ON THE COMMUTING EXTENSIONS OF NEARLY NORMAL OPERATORS

Dedicated to Professor Masanori Fukamiya on his 60th birthday

TAKASHI YOSHINO

(Received April 25, 1972; Revised September 13, 1972)

- 1. We say that a bounded linear operator A on a Hilbert space H is nearly normal if A commutes with A^*A . Recall that if B is a normal operator on K and H is an invariant subspace for B, then the operator $A = B \mid H$ is said to be subnormal. If the smallest reducing subspace for B containing H is K, then B is said to be the minimal normal extension of A. This is unique to an isomorphism (cf. [3]). It is well-known that every nearly normal operator is subnormal. The purpose of this paper is to give certain necessary and sufficient conditions under which two nearly normal operators on H have the mutually commuting normal extensions on K.
- 2. For our purpose, we shall consider the following problem: Given a nearly normal operator A on H, and B, its minimal normal extension on K, when can an operator T on H be extended to an operator T^e on K in such a manner that T^e commutes with B? This problem for general subnormal operators was first solved by Bram [1]. We state here it without proof.

PROPOSITION. Let A on H be a subnormal operator with the minimal normal extension B on K. Then the necessary and sufficient condition that an operator T on H has an extension T° on K such that T° commutes with B is that (a) T commutes with A, and (b) there exists a positive constant c such that for every finite set x_0, x_1, \dots, x_r in H we have

$$\sum_{m,n=0}^r \langle A^m Tx_n, A^n Tx_m \rangle \leq c \cdot \sum_{m,n=0}^r \langle A^m x_n, A^n x_m \rangle$$
.

If the extension T^e exists, it is unique.

Now we state the following lemmas given in [4] without proof.

LEMMA 1. If A is a nearly normal operator on H and if E is the projection from H on $\mathcal{N}_A = \{x \in H; Ax = 0\}$, then $E \in R(A) \cap R(A)'$ where

264 T. YOSHINO

R(A) denotes the smallest von Neumann algebra containing A and R(A)' its commutant.

LEMMA 2. If A is a nearly normal operator on H such that $\mathcal{N}_A = \{0\}$, then, in the polar decomposition A = V|A| of A, V is an isometry and commutes with |A|.

To prove the following theorem except the norm condition $||T^e||_{K} = ||T||_{H}$, we have only to show that the operator T satisfies the condition (b) of proposition.

THEOREM 1. Let A be a nearly normal operator on H, with the polar decomposition A = V |A|, such that $\mathscr{N}_A = \{0\}$, and let B on K be the minimal normal extension of A. Then, if an operator T on H commutes with V and |A|, then there exists an extension T^e on K of T such that T^e commutes with B and $||T^e||_K = ||T||_H$. Moreover, the existence of the extension T^e is unique.

PROOF. By Lemma 2, V is an isometry and commutes with |A|. Let U be the minimal unitary extension on K' of V, then, for any finite set x_0, x_1, \dots, x_r in H, we have

$$egin{aligned} \sum_{m,n=0}^{r} \langle A^m T x_n, \, A^n T x_m
angle_H &= \sum_{m,n=0}^{r} \langle V^m \, | \, A \, |^m T x_n, \, V^n \, | \, A \, |^n T x_m
angle_H \ &= \sum_{m,n=0}^{r} \langle V^m T \, | \, A \, |^n x_n, \, V^n T \, | \, A \, |^m x_m
angle_H \ &= \sum_{m,n=0}^{r} \langle \, U^m T \, | \, A \, |^n x_n, \, \, U^n T \, | \, A \, |^m x_m
angle_{K'} &= \left| \left| \left| \, \sum_{n=0}^{r} \, U^{*n} T \, | \, A \, |^n x_n
ight|_{K'}^2 \,. \end{aligned}$$

