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1. Introduction. Let D be the unit disk {\z\ < 1}. A holomorphic

function f(z) in D is said to belong to the class N of functions of bounded
characteristic if

(1.1) T(r, f) = 4- Γ l o £ + I Λre") I dθ = 0 ( !) as r — 1.
2ττ Jo

A function f(z) e N is said to belong to the class N+ [2, p. 25] if

(1.2) lim Γ log+ I f(reiθ) \ dθ = [' log+ | f(eiθ) \ dθ .
r-*l JO Jo

The class N+ can be considered as an F-space in the sense of Banach
[1, p. 51], with the metric [9]

(1.3) p(f, g) = -Jτ Γlog ^ + I f ^ - ^iβ) I) dθ for f,geN+ .
2π Jo

N+ is easily seen to be a topological algebra with respect to this metric
(1.3). N+ is neither locally convex nor locally bounded, but has sufficiently
many continuous linear functionals to form a dual system <(iV+)*, N+) in
the sense of Dieudonne and Mackey [7, p. 88].

On the other hand, we defined a Frechet space F+ which contains N+

[9]. We say that a holomorphic function f(z) in D belongs to the class
F+ if

(1.4) M(r, f) = max \f(z) | ^ Kf exp [ωf(r)/(l - r)]
\z\=r

with a constant Kf > 0 and a continuous function ωf(r), 0 ̂  r < 1, de-
pending on / e F+, such that o)f(r) | 0 as r —* 1. A holomorphic function
/(z) = Σ anZn belongs to F+ if and only if

(1.5) || / |U = [ exp

for each c > 0. (1.4) is equivalent to

(1.6) an = 0 (exp [o(λ/n)]) as
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F+ is a countably normed (locally convex) Frechet space with the system
of (semi-)norms {|| lUJoo F+ is the second dual space for the space N+

[11], and is a nuclear as well as a Montel space [11]. We can easily see
that F+ is a topological algebra.

In this note, we will characterize generators of the algebra F+,
following to the methods of Hormander [3], Kelleher and Taylor [5], [6].
Although they treat mainly with several variables, we confine here our-
selves only to one variable case. Generalizations to several variables are
concerns of our further study.

In §§ 5-6, we will determine closed and other maximal ideals in F+.

2. Generators for F + . Let / , , fN e F+. The ideal in F+ generated

by 7 = (/I, f Λ) js denoted as ! ( / , , fN). We write

(2.1) ||/(s) ||2 - |/i(«) I2 + + l/irOO I2 , ze D .

If ueF+ belongs to the ideal I(flf * ffN)f then it is easily seen that
there exist a constant K > 0 and a continuous function ω(r), ω(r) \ 0 as
r—>1, such that

(2.2) I u(z) I fg K11 f(z) 11 exp [α>(r)/(l - r)] , \z\=r.

THEOREM 1. IfueF+ satisfies (2.2), then we have

u*el(fu •••,/*).

As a corollary of Theorem 1, we have

T H E O R E M 2. Let fl9 , fNe F+. In order that there exist gu •••,

gN e F+ such that

(2.3) /i0i + • + /N9N = 1 ,

it is necessary and sufficient that

(2.4) \Uz) I + + |Λ(z) I ̂  ί exp [-ω(r)/(l - r)]

(r = I ^ I) /or some constant δ > 0 α^ώ /or some continuous function ω(r),
ω(r) | 0 as r —• 1.

In contrast to Theorem 1, we have

T H E O R E M 1*. (2.2) does not imply that uel(fu •• ,Λr) for ueF+.

For the proof, we follow to the method of Rao [8].
In connection with Theorem 2, we have

THEOREM 2*. Let flf •• ,/ΛΓeΛΓ+. Then, (2.4) is not sufficient for
fif m"9fN to be generators of N+. That is, (2.4) does not imply (2.3)
in N+.



GENERATORS AND MAXIMAL IDEALS 33

In contrast to the case of Banach algebras, we have

THEOREM 3. Maximal ideals in F+ are not necessarily closed.

Hence, in § 6, we will use somewhat strange method for compactify-
ing in order to put it in a one-to-one correspondence with the maximal
ideal space of F+.

3. Proof of Theorem 1.

LEMMA 1. Let co^r) be a continuous function, (ύjj) [ 0 as r —> 1.
Then we can find a continuous function ω(r) such that ω(r) 2 ω^r) and
ω{r) ^ τ/l — r,

(3.1) ω(r) I 0 , ω(r)/(l - r) t «> α s r ^ l

o)(r)/(l — r) is convex.

PROOF. We can suppose that co^r) is continuously differentiate and
ω[(r) < 0 for 0 ^ r < 1.

