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A NOTE ON CONFORMAL MARTINGALES

N. KAZAMAKI
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1. In a forthcoming paper, P. A. Meyer establishes by a very nice
method that (H1)* — BMO for right continuous martingales, but he does
not deal with conformal martingales. The purpose of this note is to
extend the fundamental results given by R. K. Getoor and M. J. Sharpe
[1] on conformal martingales to locally square integrable martingales under
the assumption such that (Ft) has no times of discontinuity. Our proof
is an adaptation of the proof due to Getoor and Sharpe.

2. The reader is assumed to be familiar with the basic notions of
the theory of stochastic integrals relative to martingales as given in [2].

By a system (Ω, F, Ft, P) is meant a complete probability space
(Ω, F, P) with an increasing right continuous family (Ft)t^Q of sub σ-
fields of F. We assume as usual that F0 contains all P-null sets. Let
^£ = ^ί(Ft) (resp. ^0(Ft)) be the class of all right continuous (resp.
continuous) IΛbounded martingales Xover (Ft) such that X0 = 0. Denote
by ^loc(Ft) the class of all locally square integrable martingales X over
(Ft) such that X0 = 0.

For each Xe ^loc(Ft), we define:

1 1 X\\\ = supess.sup#[<X, JΓ>~ - <X, X>t\Ft]
t ω

H[ = {Xe^loc\\\X\\H< + 00}

BMO= (Xe^loc\ \\X\\B< + 00} .

Clearly BMOc. ^(Ft)c: H1. BMO is a normed linear space with the
norm || H*. H1 is also a normed linear space with the norm || ||#, but
it should be noted that this is not the same iΓ-space introduced by P. A.
Meyer for right continuous martingales. Probably, our ίP-space is not
complete.

The next inequality is proved in [1] only for continuous iP-martingales.

THEOREM 1. For every Xe ̂ loc

\\X\\H ^ sup (E[(X, ΓXJ; 0 ̂  <JΓ, Y^ and \\Y\\B ^ 1} .
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PROOF. Fix Xe ̂ loc and let (Tn)n=1,2>... be an increasing sequence of
Frstopping times reducing X to ̂ \ that is, Xτ* = (Xt^Tn)£^ for all
n ̂  1. For each c > 0, denote by (Hi) (resp. (Mi)) a right continuous
modification of E[(c + <JSΓ, JC).)-1/1 FJ (resp. #[(c + <JSΓ, JC)-)""1 1 ΉD Clearly
0 ^ iί? ̂  c-1'2 and Γ = fll Xe ^loc, where flL - (Hl_, Ft). The definition
of the stochastic integral HL X are taken from [2], By using Jensen's
inequality, (£Γl)2 ^ Mi and so from Fatou's lemma

^ lim E\ ̂ ~Ml-d(Xτ*, Xτ^8 \ Ft~\

from which || Y\\B ^ 1 for every c > 0. Clearly <Z, Γ>t =

0. If E[(X, F>J — + oo for some c > 0, then the theorem is evident,
and so suppose that for every c > 0, E[(X, !Γ>J < + oo. Then, by re-
marking the fact that (X, Yyt is positive and increasing in t, we get
from the dominated convergence theorem

Γ>J =

{X,
n

On the other hand, from the monotone convergence theorem

lim (c
c|0 n

ciO

Thus \\X\\H ^ limi/KJΓ, 7")̂ ], which completes the proof.
c|0

3. We deal entirely with locally square integrable martingales.

DEFINITION 1. Let X and Y belong to ^loc(Ft). Then a complex-
valued martingale X + ί Y is called conf ormal if < X, F> = 0 and

Similarly, we can define such a complex- valued martingale by using another
increasing process [X, X] instead of <X, X}. We call it a [ , ] -conf ormal
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martingale for the sake of convenience. Originally the concept of a
conformal martingale was introduced by Getoor and Sharpe. They
proved that if X is a continuous local martingale, then there exists a
"conjugate" Y such that X + ίY is conformal. We shall give an exten-
sion of this fundamental result to our case, following the idea of them.
But it seems to be more difficult to establish the existence of the [ , ]-con-
f ormal martingales, because <JSΓ, X > = < F, Y} does not always imply [X,
X] = [Y, Y] (the converse is clear).

DEFINITION 2. A system (Ω, F, Ft, P) is said to be a lifting of (Ω,
F, Ft, P) under the sur jection π: Ω — > Ω if

1°. π~l(Ft)c:Ft for each t and π"1(F)c:F
2°. P= Poπ-1 on F
3°. if Xe^(Ft), then X°π is a martingale over (Ft).

Notice that this is not quite the same definition as that given in [1] where
for every Xe^fc X°π is a martingale over (Ft).

Now we assume that (jF*) has no times of discontinuity; thus for every
is continuous.