Since, for any fixed non-negative integer k,

$$U^{*n}T |A|^n x_n = U^{*n+k}U^k T |A|^n x_n = U^{*n+k}V^k T |A|^n x_n$$

$$= U^{*n+k}TV^k |A|^n x_n = U^{*n+k}TU^k |A|^n x_n = U^{*n+k}TU^{n+k}U^{*n} |A|^n x_n$$

for all $n = 0, 1, \dots, r$, we have, by choosing k such as n + k = r for each n,

$$\begin{split} \left\| \sum_{n=0}^{r} U^{*n} T |A|^{n} x_{n} \right\|_{K'}^{2} &= \left\| U^{*r} T U^{r} \sum_{n=0}^{r} U^{*n} |A|^{n} x_{n} \right\|_{K'}^{2} \\ &= \left\| T U^{r} \sum_{n=0}^{r} U^{*n} |A|^{n} x_{n} \right\|_{K'}^{2} &= \left\| T U^{r} \sum_{n=0}^{r} U^{*n} |A|^{n} x_{n} \right\|_{H}^{2} \\ &\leq \left\| T \right\|_{H}^{2} \left\| U^{r} \sum_{n=0}^{r} U^{*n} |A|^{n} x_{n} \right\|_{H}^{2} &= \left\| T \right\|_{H}^{2} \left\| U^{r} \sum_{n=0}^{r} U^{*n} |A|^{n} x_{n} \right\|_{K'}^{2} \\ &= \left\| T \right\|_{H}^{2} \left\| \sum_{n=0}^{r} U^{*n} |A|^{n} x_{n} \right\|_{K'}^{2} &= \left\| T \right\|_{H}^{2} \sum_{m,n=0}^{r} \langle A^{m} x_{n}, A^{n} x_{m} \rangle_{H} . \end{split}$$

Hence, by Proposition, there exists uniquely an extension T^e on K of T such that T^e commutes with B (and hence with B^*). For any finite set x_0, x_1, \dots, x_r in H, we have

$$T^{e}\sum_{n=0}^{r}B^{*n}x_{n}=\sum_{n=0}^{r}B^{*n}T^{e}x_{n}=\sum_{n=0}^{r}B^{*n}Tx_{n}$$

and

$$\left\| T^{e} \sum_{n=0}^{r} B^{*n} x_{n} \right\|_{K}^{2} = \left\| \sum_{n=0}^{r} B^{*n} T x_{n} \right\|_{K}^{2} = \sum_{m,n=0}^{r} \langle B^{m} T x_{n}, B^{n} T x_{m} \rangle_{K}$$

$$= \sum_{m,n=0}^{r} \langle A^{m} T x_{n}, A^{n} T x_{m} \rangle_{H} \leq \left\| T \right\|_{H}^{2} \sum_{m,n=0}^{r} \langle A^{m} x_{n}, A^{n} x_{m} \rangle_{H}$$

$$= \left\| T \right\|_{H}^{2} \left\| \sum_{n=0}^{r} B^{*n} x_{n} \right\|_{K}^{2}.$$

Since the linear set \mathcal{D} of vectors of the form

$$\sum_{n=0}^{r} B^{*n} x_n, \quad x_n \in H$$

is dense in K by the minimality of B ($\mathscr D$ contains H and reduces B), we have $||T^e||_K \le ||T||_H$ and hence $||T^e||_K = ||T||_H$.

REMARK 1. In above theorem, if T is an isometry, then we have

$$\left\|T^{e}\sum_{n=0}^{r}B^{*n}x_{n}\right\|_{K}^{2}=\sum_{m,n=0}^{r}\langle A^{m}Tx_{n},A^{n}Tx_{m}\rangle_{H}$$

$$=\sum_{m,n=0}^{r}\langle T^{*}TA^{m}x_{n},A^{n}x_{m}\rangle_{H}=\sum_{m,n=0}^{r}\langle A^{m}x_{n},A^{n}x_{m}\rangle_{H}$$

$$=\left\|\sum_{n=0}^{r}B^{*n}x_{n}\right\|_{K}^{2}$$

and since \mathscr{D} is dense in K, T^e is also an isometry on K. If T is normal, then T^{*e} exists and

$$T^{*e} \sum_{n=0}^{r} B^{*n} x_n = \sum_{n=0}^{r} B^{*n} T^* x_n$$

and hence we have

$$\left\langle T^{*e} \sum_{n=0}^{r} B^{*n} x_{n}, \sum_{m=0}^{s} B^{*m} y_{m} \right\rangle_{K} = \left\langle \sum_{n=0}^{r} B^{*n} T^{*} x_{n}, \sum_{m=0}^{s} B^{*m} y_{m} \right\rangle_{K}$$

