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1. We say that a bounded linear operator A on a Hubert space H
is nearly normal if A commutes with A*A. Recall that if B is a normal
operator on K and H is an invariant subspace for B, then the operator
A = B\H is said to be subnormal. If the smallest reducing subspace for
B containing H is K, then B is said to be the minimal normal extension
of A. This is unique to an isomorphism (cf. [3]). It is well-known that
every nearly normal operator is subnormal. The purpose of this paper
is to give certain necessary and sufficient conditions under which two
nearly normal operators on H have the mutually commuting normal ex-
tensions on K.

2. For our purpose, we shall consider the following problem: Given
a nearly normal operator A on H, and Bf its minimal normal extension
on K, when can an operator T on H be extended to an operator Te on
K in such a manner that Te commutes with BΊ This problem for general
subnormal operators was first solved by Bram [1]. We state here it
without proof.

PROPOSITION. Let A on H be a subnormal operator with the minimal
normal extension B on K. Then the necessary and sufficient condition
that an operator T on H has an extension Te on K such that Te commutes
with B is that (a) T commutes with A, and (b) there exists a positive
constant c such that for every finite set x0, xl9 , xr in H we have

r r
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If the extension Te exists, it is unique.

Now we state the following lemmas given in [4] without proof.

LEMMA 1. If A is a nearly normal operator on H and if E is the
projection from H on ^ΓA = {xe H; Ax = 0}, then Ee R(A) Π R{A)' where
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R{A) denotes the smallest von Neumann algebra containing A and R(A)'
its commutant.

LEMMA 2. If A is a nearly normal operator on H such that ^4^ = {0},
then, in the polar decomposition A — V \ A | of A, V is an isometry and
commutes with \A\.

To prove the following theorem except the norm condition 11 Te \ \κ =
\\T\\H, we have only to show that the operator T satisfies the condition
(b) of proposition.

THEOREM 1. Let A be a nearly normal operator on H, with the polar
decomposition A = V\A\, such that ^VA = {0}, and let B on K be the
minimal normal extension of A. Then, if an operator T on H commutes
with V and \A\, then there exists an extension Te on K of T such that
Te commutes with B and \\Te\\κ = | |Γ | | H . Moreover, the existence of the
extension Te is unique.

PROOF. By Lemma 2, V is an isometry and commutes with | A\. Let
U be the minimal unitary extension on K' of V, then, for any finite set
xQ, xl9 ••• ,xr in H, we have

Σ
m,n=0

n, Vn\A\nTxm}H

m,n=0
ζV~T\A\ χ.,VT\A\MxJ>1I

0

(UmT\A\*xn, UnT\A\mxm)κ, = Σ U*%T\A\ χ,

Since, for any fixed non-negative integer k,

U*nT\A\«xn= U*n+kUkT\A\nxn= U*n+kVT\A\nxn

= U*n+kTVk\A\nxn= U*n+kTUk\A\nxn= U*n+kTUn+kU*n\A\«xn

for all n = 0,1, , r, we have, by choosing k such as n + k — r for
each n,

U*rTUr~Z U*n\A\*xt

•Σ.U* \A\ χJ\

I n=0
=\\T\\'H

— II T i l 2 V
— II J- I \H 2-1

Xm/ H
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Hence, by Proposition, there exists uniquely an extension Te on K of T
such that Te commutes with B (and hence with B*). For any finite set
xQ, xl9 * ,xr in H, we have

Te Σ B*nxn = Σ B*nTexn = Σ B*nTxn
n=Q n—0 n=0

and

Σ
\κ li Λ=0

| Σ <BmTxn,B
nTxm)κ

0

Σ <A~Tx.,A TxJ>H S \\T\\% Σ
m,n=0 m,n=0

Since the linear set & of vectors of the form

Σ.B* xΛ, xneH

is dense in K by the minimality of B (& contains H and reduces B),
we have | | Γ | U ^ | | Γ | U and hence \\T \\K= \\T\\H.