THEOREM 2. Assume that (Ω, F, P) is separable. Then there exists a
lifting (Ω, F, Ft, P) of (Ω, F, Ft, P) under π: Ω -» Ω which satisfies the
following conditions:

There exists a linear mapping a: ̂  (Ft) \-+ ^fc(Ft) such that
(1) for every Xe^(Ft), X°π + ia(X) is conformal
( 2 ) for every Xe ^e(Ft) and Ce L\X\ a(C X) = (C π) a(X)
There exists a linear mapping a: ^(Ft)\-* ^(Ft) such that

(1) a o a is the identity on ^(Ft)
(2) if Xe^^(Ft) and Xe^f(Ft), then

(3) for every Xe^?(Ft), \\a(X)\\B^ \\X\\B .

Let X* e ̂ (Ft) be fundamental for ^(Ft); the existence of such an
element X* is guaranteed by the separability of (Ω, F, P). Put now:
At = <X*, X*yt and bt = inf {s > 0; A8 > t}. Denote by (Gt) the right con-
tinuous family (Fb). Each At is a Grstopping time. Let (Kt) be the
right continuous family (GA). As bAt ^ ί, Ft c Kt.

LEMMA 1. If Xe ^(Ft), then for any fixed r < s, a.s.

{X constant on [r, s[} z> {<JΓ, X} constant on [r, s[} .

(See the proof of Lemma (4, 1) in [1], p. 284.)
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REMARK. The reverse inclusion is not necessarily true. Now we state
such an example communicated by R. K. Getoor. Let (Ω, F, Ft, P) be a
system such that (Ft) has no times of discontinuity and such that there
exists a totally inaccessible stopping time T with Fτ_ ^ Fτ. Let now Y^
0 be a bounded ̂ -measurable random variable with E[Y\ Fτ_] = 0. Denote
by X = (Xt) a right continuous modification of E[Y\Ft]. It is easy to see
that X = 0 on [0, T[ and Xτ = Y. On the other hand, as E[(X, X)τ] =
E[Xτ\ > 0, the sample continuity of (X, Xy implies that <JΓ, Xy can not
be constant on [0, T[.

LEMMA 2. ^(Ft) is a stable subspace of ^(Kt).

PROOF. If Xe ^(Ft), X is uniformly integrable. By Doob's optional
sampling theorem, (Xj,At, Kt) belongs to ^(Kt). On the other hand
<JΓ, X}bAt = (X, X)tf because the process A is constant on [£, bAt\. There-
fore, as t sS bAt, we get

E[(XbAt - Xtγ\ = E[XίAt - 2E(XbAt\Ft)Xt + X!]

= E[XiAt - Xf]

= E[(X, xybAt - car, xyt] = o
from which for every t ^ 0 XbAt = Xt. Consequently ^(Ft)c:^(Kt).

Next, fix Xe ^(Ft) and suppose that C is a bounded previsible process
over (Kt) having§ the form: Ct = Cίo/]ίo,+oo[(ί), where CtQ is Jίfo-measurable.
Then we have

(C X)t = Ct,(Xt-XJIίt9.^(t)

= ctQ(xt - xj(iwAtι(t) + ι ί̂o,+00[(*))

From Lemma 1, X is a.s. constant on [£0, bA [, and so

(C X)t = CtQI(bAtQgt}(Xt — XtQ)

Thus (C X)t is ^-measurable for each t. The stability of ^(Ft) in
now follows by the Monotone Class Theorem.

Except these two lemmas, there is no necessity to change the proof
due to Getoor and Sharpe. That is, the other portions of our proof are
mere translations to our case of the proof given by them for continuous
martingales. However, we shall recall briefly the proof, modified to fit
the present case, for the reader's convenience.

Now let (£?', F', F't, Pf) be a separable system which carries a sequence
(Bn)n^ of independent real Brownian motions with B* = 0 and (Bn, Bnyt =
t for all n. Denote by (Ω, F, Gt, P) the product of the systems (Ω, F,
Gt, P) and (£', F\ F[, P') with π the projection of Ω onto Ω. Put Ft =
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GAtoπ. It follows from Lemma 2 that Xt ° π = XbAt o π is a martingale
over (F,) for every Xe ^f(Ft). Consequently, (Ω, F*Ft9 P) is a lifting of
(£?, F, Ft, P) under π. Now we shall define the mapping a. By the
continuity of <J5Γ, X} we have <X°π, ^°π> = <X, X>°π for every Xe
^f(Ft). Put now: ΛΓ?(α)f ω') - Bk

At(ω](ω'}. As JB|AJ < + °o, each Nk is
an Frmartingale which is clearly continuous. Obviously, <JVy, JV*> — 0 if
j Φ k, <ΛP, Nkyt = At°π and if Xe ^f(Ft), <JV*, X<> ττ> - 0 for all fe. Let
(3Γ*)«fci be an integral basis for ^(Ft) whose existence is guaranteed by
the separability of the space (Ω, F, P). Denote by Dn a pre visible version
of d(Xn, Xny/dA and put: Cn = (Z>")1/£, Mn = (Cn o π) N*. Then the process
M n belongs to ^f0(Ft) and it does not depend on the choice of Dn. It is
clear that <MΛ, X°π} = 0 for all ^ and Xe^f(Ft), and that