$$= \sum_{n=0}^{r} \sum_{m=0}^{s} \left\langle A^{m} T^{*} x_{n}, A^{n} y_{m} \right\rangle_{H} = \sum_{n=0}^{r} \sum_{m=0}^{s} \left\langle A^{m} x_{n}, A^{n} T y_{m} \right\rangle_{H}$$

$$= \left\langle \sum_{n=0}^{r} B^{*n} x_{n}, \sum_{m=0}^{s} B^{*m} T y_{m} \right\rangle_{K} = \left\langle \sum_{n=0}^{r} B^{*n} x_{n}, T^{e} \sum_{m=0}^{s} B^{*m} y_{m} \right\rangle_{K}$$

$$= \left\langle T^{e*} \sum_{n=0}^{r} B^{*n} x_{n}, \sum_{m=0}^{s} B^{*m} y_{m} \right\rangle_{K}.$$

Since \mathscr{D} is dense in K, $T^{e*} = T^{*e}$ and hence we have

$$\left\|T^{e*}\sum_{n=0}^{r}B^{*n}x_{n}\right\|_{K}^{2}=\left\|\sum_{n=0}^{r}B^{*n}T^{*}x_{n}\right\|_{K}^{2}=\sum_{m,n=0}^{r}\langle A^{m}T^{*}x_{n},A^{n}T^{*}x_{m}\rangle_{H} \ =\sum_{m,n=0}^{r}\langle A^{m}Tx_{n},A^{n}Tx_{m}\rangle_{H}=\left\|\sum_{n=0}^{r}B^{*n}Tx_{n}\right\|_{K}^{2}=\left\|T^{e}\sum_{n=0}^{r}B^{*n}x_{n}\right\|_{K}^{2}.$$

Therefore T^e is also normal. If T is a non-negative self-adjoint operator, then we have

$$egin{aligned} \left\langle T^e \sum_{n=0}^r B^{*n} x_n, \sum_{n=0}^r B^{*n} x_n
ight
angle_K &= \left\langle \sum_{n=0}^r B^{*n} T x_n, \sum_{n=0}^r B^{*n} x_n
ight
angle_K \ &= \sum_{m,n=0}^r \left\langle A^m T x_n, A^n x_m
ight
angle_H &= \sum_{m,n=0}^r \left\langle A^m T^{1/2} x_n, A^n T^{1/2} x_m
ight
angle_H \ &= \left\| \sum_{n=0}^r B^{*n} T^{1/2} x_n
ight\|_K^2 &\geq 0 \end{aligned}$$

and hence T^e is also a non-negative self-adjoint operator.

As an application of Theorem 1, we have the following.

THEOREM 2. Let A be a nearly normal operator on H with the polar decomposition A = V |A| such that $\mathscr{N}_A = \{0\}$ and let B on K be the minimal normal extension of A with the polar decomposition B = U |B|. Then U is unitary and V = U |H and |A| = |B| |H.

PROOF. Since, by Lemma 2, A, V and |A| satisfy the condition of Theorem 1, A, V and |A| have extensions A^e , V^e and $|A|^e$ respectively such that they commute with B. Moreover, by Remark 1, V^e is isometric and $|A|^e$ is non-negative self-adjoint. For any $x \in H$, we have

$$V^e |A|^e x = V^e |A| x = V |A| x = Ax = A^e x = Bx = |A| V x$$

= $|A|^e V x = |A|^e V^e x$.

Therefore each of $V^e|A|^e$, A^e , B and $|A|^eV^e$ is an extension on K of A and commutes with B. Hence, by the uniqueness of the extension of Theorem 1, we have

$$B=A^e=V^e|A|^e=|A|^eV^e$$
 .

From this, we have easily

$$|B| = |A^e| = |A|^e$$
.

