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A NOTE ON CONFORMAL MARTINGALES

N. KAZAMAKI

(Received May 7, 1973)

1. In a forthcoming paper, P. A. Meyer establishes by a very nice
method that (H")* = BMO for right continuous martingales, but he does
not deal with conformal martingales. The purpose of this note is to
extend the fundamental results given by R. K. Getoor and M. J. Sharpe
[1] on conformal martingales to locally square integrable martingales under
the assumption such that () has no times of discontinuity. Our proof
is an adaptation of the proof due to Getoor and Sharpe.

2. The reader is assumed to be familiar with the basic notions of
the theory of stochastic integrals relative to martingales as given in [2].

By a system (2, F, F,, P) is meant a complete probability space
(2, F, P) with an increasing right continuous family (F,),., of sub o-
fields of F. We assume as usual that F, contains all P-null sets. Let
M = #(F,) (vesp. #.(F;)) be the class of all right continuous (resp.
continuous) L*bounded martingales X over (F,) such that X, = 0. Denote
by 2" (F,) the class of all locally square integrable martingales X over
(F,) such that X, = 0.

For each Xe _#'"°(F,), we define:

1 X|lz = EKX, X
1 XI5 = sup ess.sup E[<X, X).. — <X, X).|F]

H'={Xe #2"|||X|lx < + o}
BMO = {Xe 2| || X |l < + =} .

Clearly BMOc #(F,)c H'. BMO is a normed linear space with the
norm ||-||z. H' is also a normed linear space with the norm ||- ||z, but
it should be noted that this is not the same H'-space introduced by P. A.
Meyer for right continuous martingales. Probably, our H'-space is not
complete.

The next inequality is proved in [1] only for continuous H'-martingales.

THEOREM 1. For every Xe #Z'°
| Xz = sup {E[KX, Y).[; 0 =<X, Y)., and |[Y[=1}.
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Proor. Fix Xe _#"° and let (T,),-..,... be an increasing sequence of
F-stopping times reducing X to .#; that is, X" = (X;,,,) € #Z for all
n = 1. For each ¢ > 0, denote by (H:) (resp.(M;) a right continuous
modification of E[(c+ (X, X).) "*| F,] (resp. E[(c+ <X, X)..)"|F;]). Clearly
0<H;<c"and Y=H’-Xe #"°, where H. = (H;_, F}). The definition
of the stochastic integral H* - X are taken from [2]. By using Jensen’s
inequality, (H°)* < M*¢ and so from Fatou’s lemma

EKY, Yy. - <Y, Y),|F] = B| || (X, X).|F,]

< lim EH:“M&MX“, XE0u | F J

< lim Ef(e + <X, X)X, X ™), — (X" X™n)) | F{]
< El(c + (X, X)) KX, X).| Fi]

<1

from which || Y|, < 1 for every ¢ > 0. Clearly (X, Y, = StH:_d<X, Xy, =
0. If EKX, Y).] = + « for some ¢ > 0, then the theorem is evident,
and so suppose that for every ¢ > 0, E[{X, Y).] < + o. Then, by re-
marking the fact that <(X, Y), is positive and increasing in ¢, we get
from the dominated convergence theorem
EKX, Y).] = lim EU”"H;«X%, X>:I
n 0
= lim E[H:{X"» X"} .]
= lim E[(c + (X, X)) "X, X"} ] .

On the other hand, from the monotone convergence theorem
1 Xz = E[KX, X3 = Ellifn lim (¢ + <X, X)) 7/ X"™, X ]
= lim lim E[(c + (X, X)) %X X" ] .

clo

Thus || X||z = li{n E[KX, Y).], which completes the proof.
clo

3. We deal entirely with locally square integrable martingales.

DEFINITION 1. Let X and Y belong to .#Z'°(F,). Then a complex-
valued martingale X + ¢Y is called conformal if <X, Y) = 0 and (X, X) =
<Y, Y).

Similarly, we can define such a complex-valued martingale by using another
increasing process [X, X] instead of (X, X)>. We call it a [, ]-conformal
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martingale for the sake of convenience. Originally the concept of a
conformal martingale was introduced by Getoor and Sharpe. They
proved that if X is a continuous local martingale, then there exists a
“conjugate” Y such that X + 7Y is conformal. We shall give an exten-
sion of this fundamental result to our case, following the idea of them.
But it seems to be more difficult to establish the existence of the [, ]-con-
formal martingales, because (X, X} =Y, Y) does not always imply [X,
X] = 1Y, Y] (the converse is clear).

DEFINITION 2. A system (2, F, F,) P) is said to be a lifting of (2,
F, F, P) under the surjection m: 2 — @ if

1°. 7 '(F,)c F, for each t and 7 '(F)c F

2°. P=Por*on F

3°. if Xe _#(F,), then Xorx is a martingale over (F.).

Notice that this is not quite the same definition as that given in [1] where
for every Xe _#, Xorm is a martingale over (F,).

