes with V, and |A,|, and (b) |A,| commutes with V, and |A,|.

PROOF. Necessity: For each 7 =1,2, let C; = W;|C;| be the polar
decomposition of C; and let B; on K; be the minimal normal extension
of A; with the polar decomposition B; = U;|B;|. Then we have

C,=B,@B, W,=U;@U! and |C;|=|B;|P|B/|
on
K=K KO K).
Since, by the proof of Theorem 4,
A HO A4, = (Vi |HO A4 )( A |HO A7)

is the polar decomposition of A;|HO .+, and B;|K;© .47, is the mini-
mal normal extension of A;| HO .47,, by Theorem 2, we have

Vi HO 4%, = (U | K.© 4%) | HO A7,
and
|A| |[HO A%, = (1Bi| | Ki© A43) | HO A7,
Hence we have
Vi=U|H= W;|H and |A;|=|B;| |H=|C;| |H.
Since C,C, = C,C,, we have
W, W, = W, W,, W,|C,|=|C,|W, |C|W,= W,|C,]
and
|G| |Ci] = |Ci[ |G -
Therefore, for any x € H, we have
V.Vie= W, Vo= W,Waxe=WWex=VVx,
VAl = W,|C,|le = |C,|Wa = |A, |V,

|A,| Ve = |C.| W= W, |C,le =V, |A; |2
and

|A:[ A2 = [G|[Ci]w = [C][Cle = [A]|| 4] .
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Sufficiency: Let B, on K, be the minimal normal extension of A,.
Then, by Theorem 4, A,, V, and |A.| have the unique extensions A:, V7
and |A4,|° on K|, respectively, such that they commute with B,. For each
1 =1,2, let E; be the projection from H on .47, then we have easily
N a; = Ay and E;e R(|A;]). Since |4, ||A,| = |4,]]A,|, we have E\E, =
E,E, and hence, by the hypothesis and by Lemmas 1 and 2, we have

A =AQATHODO, V,=V/BV'PODO,
|4, = |A]| DAY | DODO, 4,=AD0DA"DO,
V.= V0DV @0 and |4 =4 DODIAY| DO
on
H=I-E)I-E)HO(I—-E)EEHQE( - E)H® EE.H.
And, by the proof of Theorem 4, we have
B =B"®0 on K,=K"PEH,
where B® is the minimal normal extension of A A). Therefore

(I — E)(I — E,;)H and (I — E,)E,H are invariant subspaces of B/". These
imply that

K{ = \/{Bx(”*”x; re (I_ El)(I_ E2)H’ n= 0}

is a reducing subspace of B” and (I — E)E,HC K’ © K/. And hence,
we have

B®=B/@B on K=K @K/

and, by the construction of K/ and by the minimality of B®, B/ and B/
are the minimal normal extensions of A]and A/, respectively. Therefore,
by Theorem 1 and by the uniqueness of the extension of Theorem 4, we
have

A=A DOD A DO, Vi=V "D0D(V;"DO)
and
|4,]° = |A]"DO0D (147" 0 on K, =K D K'DEH
and, by Remark 1, V}* is isometric and |A4;|° is non-negative self-adjoint.
For any x e H, we have
VilAsl'w = ViAo = V|4l o = Ao = |4, |V = |4, Vi

because, by Lemma 2, V,;@ V,” commutes with |A;| @ |A;|. Hence
Vi|A4,l° | A,°Vs and A; are extensions on K, of A, and clearly they
commute with B,. Therefore, by the uniqueness of the extension of
Theorem 4, we have
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Ag = Vze|A2|e = |A2|8Vze
and hence A is a nearly normal operator on K, with the polar decom-
position A; = V¢ |A,|°, thatis, |4,]° = |A:|. Let C, be the minimal normal
extension of A, acting on K. Then, by Theorem 4, B, has the unique
extension C, on K which commutes with C,. By the same reason as above,
we have

C,=C/p0pC,”"d0 on K=K QK'P K" P EEH,

where C! and C,” are the minimal normal extensions of A) and A},
respectively, and hence we have

C,=B°‘@dB'®0dp0 on K=K K'PK"DEEH.
By Remark 1, B/® is normal and hence C, is normal. Now we have only
to prove the minimality of K. Let L be the smallest subspace containing

H which reduces C, and C,. Then we have K, L c K because K, is the
minimal normal extension space of A, and hence we have

C.=(C|ILOEC.|KOL) om K=LOEOL,
where C,|L and C,| K© L are normal. For any xec K,
Aix = Cyx = (Cy| L)x .

Since C, is the minimal normal extension of A; L = K. This completes
the proof.
As a special case of Theorem 5, we have the following.

COROLLARY 3. (cf. [2]) A mecessary and sufficient condition under
which isometries V,,© = 1,2 on H have the mutually commuting unitary
extensions U, 1 = 1, 2, respectively, acting on the minimal extension space
K in the sense that K is the smallest space which contains H and reduces
U, and U, is that V, commutes with V,.

By Corollary 2 and by Theorem 5, we have the following.

COROLLARY 4. Let A be a nearly normal operator on H and let V
be an isometry on H. Then a mecessary and sufficient condition under
which A and V have the mutually commuting normal extensions B and U
(in fact, U is unitary), respectively, acting on the minimal extension space
K in the sense that K s the smallest space which contains H and reduces
B and U s that A commutes with V.
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