If
$$Bx=0$$
, $x=x_1 \oplus x_2$, $x_1 \in H$, $x_2 \in K \ominus H$, then
$$0 = ||Bx||_K^2 = ||V^e|A|^ex||_K^2 = ||A|^ex||_K^2 = ||A|^ex_1 \oplus |A|^ex_2||_K^2$$
$$= ||A|^ex_1||_K^2 + ||A|^ex_2||_K^2 = ||A|x_1||_H^2 + ||A|^ex_2||_K^2$$
$$= ||V|A|x_1||_H^2 + ||A|^ex_2||_K^2 = ||Ax_1||_H^2 + ||A|^ex_2||_K^2$$

and hence $Ax_1 = 0$. Since $\mathcal{N}_A = \{0\}$, $x_1 = 0$. This implies $\mathcal{N}_B \subset K \ominus H$. Clearly \mathcal{N}_B is a reducing subspace for B and, by the minimality of B, we have $\mathcal{N}_B = \{0\}$. Therefore $U = V^e$ and U is unitary.

By Theorem 2, we can prove the following converse assertion of Theorem 1.

THEOREM 3. Let A be a nearly normal operator on H with the polar decomposition A = V|A| such that $\mathscr{N}_A = \{0\}$ and let B on K be the minimal normal extension of A. Then, if an operator T on H has an extension T^e on K such that T^e commutes with B, then T commutes with V and |A|.

PROOF. Let B=U|B| be the polar decomposition of B. Then $T^eB=BT^e$ implies that T^e commutes with U and |B| because B is normal. Since, by Theorem 2, V=U|H and $|A|=|B|\;|H$, for any $x\in H$, we have

$$TVx = T^eVx = T^eUx = UT^ex = VTx$$

and

$$T \mid A \mid x = T^e \mid A \mid x = T^e \mid B \mid x = \mid B \mid T^e x = \mid A \mid Tx$$
.

Therefore T commutes with V and |A|.

By Lemma 1 and by the above theorems, we have the following.

THEOREM 4. Let A be a nearly normal operator on H with the polar decomposition A = V |A| and let B on K be the minimal normal extension of A. Then a necessary and sufficient condition that an operator T on H has an extension T^e on K such that T^e commutes with B and $||T^e||_K = ||T||_H$ is that T commutes with V and |A|. If the extension T^e exists, it is unique.

PROOF. Let E be the projection from H on \mathcal{N}_A , then, by Lemma 1, $E \in R(A) \cap R(A)'$. Since $\mathcal{N}_A = \mathcal{N}_{|A|}$, we have

$$A=A_{\scriptscriptstyle 1} \bigoplus 0$$
, $|A|=|A_{\scriptscriptstyle 1}| \bigoplus 0$ and $V=V_{\scriptscriptstyle 1} \bigoplus 0$

on

$$H = (I - E)H \oplus EH$$

and V_1 is an isometry, $\mathscr{N}_{|A_1|} = \{0\}$, $E \in R(|A|)$ and hence $A_1 = V_1 |A_1|$ is the polar decomposition of A_1 . Since, clearly, A_1 is nearly normal and since $\mathscr{N}_{A_1} = \mathscr{N}_{|A_1|} = \{0\}$, if B_1 is the minimal normal extension on K_1 of A_1 , then, by the same reason as in the proof of Theorem 2, $\mathscr{N}_{B_1} = \{0\}$, and hence, by the minimality of B_1 , $\mathscr{N}_B = \mathscr{N}_A$, that is,

$$B=B_1 \oplus 0$$
 on $K=K_1 \oplus EH$.

Let F be the projection from K on \mathcal{N}_B , then clearly $F \in R(B)$. Sufficiency: If T commutes with V and |A|, then we have

$$T = T_1 \oplus T_2$$
 on $H = (I - E)H \oplus EH$

because $E \in R(|A|)$ and hence T_1 commutes with V_1 and $|A_1|$. By Theorem 1, T_1 has the unique extension T_1^e on K_1 such that T_1^e commutes with B_1 and $||T_1^e||_{K_1} = ||T_1||_{(I-E)H}$. Therefore

$$T^e = T_1^e \bigoplus T_2$$
 on $K = K_1 \bigoplus EH$

is the required unique extension of T which commutes with B and $||T^e||_{\mathcal{K}} = ||T||_{H^*}$.