Now we assume that (F);) has no times of discontinuity; thus for every
Xe #", (X, X) is continuous.

THEOREM 2. ﬁlssu,me that (2, F, P) s sepa'cable. Then there exists a
lifting (2, F', F',, P) of (2, F, F,, P) under m: Q— 2 which satisfies the
following conditions:

1°. There exists a linear mapping a: # (F,) — _#,(F,) such that
(1) for every Xe #ZF,), Xow + 1a(X) is conformal
(2) for every Xe #(F,) and Ce LZ(XZ, a(C-X) = (Com) - a(X)
2°. There exists a linear mapping a: # (F,) — # (F,) such that
(1) aoa is the 'identity~on 4 (~F,)
(2) iof Xe #Z(F,) and Xe #Z(F,), then
Ela(X).X.] = B[X.a(X).]
(3) for every Xe #(F), |aX)|; < || X|ls .

Let X*e _#(F,) be fundamental for _Z(F,); the existence of such an
element X* is guaranteed by the separability of (2, F, P). Put now:
A, = (X*, X*), and b, = inf {s > 0; A, > t}. Denote by (G,) the right con-
tinuous family (F,). Each A, is a G.-stopping time. Let (K,) be the
right continuous family (G,). As b, =¢, F,C K,.

LEmMA 1. If Xe #Z(F,), then for any fived r < s, a.s.

{X comstant on [r, s[} D{KX, X) constant on [r, s[} .
(See the proof of Lemma (4, 1) in [1], p. 284.)
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REMARK. The reverse inclusion is not necessarily true. Now we state
such an example communicated by R. K. Getoor. Let (2, F, F,, P) be a
system such that (F,) has no times of discontinuity and such that there
exists a totally inaccessible stopping time T with F,_ = F,. Letnow Y %=
0 be a bounded F;-measurable random variable with E[Y|F,_] = 0. Denote
by X = (X,) a right continuous modification of E[Y |F,]. It is easy to see
that X =0 on [0, T[ and X; =Y. On the other hand, as E[{(X, X);] =
E[X7] > 0, the sample continuity of (X, X) implies that <X, X) can not
be constant on [0, T7.

LEMMA 2. _Z(F,) is a stable subspace of _#(K.,).

Proor. If Xe #(F,), X is uniformly integrable. By Doob’s optional
sampling theorem, (X,,At, K,) belongs to .#(K,). On the other hand
(X, X, = <X, X),, because the process 4 is constant on [t, b,]. There-
fore, as t = b,,, we get

E(X,, — X)] = EIX;, — 2B(X,, | F)X, + X/]
- B[Xi, — X1
= BKX, X, — <X, X0] =0

from which for every ¢t =0 XbAt = X,. Consequently #Z(F)c #(K,).

Next, fix Xe # (F,) and suppose that C is a bounded previsible process
over (K,) having the form: C, = Cy I, .(t), where C, is K,-measurable.
Then we have

(C' X)t = C,O(X, - Xto)-[[to,+oa[(t)
= C(X, — Xzo)(I[to,bAtot(t) + I[b,,to,+eo[(t))
From Lemma 1, X is a.s. constant on [, b%[, and so
(Co X)t = CtOI{bAtoét)(Xt - Xto) .

Thus (C- X), is F,-measurable for each ¢. The stability of _Z(F,) in
A (K,) now follows by the Monotone Class Theorem.

Except these two lemmas, there is no necessity to change the proof
due to Getoor and Sharpe. That is, the other portions of our proof are
mere translations to our case of the proof given by them for continuous
martingales. However, we shall recall briefly the proof, modified to fit
the present case, for the reader’s convenience.

Now let (', F", F}, P') be a separable system which carries a sequence
(B"),2: of independent real Brownian motions with By = 0 and {B", B"), =
t for all n. Denote by (2, F, G, P) the product of the systems (2, F,
G, P) and (2, F, F,, P") with 7 the projection of 2 onto 2. Put F, =



A NOTE ON CONFORMAL MARTINGALES 233

Gi.re It follows from Lemma 2 that X,orm = - X, o7 is a martingale
over (F) for every Xe _#(F,). Consequently, @, F, Ft, P) is a lifting of
(2, F, F,, P) under . Now we shall define the mapping «. By the
continuity of (X, X)> we have (Xom, Xon) = (X, X)omr for every Xe
A (F). Put now: Ni(, @) = B, (@). As E[A.] < + , each N* is
an F,-martingale which is clearly continuous. Obviously, (N, N*) = 0 if
j =k, (N¥ N*, = A,or and if Xe #Z(F,), (N*, Xon) =0 for all k. Let
(X™),=: be an integral basis for _Z(F,) whose existence is guaranteed by
the separability of the space (2, F', P). Denote by D" a previsible version
of d({X*, X">/dA and put: C* = (D")'?* M* = (C"ox)- N*. Then the process
M belongs to _Z(F,) and it does not depend on the choice of D*. Itis
clear that (M", Xox) = 0 for all » and Xe _#Z(F,), and that (I, M*y =
0, X%, X*yom.