REMARK 1. In above theorem, if T is an isometry, then we have

= JΣΰ<AmTxn,A«TxnyH

Σ <T*TA'x%,A χm>H= Σ <Amx%, Anxm}H

m,%=0 m,ίi = O

Σ B nχn\\
n=0 \\K

and since & is dense in K, Tβ is also an isometry on K. If T is normal,
then T*e exists and

and hence we have

n=0 m=0

= Σ Σ <A™T*xn, A«ymyH = Σ Σ <Amx%, A«Tym)s
n=0 m=0 n=Q m=0

= ( Σ
\

=(±B*"xn, T'
\ 0



266 T. YOSHINO

Since & is dense in K, Te* = T*e and hence we have

I * m,w=O
L 1 Xn, J± 1 Xm/H

»=0

Therefore Te is also normal. If T is a non-negative self-adjoint operator,
then we have

Σ
m,?ι=0

•O Xn / — \ 2-ι ° -ί &nj Z J •
n=0 / if \ 7i=0 n=Q

r
/Am rp Λ % \ — ^-« / Λ m 7^1/2^,

and hence Γe is also a non-negative self-adjoint operator.
As an application of Theorem 1, we have the following.

THEOREM 2. Let A be a nearly normal operator on H with the polar
decomposition A=V\A\ such that ^KA — {0} and let B on K be the mini-
mal normal extension of A with the polar decomposition B = Z7|-B|. Then
U is unitary and V= U\H and \A\ = \B\ \H.

PROOF. Since, by Lemma 2, A, V and |A| satisfy the condition of
Theorem 1, A, V and \A\ have extensions A\ Ve and \A\e respectively
such that they commute with B. Moreover, by Remark 1, Ve is isometric
and \A\e is non-negative self-adjoint. For any xeH, we have

Ve\ A\ex = Ve\A\x = V\A\x = Ax = Aex = Bx = \A\Vx

= \A\eVx= \A\eVex .

Therefore each of Ve\A\e,Ae,B and \A\eVe is an extension on K of A
and commutes with B. Hence, by the uniqueness of the extension of
Theorem 1, we have

B = Ae = Ve\A\e = \A\eVe .

From this, we have easily

\B\ = \A°\ = \A\°.

If Bx = 0, x = xL(B χ2> %i € H, x2 e K Q H, then

0 - \\Bx\\*κ= % 0 | A\*x2\\*K

= \\Axγ\\*H
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and hence Axt = 0. Since ΛA = {0}, xt = 0. This implies
Clearly <yKB is a reducing subspace for B and, by the minimality of B,
we have ^VB = {0}. Therefore U'= Ve and U is unitary.

By Theorem 2, we can prove the following converse assertion of
Theorem 1.

THEOREM 3 Let A be a nearly normal operator on H with the polar
decomposition A = V\A\ such that ^4^A = {0} and let B on K be the
minimal normal extension of A. Then, if an operator T on H has an
extension Te on K such that Te commutes with B, then T commutes with
V and \A\.

PROOF. Let B = U \ B | be the polar decomposition of B. Then
TeB = BTe implies that Te commutes with U and | B | because B is
normal. Since, by Theorem 2, V= U\H and |A | = |JB| | i ί , for any
x e H, we have

TVx = TeVx = TeUx = UTex = VTx

and
T\A\x = Te\A\x= Te\B\x= \B\Tex = \A\Tx .

Therefore T commutes with V and |A| .
By Lemma 1 and by the above theorems, we have the following.

THEOREM 4. Let A be a nearly normal operator on H with the polar
decomposition A = V\A\ and let B on K be the minimal normal extension
of A. Then a necessary and sufficient condition that an operator T on
H has an extension Te on K such that Te commutes with B and \\Tβ\\κ =
\\T\\H is that T commutes with V and \A\. If the extension Te exists, it
is unique.