Let r0 = 0. Let rί be a number, 1/2 < rt < 1, and put

Let r 2 be such that r2 > rx and

a,r2 + b, = ωJίrύl(X ~ r2) .

Then r2 < 1. Suppose {rfc}ϊ=0, r^ < rΛ+1, and {α*}ϊl}, {δfc}Ki be determined*
Then, put

(3.2) an = 0)^.0/(1 - r Λ ) 2 ,

(3.2') bn = - α Λ + α^rvΛ/ίl - r.) ,

and let rn+1 be such that rn+1 > rn and

(3.2") anrn+1 + bn = ω,{rn)l{l - rn+1) ,

then rΛ+1 < 1. We will show that rn \ 1. For that purpose, we put

(3.3) p = lim rn .

We have

(3.4) an = (rn+ί - r J ^ K W / α - rΛ+1) - 0)^.0/(1 - r j )

1 ~ rn+1 rn - rΛ_x rn+1 - rn (1 - r, + 1 )(l - r%)

If |O in (3.3) would be p < 1, we would have, letting n—> oo in (3.4),



34 N. YANAGIHARA

- />)2 = (1 - /o)-ιo)ί(/o) lim r «
— rn+1 - rn

hence

lim ((rn - r^/iTn+i - rn)) = 0
n-*<χ>

since ω[(p) < 0. Then, for e < 1, we would have

fn+i — fn > (Vε)n~nQ(rno — r^ . i ) , n ^ n0 for an nQ .

Letting n —> oo, we obtain a contradiction. Hence we must have

lim rn = 1 .

Having proved that rn\ 1, we define

(3.5) ω(r) = (1 - r)(αΛr + &„) for rn ^ r ^ rn+1 , w = 0, 1, .

Then, since

αΛ + 1 > αΛ and ω(r) > l / l — r

we have

ω(r)/(l — r) is convex and o)(r)/(l — r) \ oo .

Further,

and

o)(r) — t;Λ(r) for rΛ ^ r ^ rn+1 ,

where

^n(r) = -ay + (αΛ - δΛ)r + bn .

Since

^Λ(^Λ) = ~~2αΛrΛ + (αΛ — bn) = 0 ,

we get that

ω(r) is concave and monotone decreasing for rn 5̂  r ^ rΛ + 1 .

Thus ω(r) | 0, and our Lemma 1 is proved. q.e.d.

By the Lemma 1, functions ω(r) in the below may be supposed to
satisfy the condition (3.1).

LEMMA 2. There exists a constant K such that for any zeD,
I z — ζ | ^ K exp [—o)(r)/(l — r)], r = \z\, implies ζeD and moreover
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-p)£ 2ω(r)/(l - r) , p = | ζ | .

PROOF. Since exp [—ω(r)/(l — r)] <: exp [—1/τ/l — r], we have

exp [-ω(r)/(l - r)] ^ (1 - r)/2 , r ^ i2

with an R < 1. Put ίΓ = (1 - R)/2. Then we have that, if

zeD , I* - ζ | ^ ίΓexp [-ω(r)/(l - r)] ,

we get

(3.60 p = \ζ\£(l + r)/2<l.

If P ^ r, we have, as 1 — /O ^ (1 — r)/2,

(3.62) ©(^/(l - p) ^ 2ω(r)/(l - r) .

If p < r, we have by (3.1)

(8.60 ω(p)/(l -p)£ ω(r)/( l - r) .

(3.6^3) give the lemma. q.e.d.

We note that f e F+ implies f'eF+ [9, Theorem 6].

LEMMA 3. // / is holomorphίc in D, then f belongs to F+ if and
only if for some o)(r) satisfying (3.1)

(3.7) (|| / |L)2 - -1 • J ^ I f(reiΘ) |2 exp [ψtM^rdrdθ < oo .

PROOF, fe F+ obviously satisfies (3.7) with some ω(r). On the other
hand, it follows that the mean value of | /1 over the disk with center at
zeD:

{ζ; I ζ - z I ̂  ίΓexp [-ω(r)/(l ~ r)]} c Z>

is bounded by

(l/JBΓ) | |/ |Uexp[2α)(r)/(l-r)].

By the subharmonicity of | / 1 , this gives also a bound for \f{z) \f\z\ = r,
which shows that feF+ by (1.4).

LEMMA 4. Let g be a form of type (0, 1) in D with locally square
summable coefficient g(r, θ), and let φ(r, θ) be a subharmonic function
in D such that

\\D\9(r,θ)\ 2 e~φ{r>θ)rdrdθ

It follows that there is a function f (a form of type (0, 0)) with df=g,
and
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\f(r, θ) \*e-*'r<β)(l + r*)-*rdrdθ

<L \\D\g(r,β)\*β-*

Proof is found in [3, p. 945, Lemma 4].