On the other hand, for each Xe #Z(F),), X = >, h*- X", convergent
in #Z(F,) with A" = d(X, X")/d{X", X"). Then the sum 3, (h"o7)- M
converges in _#Z,(F,) because <(h" - X", h" - X"y ot = {(h"om)- M~ (h"om) - M™)
for each n; (h"ox)- M™ does not depend on the choice of h".

The mapping a: #(F.) — _#(F,) given by

aX) =S h"- X" =3, (h*om) - M"

is well defined and linear. It should be noted that for every Xe _#Z(F,)
a(X) is always continuous because of the continuity of A. From the above
relation, for every Xe Z(F)), {a(X), a(X)) = {Xorm, Xonw) and a(X) is
orthogonal to _Z (F,)om. Consequently for all Xe #Z(F,) Xom + 1a(X) is
a conformal martingale over (F,).

Next, we shall explain briefly the definition of the adjoint mapping
@. Denote by ./~ the stable subspace of _# (F',) generated by the X"or
and M, by L, the projection of _2Z (F,) onto ; and let L,: 4" — 4~ be
defined as follows: if Xe _#" has an expansion of the form 3, C* - (X" om)+
>, D" M, then Ly(X) =3, D"-(X"om) + 3, C*- I*; L,(X) does not depend
on the versions of C” and D". It is clear that for every Xe AZ(F,) Lya(X))=
Xor. Define Ly 4~ — #Z(K,) by letting L,X for Xe .4  be the unique
right continuous martingale over (K,) such that (L,X),o7 = E[X.| 7 (K))].
Finally, denote by L, the projection of .#(K,) onto _# (F,) which is well
defined by Lemma 2. Then the mapping & = L,L,L,L,: .#(F,) — _# (F,)
satisfies all the properties necessarily for the theorem.

If Xe 7' (F,) and (T,) reduces X to _#Z(F,), then for every n

a(X"+1) = a(X™) on [0, T,ox]
and so a(X) can be defined in .Z"°(F,). It is clear that Xo7w + ta(X) is
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conformal for each Xe _Z"(F,).

4. By using the fact that a(X) is continuous for every Xe _2Z"(F,),
we can prove that (H")* = BMO. The next lemma implies that for each

Ye BMO f(X) = E[<{X, Y).] defines a bounded linear functional on H".
LEmMMA 3. If Xe H' and Ye BMO, then

B | 714X, Y0l | S VI X ali Yl -

(For the proof, see Theorem (3.5) in [1], p. 282.)

To show (HY)*cBMO, it suffices to prove the next theorem, which is
the exact extension of Theorem (8.1) in [1]. Of course, we assume that
the space (2, F, P) is separable, and that (F',) has no times of discontinuity.

THEOREM 3. For any fe (HY)*, there exists a , UNique Ye BMO such
that f(X) = E[KX, Y).] and 27| Y[ < [| Il £V 2 || Y]],

PrOOF. Denote by H! the space of all continuous H'-martingales over
(F). Then a(H") is a linear subspace of H!, and it is easily checked
that (2, F, P) is separable.

Given a bounded linear functional f on H', there is induced a bounded
linear functional ¢ on a(H") by the relation g(a(X)) = f(X) (note that
a(X) = 0 if and only if X = 0). Then we get || f|| = |/g]| from ||a(X)||x =
| X||z. From the Hahn-Banach theorem, there exists a functional ¢’
in (H)* such that ¢ = ¢’ on a(H?) and ||g|| = ||¢’||]. Hence, by Theorem
(8.1) in [1], there exists a unique continuous BMO-martingale ¥ over (F,)
such that for every Xe H:, ¢/(X) = E(X, YD.]and 27|V | < ||¢'ll. As
a(Y)|s < 1Yl @(Y) is a BMO-martingale over (F,). In particular, for
every Xe H', we get

f(X) = 9(a(X)) = ¢'(a(X)) = E[{a(X), Y.l .
Fix now Xe HY, and let (T,) be an increasing sequence of F)-stopping
times reducing X to #(F,). Then each T,o7 is also an F,-stopping time
and a(X’™) = a(X)™*. Since @(Y)e BMO, a(X)e H! and ¥ is a BMO-
martingale over (F.), we find

FX) = lim E{a(X), T)r,..]
= lim E[a(X™)..¥.]
~ lim E[X,,a(Y).]
 lim B, &(7),]
= EKX, a(Y)).]
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by using Lemma 3, the property of a and the dominated convergence
theorem. Thus f(X) = E[{X, Y).], where ¥ = @&(Y) e BMO. The unique-
ness of Y follows easily from the fact BMOc H'.

Finally, by Lemma 3, || f|| <V 2||Y]l; and so we get

22 Y, =27 Y L=l =1FI SV 2IY 5.
This completes the proof.
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