PROOF. Let E be the projection from H on <yKA, then, by Lemma 1,
Ee R(A) Π R(A)'. Since ^ΓA = <sΓw we have

O and F-F.ΘO

on
H= (I-

and Vλ is an isometry, ^V\Aύ = {0}, EeR(\A\) and hence Aλ= F J A J is
the polar decomposition of Ax. Since, clearly, Ax is nearly normal and
since ^KAl = ~4^Al\ = {0}, if B1 is the minimal normal extension on Kt of
A19 then, by the same reason as in the proof of Theorem 2, Λ^Bl = {0},
and hence, by the minimality of B, ^VB = ^VA, that is,

B = B^O on K=
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Let F be the projection from K on Λ"B, then clearly FeR(B).
Sufficiency: If T commutes with V and \A\, then we have

T=T1®T2 on H=(I- E)H@EH

because Ee R(\A\) and hence Tλ commutes with Vι and \AX\. By Theorem
1, Tλ has the unique extension Tt on Kx such that T? commutes with Bt

and || T{ \\Kl = || T^I-EI*- Therefore

Te = T; © Γ2 on K= K^EH

is the required unique extension of Γ which commutes with 5 and

Necessity: If Te on K is the extension of T on i ϊ which commutes
with B, then we have

Te = Γ " 0 j 7 * " on K= KX(B

because FίΓ = EH and F G i2(J5) and hence Ter commutes with Bt. Hence,
by Theorem 3, T = Tef \ (I- E)H commutes with V1 and \A,\ and hence

f φ Γ on H=(I-E)H($EH

commutes with V and |A|. Easily we have T = Γ ' φ Γe" which completes
the proof.

As a special case of Theorem 4, we have the following.

COROLLARY 1. Let V be an isometry on H with the minimal unitary
extension U on K. Then a necessary and sufficient condition that an
operator T on H has an extension Te on K such that Te commutes with
U and || Te\\κ = \\ T\\H is that T commutes with V. If the extension Te

exists, it is unique.

REMARK 2. In [2], Douglas also proved this corollary as an application
of the result of Sz.-Nagy and Foias concerning the co-isometric extensions
of contractions.

As an application of Theorem 4, we have the following.

COROLLARY 2. Let A be a nearly normal operator on H with the
polar decomposition A — V\A\ and let W be an isometry on H. Then,
if W commutes with A, then W commutes with V and \A\ also.

PROOF. Let B be the minimal normal extension on K of A. Then,
since W is an isometry and since W commutes with A, we can easily
show that W satisfies the conditions of proposition. And hence W has
the unique extension We on K which commutes with B. Therefore, by
Theorem 4, W commutes with V and
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3. Our main theorem in this paper is the following.

THEOREM 5. Let Ai9 i = 1, 2 be nearly normal operators on H with
the polar decompositions A < =F ί | i 4 . ί | , i = 1,2, respectively. Then the
necessary and sufficient condition under which Aif i = 1,2 have the
mutually commuting normal extensions d, i — 1, 2, respectively, acting
on the minimal extension space K in the sense that K is the smallest
space which contains H and reduces Cif i = 1, 2, respectively, is that (a)
V2 commutes with Vλ and \AX\, and (b) \A2\ commutes with Vι and |AJ.

PROOF. Necessity: For each i = 1, 2, let d = TF< | C< | be the polar
decomposition of C{ and let B4 on ϋΓ{ be the minimal normal extension
of Ai with the polar decomposition Bt= Ui\Bi\. Then we have

and

on

Since, by the proof of Theorem 4,

is the polar decomposition of A^HQ ^VAi and 5^-8^© Λ\i is the mini-
mal normal extension of Ai\HQΛ/\i, by Theorem 2, we have

and

Hence we have

Vt= Ui\H= Wi\H and

Since CXC2 = CjC^ we have

and

B{\ \H = \Ct\ \H.

Therefore, for any x e H, we have

V,Vi« = W2V,x = W2W,x = W,W2x = Vi

7,1^^3?= W,|O1|aj= \Cι\Wix= \A,

I A , I Vie = | O 2 | T Γ i a ; = TFi IC, I a? = V^

and

IA211 A x I a; = IC2 [ I Cx I a; = | d | | 0 2 | « = I Λ
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Sufficiency: Let Bλ on Kγ be the minimal normal extension of Ax.
Then, by Theorem 4, A2, V2 and |A2| have the unique extensions Ae

2, V2

and |A2|
e on Klf respectively, such that they commute with Bx. For each

i = 1, 2, let Ei be the projection from H on ^VAi9 then we have easily
^frAi = Λ^Ail and Et e R(\ A< |). Since | At \ \ A2 | = | A2 \ \ A, |, we have EXΈ2 =