Necessity: If T^e on K is the extension of T on H which commutes with B, then we have

$$T^e = T^{e\prime} \oplus T^{e\prime\prime}$$
 on $K = K_1 \oplus EH$

because FK = EH and $F \in R(B)$ and hence $T^{e'}$ commutes with B_1 . Hence, by Theorem 3, $T' = T^{e'} | (I - E)H$ commutes with V_1 and $|A_1|$ and hence

$$T' \oplus T'''$$
 on $H = (I - E)H \oplus EH$

commutes with V and |A|. Easily we have $T = T' \oplus T''$ which completes the proof.

As a special case of Theorem 4, we have the following.

COROLLARY 1. Let V be an isometry on H with the minimal unitary extension U on K. Then a necessary and sufficient condition that an operator T on H has an extension T^e on K such that T^e commutes with U and $||T^e||_K = ||T||_H$ is that T commutes with V. If the extension T^e exists, it is unique.

REMARK 2. In [2], Douglas also proved this corollary as an application of the result of Sz.-Nagy and Foias concerning the co-isometric extensions of contractions.

As an application of Theorem 4, we have the following.

COROLLARY 2. Let A be a nearly normal operator on H with the polar decomposition A = V|A| and let W be an isometry on H. Then, if W commutes with A, then W commutes with V and |A| also.

PROOF. Let B be the minimal normal extension on K of A. Then, since W is an isometry and since W commutes with A, we can easily show that W satisfies the conditions of proposition. And hence W has the unique extension W^e on K which commutes with B. Therefore, by Theorem 4, W commutes with V and A.

3. Our main theorem in this paper is the following.

THEOREM 5. Let A_i , i=1,2 be nearly normal operators on H with the polar decompositions $A_i = V_i |A_i|$, i=1,2, respectively. Then the necessary and sufficient condition under which A_i , i=1,2 have the mutually commuting normal extensions C_i , i=1,2, respectively, acting on the minimal extension space K in the sense that K is the smallest space which contains H and reduces C_i , i=1,2, respectively, is that (a) V_2 commutes with V_1 and $|A_1|$, and (b) $|A_2|$ commutes with V_1 and $|A_1|$.

PROOF. Necessity: For each i = 1, 2, let $C_i = W_i | C_i |$ be the polar decomposition of C_i and let B_i on K_i be the minimal normal extension of A_i with the polar decomposition $B_i = U_i | B_i |$. Then we have

$$C_i = B_i \oplus B_i', \quad W_i = U_i \oplus U_i' \quad \text{and} \quad |C_i| = |B_i| \oplus |B_i'|$$

on

$$K = K_i \oplus (K \ominus K_i)$$
.

Since, by the proof of Theorem 4,

$$A_i \mid H \ominus \mathscr{N}_{A_i} = (V_i \mid H \ominus \mathscr{N}_{A_i})(|A_i| \mid H \ominus \mathscr{N}_{A_i})$$

is the polar decomposition of $A_i | H \ominus \mathscr{N}_{A_i}$ and $B_i | K_i \ominus \mathscr{N}_{A_i}$ is the minimal normal extension of $A_i | H \ominus \mathscr{N}_{A_i}$, by Theorem 2, we have

$$V_i \mid H \bigcirc \mathscr{N}_{A_i} = (U_i \mid K_i \bigcirc \mathscr{N}_{A_i}) \mid H \bigcirc \mathscr{N}_{A_i}$$

and

$$|A_i| |H igothedow{\mathcal{N}_{A_i}} = (|B_i| |K_i igothedow{\mathcal{N}_{A_i}}) |H igothedow{\mathcal{N}_{A_i}}$$
 .

Hence we have

$$V_i = \left. U_i \, | \, H = \left. W_i \, | \, H \right.$$
 and $\left. | \, A_i | = \left. | \, B_i | \, \left. | \, H = \left| \, C_i \right| \, \left| \, H \right.$

Since $C_1C_2=C_2C_1$, we have

$$W_2W_1 = W_1W_2, \quad W_2|C_1| = |C_1|W_2, \quad |C_2|W_1 = W_1|C_2|$$

and

$$|C_2| |C_1| = |C_1| |C_2|$$
.