For non-negative integers p and q, we shall denote by LP the set of
all differential forms h of type (0, q) with values in ΛPCN, such that for
some function ω(r) satisfying (3.1),

\ / l i i ~ \ " 7 " / I Jr 1 ^ I

In other words, for each p-tuple S = (il9 , ip)f 1 ^ iίf , iP ^ N9 h has
a component hs which is a differential form of type (0, q) such that hs

is skew symmetric in S and

I hs(r, θ) |2 exp I "^''jrdrdθ < oo .

Note that LJ = 0 if p > N or q > 1.
Now 3-operator acts componentwise on the elements of LP and yields

a linear mapping 3: LJ-* {(0, # + l)-forms with values in ΛPC*}, such that
32 = 0. Furthermore, the interior product Pfbyf= (/i ' , Z )̂ maps Lj+1

into L\\ If he Lp+ι then

(3.9) (Pfh)s = Σ ^y/y for S = (i,, •••,%).

We define P/LJ = 0. Clearly Pj = 0 and P/ commutes with 3 since
fit # ,Λτ are holomorphic. So, we have a double complex.

LEMMA 5. For every h e Lf, the equation dg = h has a solution
g e U.

Proof. This follows immediately from the Lemma 4.

LEMMA 6. For any v e C\D) we have for 0 ^ r < 1,

= ^ \ V(r, θ)dθ - v(0)',
2π Jo

where

2π JJi'iέt ' dx2 dy2 '

Proof is a simple consequence of Green's formula. See [4, p. 231,
Lemma 3.3].
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LEMMA 7. Let fu , fN e F+. Then, if we put

I I 2 , i, 5 = i ,
we have

< oo

for a function co(r) satisfying (3.1).

P R O O F . At first we suppose t h a t fl9 ••-,/# have no common zeros.
Then

(3.10) v(z) =

and, if we write

w(z) = —Av = I
A Si — 1
* ± *>J J

it suffices to prove that

11 w(z) exp ~~ω{<r' Wdrdθ < oo .
))D LI — r J

We apply Lemma 6 for the function v in (3.10). Then

1 — r

for a continuous function λ(r) satisfying (3.1). Now S(t) is non-negative
and increasing, since v(z) in (3.10) is subharmonic, so

Jo t

thus

with a continuous function ω(r) satisfying (3.1).
Then, writing co(r)/(l — r) = p(r),

\[ w(z) exp \^rί\rdrdθ ^ [[ + ±\\
J J B LI — rJ JjP(r)S2 »=1 J j2«Sp(r)S2' +

Jvdxdy
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For the case where fl9 — ,fN have common zeros, the desired conclusion
may be deduced via a standard argument by considering ve(z) =
log (\\f(z) ||2 + ε2) and letting ε-> 0. q.e.d.

PROOF OF THEOREM 1. Suppose u e F+ satisfies (2.2). Let a =
(al9 , aN) e L\ be such that

Then

da, = || / ||-4 u2 JjΛWΛ - Λ3Λ)

If we put

then we get /3 = (βti) e L\ by Lemma 7. Clearly, 3α = P//3, and there
exists 7 6 L\ with 3τ = /3 by Lemma 5. Then, if we put

g = a — PSΊ e LI,

then dg — 0, hence g3- e F+, j = 1, , N, by Lemma 3, and

Pfδ — u* * which shows that u2 e I(flf , fN) . q.e.d.

4. Proofs of Theorem 1*, 2* and 3.

PROOF OF THEOREM 1*. Let /, geF+. If we take in (2.2) N = 2,
/, = f\ f2 = g2 and u = fg, then (2.2) holds. If it were true that (2.2)
would imply u e I(fίf , fN), we would have fg e I(f\ g2) for any /, g e F+.
We will show that this is not the case for some / and g.

Suppose fgeI(f\ g2), i.e., fg = Af2 + Bg2 with A, BeF+. Then

(4.1) Af2lg =f-BgeF+, Bg2/f =g-AfeF+.

We put

f(z) = U((z - zk)/(l - zkz)) f

where

zk = 1 - bk with a constant 6, 0 < & < 1/3 ,

and

g{z) = exp — c z with a constant c> 0 .
L 1 — ZΛ

Then by (4.1), B/f is holomorphic.
Then, as we shall see shortly later, if H(z) is holomorphic in D,

(4.2) / x HeF+ implies He F+ .
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Thus

A/g = peF+ since (A/g)f* e F+ ,

B/f=qe F+ since BeF+ .