E2EX and hence, by the hypothesis and by Lemmas 1 and 2, we have

A, = A[ © A[' 0 0 0 0, Vi = F/ 0 7/' © 0 © 0 ,

|ΛI = lAίlφlA'/IΦOφO, Af = Aί©0©Aί"Θ0,
V.= F 2 'φ0φF 2 " 'φ0 and |Aa| = |AJ| © Oφ \A'2" \ φ 0

on

H=(I- EMI - E2)H@ (I

And, by the proof of Theorem 4, we have

A = #i ( 1 )φO on K, = K^ φ E,

where B}1* is the minimal normal extension of A[ φ A". Therefore
( I - £ Ί ) ( / - E2)Hand ( / - EX)E2H are invariant subspaces of B/1*. These
imply that

*nx; xe(I- EMI - E2)H, n^O}

is a reducing subspace of B^ and ( / - E^EJS^K^ Q K[. And hence,
we have

#i(1) - 5/ φ B[' on ^ » - K[ φ ΛΓί'

and, by the construction of K[ and by the minimality of B[ι\ B[ and B"
are the minimal normal extensions of A[ and A'', respectively. Therefore,
by Theorem 1 and by the uniqueness of the extension of Theorem 4, we
have

AJ - A;* φ 0 φ (Aί" φ 0), F2

e - F2'
e φ 0 φ (FΓ φ 0)

and

|A 2 | e = | A 2 | e φ 0 φ ( | A Γ | φ 0 ) on Kλ = K[ φ K[f φ E J I

and, by Remark 1, F 2

e is isometric and |A2|
e is non-negative self-adjoint.

For any x e H, we have

F2

e |A2 |
eα;= F 2

e |A 2 |a;= F 2 |A 2 |α ;- A2x = |A 2 |F 2 α= |A2|
eF2

eα?

because, by Lemma 2, F2 φ F2'" commutes with | A 2 | φ | A 2 " | . Hence
F2

e |A2|
e, |A2|

eF2

β and A2 are extensions on K± of A2 and clearly they
commute with Bλ. Therefore, by the uniqueness of the extension of
Theorem 4, we have
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Al= V2

e\A2\° = \A2\<V2

e

and hence Ae

2 is a nearly normal operator on Kλ with the polar decom-
position A\ = Vi \A2\

e, that is, | A2\
e = \Ae

2\. Let C2 be the minimal normal
extension of A\, acting on K. Then, by Theorem 4, Bί has the unique
extension d on K which commutes with C2. By the same reason as above,
we have

C2 = C2 '0O0 Cr 0 0 on K=K'& K[f 0 K'" 0 EγE2H ,

where C2 and C2" are the minimal normal extensions of A2

e and A'",

respectively, and hence we have

i = #i t B i > i © ^ i p ^ on i v ^ A t p i i ! ^ ^ y^ hjxiii2i± .

By Remark 1, B[e is normal and hence d is normal. Now we have only
to prove the minimality of K. Let L be the smallest subspace containing
H which reduces d and C2. Then we have K^ La K because Kλ is the
minimal normal extension space of Ax and hence we have

C%= (C2\L)®(C2\KQL) on K=L®(KQL),

where C2\L and C2\KQL are normal. For any xeKλ,

A\x = C2x = (C21 L)a? .

Since C2 is the minimal normal extension of Ae

2, L = K. This completes
the proof.

As a special case of Theorem 5, we have the following.

COROLLARY 3. (cf. [2]) A necessary and sufficient condition under
which isometries Viy i = 1, 2 on H have the mutually commuting unitary
extensions Ui9 i = 1, 2, respectively, acting on the minimal extension space
K in the sense that K is the smallest space which contains H and reduces
Ut and U2 is that VΊ commutes with V2.

By Corollary 2 and by Theorem 5, we have the following.

COROLLARY 4. Let A be a nearly normal operator on H and let V
be an isometry on H. Then a necessary and sufficient condition under
which A and V have the mutually commuting normal extensions B and U
(in fact, U is unitary), respectively, acting on the minimal extension space
K in the sense that K is the smallest space which contains H and reduces
B and U is that A commutes with V.
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