Therefore, for any $x \in H$, we have

$$egin{align} V_2 V_1 x &= W_2 V_1 x = W_2 W_1 x = W_1 W_2 x = V_1 V_2 x \;, \ V_2 \left| A_1
ight| x &= W_2 \left| C_1
ight| x = \left| C_1
ight| W_2 x = \left| A_1
ight| V_2 x \;, \ \left| A_2
ight| V_1 x = \left| C_2
ight| W_1 x = W_1 \left| C_2
ight| x = V_1 \left| A_2
ight| x \end{split}$$

and

$$|A_2| |A_1| x = |C_2| |C_1| x = |C_1| |C_2| x = |A_1| |A_2| x$$
.

270 T. YOSHINO

Sufficiency: Let B_1 on K_1 be the minimal normal extension of A_1 . Then, by Theorem 4, A_2 , V_2 and $|A_2|$ have the unique extensions A_2^e , V_2^e and $|A_2|^e$ on K_1 , respectively, such that they commute with B_1 . For each i=1,2, let E_i be the projection from H on \mathcal{N}_{A_i} , then we have easily $\mathcal{N}_{A_i} = \mathcal{N}_{|A_i|}$ and $E_i \in R(|A_i|)$. Since $|A_1| |A_2| = |A_2| |A_1|$, we have $E_1 E_2 = E_2 E_1$ and hence, by the hypothesis and by Lemmas 1 and 2, we have

$$A_{\scriptscriptstyle 1}=A_{\scriptscriptstyle 1}' igoplus A_{\scriptscriptstyle 1}'' igoplus 0 igoplus 0, \quad V_{\scriptscriptstyle 1}=V_{\scriptscriptstyle 1}' igoplus V_{\scriptscriptstyle 1}'' igoplus 0 igoplus 0 \ , \ |A_{\scriptscriptstyle 1}|=|A_{\scriptscriptstyle 1}'| igoplus |A_{\scriptscriptstyle 1}''| igoplus 0 igoplus 0, \quad A_{\scriptscriptstyle 2}=A_{\scriptscriptstyle 2}' igoplus 0 igoplus A_{\scriptscriptstyle 2}''' igoplus 0 \ , \ V_{\scriptscriptstyle 2}=V_{\scriptscriptstyle 2}' igoplus 0 igoplus V_{\scriptscriptstyle 2}''' igoplus 0 \quad ext{and} \quad |A_{\scriptscriptstyle 2}|=|A_{\scriptscriptstyle 2}'| igoplus 0 igoplus |A_{\scriptscriptstyle 2}'''| igoplus 0 \ .$$

on

$$H = (I - E_1)(I - E_2)H \oplus (I - E_1)E_2H \oplus E_1(I - E_2)H \oplus E_1E_2H$$
.

And, by the proof of Theorem 4, we have

$$B_{\scriptscriptstyle 1}=B_{\scriptscriptstyle 1}^{\scriptscriptstyle (1)} igoplus 0$$
 on $K_{\scriptscriptstyle 1}=K_{\scriptscriptstyle 1}^{\scriptscriptstyle (1)} igoplus E_{\scriptscriptstyle 1} H$,

where $B_1^{(1)}$ is the minimal normal extension of $A_1' \oplus A_1''$. Therefore $(I - E_1)(I - E_2)H$ and $(I - E_1)E_2H$ are invariant subspaces of $B_1^{(1)}$. These imply that

$$K_1' = \bigvee \{B_1^{(1)*n}x; x \in (I - E_1)(I - E_2)H, n \ge 0\}$$

is a reducing subspace of $B_1^{\scriptscriptstyle (1)}$ and $(I-E_1)E_2H\subset K_1^{\scriptscriptstyle (1)} \ominus K_1'$. And hence, we have

$$B_1^{(1)} = B_1' \oplus B_1''$$
 on $K_1^{(1)} = K_1' \oplus K_1''$

and, by the construction of K_1' and by the minimality of $B_1^{(1)}$, B_1' and B_1'' are the minimal normal extensions of A_1' and A_1'' , respectively. Therefore, by Theorem 1 and by the uniqueness of the extension of Theorem 4, we have

$$A_2^e = A_2^{\prime e} \oplus 0 \oplus (A_2^{\prime\prime\prime} \oplus 0), \quad V_2^e = V_2^{\prime e} \oplus 0 \oplus (V_2^{\prime\prime\prime} \oplus 0)$$

and

$$|A_2|^e=|A_2'|^e\oplus 0\oplus (|A_2'''|\oplus 0)$$
 on $K_1=K_1'\oplus K_1''\oplus E_1H$