On the other hand, for each JΓe ̂ f (-FJ, X = ̂ nh
n JΓn, convergent

in ^f(Ft) with Λ% - d(X, Xny/d(Xn, Xn}. Then the sum Σ» (^°^) M%

converges in ̂ C(̂ ) because <hn JΓ%, λ" X"> o ;τ = <(few o π) . M
n, (hn o π) M%>

for each n; (hn°π) Mn does not depend on the choice of h*.
The mapping a: ~^(Ft) —>^c(Ft} given by

a(X) = α(Σ ^w -ϊ") = Σ (h* -π) Mw

is well defined and linear. It should be noted that for every
a(X) is always continuous because of the continuity of A. From the above
relation, for every Xe^(Ft), <α(-X"), a(X)} = (X°π, X°π} and a(X) is
orthogonal to ̂ (Ft) ° π. Consequently for all Xe ^(Ft) X° π + ia(X) is
a conformal martingale over (Ft).

Next, we shall explain briefly the definition of the adjoint mapping
a. Denote by Λ" the stable subspace of ^(Ft) generated by the Xn o π
and Mn, by L, the projection of ̂ (Ft) onto Λ] and let L2: Λ" -+ ̂  be
defined as follows: if Xe Λ* has an expansion of the form Σ« Cn * (Xn ° ̂ ) +
Σ, -D" Mn, then L2(X) - Σ» Dn (JΓM o π) + Σ, Cn Mw; L2(X) does not depend
on the versions of C^ and D%. It is clear that for every Xe ^(Ft) L2(a(X)) =
Xoπ. Define L^\Jγ"-^^(K^ by letting L5X for XeJr be the unique
right continuous martingale over (Kt) such that (L3X)t °π = E^^l π~l(Kt)].
Finally, denote by L4 the projection of ^(Kt) onto ^£(FΪ) which is well
defined by Lemma 2. Then the mapping a = L4LZL2L,: ^(
satisfies all the properties necessarily for the theorem.

If Xe^Tl (Ft) and (Tn) reduces X to ^T(Ft), then for every n

) on [0, 7>τr]

and so a(X) can be defined in ^loc(Ft). It is clear that X°π + iα(-X") is
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conformal for each Xe ^loe(Ft).

4. By using the fact that a(X) is continuous for every
we can prove that (if1)* — BMO. The next lemma implies that for each

Ye BMO f ( X ) = E[(X, Γ> J defines a bounded linear functional on H1.

LEMMA 3. // Xe H1 and Ye BMO, then

<£ V2\\X\\H\\Y\\B .

(For the proof, see Theorem (3.5) in [1], p. 282.)

To show (H^dBMO, it suffices to prove the next theorem, which is
the exact extension of Theorem (8.1) in [1]. Of course, we assume that
the space (£?, F, P) is separable, and that (Ft) has no times of discontinuity.

THEOREM 3. For any /e(ίP)*, there exists a unique Ye BMO such
that f ( X ) = E[(X, Γ>J and 2-5||Γ||^ | |/| | <g V^ \\Y\\B.

PROOF. Denote by Rl the space of all continuous fP-martingales over
(Ft). Then a(Hl) is a linear subspace of HI, and it is easily checked
that (Ω, F, P) is separable.

Given a bounded linear functional / on H1, there is induced a bounded
linear functional g on a(£P) by the relation g(a(X)) — f(X) (note that
a(X) = 0 if and only if X = 0). Then we get | |/|| - \\g\\ from \\a(X)\\H =
I I - 3 Γ I U - From the Hahn-Banach theorem, there exists a functional gf

in (HIY such that g = g' on a(Hl) and ||0|| = \\g'\ . Hence, by Theorem
(8.1) in [1], there exists a unique continuous #MO-martingale Γover (Ft)
such that for every Xe ff}, g'(X) - E[(X, Γ>J and 2-5 | |F|U ^ H f l f ' l l - As
\\ά(Ϋ)\\B^\\Ϋ\\B,a(Ϋ) is a #MO-martingale over (Ft). In particular, for
every Xe H\ we get

f ( X ) = g(α(X)) = g'(α(X)) = E[(α(X\ ?> J .

Fix now Xe H\ and let (Tn) be an increasing sequence of ίVstopping
times reducing X to ^(Ft). Then each Tnoπ is also an ^-stopping time
and α(Xτ-) = α(X)τ^x. Since α(Ϋ) e BMO, α(X) e Hi and Ϋ is a BMO-
martingale over (Ft), we find

= Mm

= E[(X,



A NOTE ON CONFORMAL MARTINGALES 235

by using Lemma 3, the property of a and the dominated convergence
theorem. Thus f ( X ) = E[(X, Γ>J, where Y=a(Ϋ)e BMO. The unique-
ness of Y follows easily from the fact BMO c H1.

Finally, by Lemma 3, ||/|| ^ T/~2~||Γ|U and so we get

2-5]|Γ|U ^ 2- 5] |Y|U ^ I I 0 Ί I = \\f\\ ^ V^\\Y\\B .

This completes the proof.
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