and, by Remark 1, $V_2'^e$ is isometric and $|A_2'|^e$ is non-negative self-adjoint. For any $x \in H$, we have

$$|V_2^e|A_2|^e x = |V_2^e|A_2|x = |V_2|A_2|x = |A_2|^e V_2^e x$$

because, by Lemma 2, $V_2' \oplus V_2'''$ commutes with $|A_2'| \oplus |A_2'''|$. Hence $V_2^e |A_2|^e$, $|A_2|^e V_2^e$ and A_2^e are extensions on K_1 of A_2 and clearly they commute with B_1 . Therefore, by the uniqueness of the extension of Theorem 4, we have

$$A_2^e = V_2^e |A_2|^e = |A_2|^e V_2^e$$

and hence A_2^e is a nearly normal operator on K_1 with the polar decomposition $A_2^e = V_2^e |A_2|^e$, that is, $|A_2|^e = |A_2^e|$. Let C_2 be the minimal normal extension of A_2^e , acting on K. Then, by Theorem 4, B_1 has the unique extension C_1 on K which commutes with C_2 . By the same reason as above, we have

$$C_{\scriptscriptstyle 2}=C_{\scriptscriptstyle 2}^{\prime}\oplus 0\oplus C_{\scriptscriptstyle 2}^{\prime\prime\prime}\oplus 0$$
 on $K=K^{\prime}\oplus K_{\scriptscriptstyle 1}^{\prime\prime}\oplus K^{\prime\prime\prime}\oplus E_{\scriptscriptstyle 1}E_{\scriptscriptstyle 2}H$,

where C_2' and C_2''' are the minimal normal extensions of A_2'' and A_2''' , respectively, and hence we have

$$C_1 = B_1^{\prime e} \oplus B_1^{\prime \prime} \oplus 0 \oplus 0 \quad \text{on} \quad K = K^{\prime} \oplus K_1^{\prime \prime} \oplus K^{\prime \prime \prime} \oplus E_1 E_2 H$$
.

By Remark 1, $B_1'^e$ is normal and hence C_1 is normal. Now we have only to prove the minimality of K. Let L be the smallest subspace containing H which reduces C_1 and C_2 . Then we have $K_1 \subset L \subset K$ because K_1 is the minimal normal extension space of A_1 and hence we have

$$C_2 = (C_2 \mid L) \oplus (C_2 \mid K \ominus L)$$
 on $K = L \oplus (K \ominus L)$,

where $C_2 \mid L$ and $C_2 \mid K \bigcirc L$ are normal. For any $x \in K_1$,

$$A_{2}^{e}x = C_{2}x = (C_{2} | L)x$$
.

Since C_2 is the minimal normal extension of A_2^e , L=K. This completes the proof.

As a special case of Theorem 5, we have the following.

COROLLARY 3. (cf. [2]) A necessary and sufficient condition under which isometries V_i , i = 1, 2 on H have the mutually commuting unitary extensions U_i , i = 1, 2, respectively, acting on the minimal extension space K in the sense that K is the smallest space which contains H and reduces U_1 and U_2 is that V_1 commutes with V_2 .

By Corollary 2 and by Theorem 5, we have the following.

COROLLARY 4. Let A be a nearly normal operator on H and let V be an isometry on H. Then a necessary and sufficient condition under which A and V have the mutually commuting normal extensions B and U (in fact, U is unitary), respectively, acting on the minimal extension space K in the sense that K is the smallest space which contains H and reduces B and U is that A commutes with V.

REFERENCES

[1] J. BRAM, Subnormal operators, Duke Math. Journ., 22 (1955), 75-94.

T. YOSHINO

- [2] R. G. DOUGLAS, On the operator equation S*XT = X and related topics, Acta. Sci. Math., 29 (1969), 19-32.
- [3] P. R. HALMOS, Normal dilations and extensions, Summa. Brasiliensis Math., 2 (1950), 125-134.
- [4] T. Yoshino, Nearly normal operators, Tôhoku Math. J., 20 (1968), 1-4.

THE COLLEGE OF GENERAL EDUCATION TÔHOKU UNIVERSITY KAWAUCHI, SENDAI, JAPAN