Hence

(4.3) l = p xf+ q x g.

This is impossible, since p(zk)f(zk) = 0 and q(zk)g(zk) —* 0 as seen from (1.4)
and the definition of g(z).

Now we will show (4.2). First we note that

I / ( * ) I ^ Π 1 1 * 1 - l « » l l / ( l - l * » l 1 * 1 ) .
Put

r< > = i _ ft-(i

Then, if | 2 | = r(*>,

l-\zk\\z\^b" + 6 (1 + 6)/2 .

Thus, if | z | = r ( l t ),

(4.4) \f(z)\= Π Π > π X ~ 6"~*(1 + 6 ) / 2 Π X " b"~n X 2 / ( 1 + b)
{ } ' / w ' ik b\ = ki 1 + δ-*α + b)β *>» 1 + ft*- x 2/(1 + 6)

> τ τ 1 - b*(l + 6)/2 π l - 6 » x 26/(1 + 6) _ R Q
= " » 1 + 6W(1 + 6)/2 " 0 1 + 6- x 26/(1 + 6)

Let

h(z) = f(z)H(z) e F + .

Then, for any constant a > 0,

Af(r, λ) exp Γ - ^ - Ί — 0 as r — 1 .
LI — TΛ

By (4.4), we have
ίn), H) ̂  Jkf(rίB

Thus, for r'"-1' ^ r ^ r(w)

Λf(r, IT) S M(r™, h)/K .

Hence, for r{n~l) ^ r ^ r ( n ) ,

M(r, H) exp [ ^ 3 - ] ̂  ^" l3f(r (", Λ) exp [-o/(l - r '- 1 ' )]
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^ KrιM(r{n\ h) exp [~ab/(l - rw)] -> 0 as n

hence

M(r, iϊ)expΓ^=^Ί^O as r~>l
Ll — r J

for any a > 0, which shows that i ϊ e F + . q.e.d

PROOF OF THEOREM 2*. Let v(b), 0 ^ ί ^ 2π, be a continuous and
monotone increasing function such that v(0) = 0, v(2π) = 1, and x/(ί) — 0
almost everywhere on [0, 2π], We put, for 2nπ ^ t ^ (2^ + 2)π,

//(ί) = n + v(t - 2nπ) , n = 0, ± 1 , ±2,

and

Then /(β) eH°°(zN+ and

as shown in [12, Proof of Theorem 1]. Therefore, f(z) satisfies (2.4) but
does not generate N+, since f(z) is not invertible in N+ while f(z) is
invertible in F+.

PROOF OF THEOREM 3. Put

E = -cί^Ί; c> θ} .

Then E<zN+c:F+. If we write I = \J fE, I is a proper ideal. It is
fεF+

easy to see that

e X pΓ- c l±-^Ί->l as c-+ 0.
L 1 — zJ

Hence the maximal ideal containing / is not closed.

5. Closed maximal ideals in F+. Let A be a topological algebra
with identity 1, locally convex and commutative, over the complex number
field C. Topology of A is defined by a countable family of semi-norms
{|| IU}αe/> which are supposed to satisfy that || l | | β = 1 and for α, be A

(5.1) \\ab\\a^\\a\\a\\b\\a for every ael.

For an ael, let Ea = {ae A; \\ a\\a = 0}. Ea is obviously an ideal in A.
For a e A, we write aΓ = α + JE7β e A/£7α. Then A/Jδ/α is a normed space
with ||flΓ||β = || α||«. We have, by (5.1), for a, be A
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(5.10 \\a~b~\\a^\\ar\\a\\b~\\a.

The completion of A/Ea with res. to the norm || ||β is denoted as A*.

LEMMA 8. Let geA. Suppose jl — μg is invertίble for \ μ\ < δ.
Then, for any ael there is a δ(a)>0 such that || (1 — μg)~ι ||α is bounded

for \μ\^ δ(a).

PROOF. Put 8(μ) = min (8, 1/21| g \\a) and

hn = 1. + μg + + μngn e A , Ke A/Ea .

{K} is a Cauchy sequence in A* if I μ I ̂  <5(α). Then

For a fixed j«, we define a linear operator T on A/ϋ^ by

2V = (1 - μgΓa~eA/Ea for a e A .

ϊ7 is continuous on A/ϋ7α by (5.1'), and continuously extended on
Then

ThΓ = lim TK = Mm ((1 - w)λ»Γ = ϋm (1 - μn+ίgn+T = 1" .

Thus λΛ = ((1 - μg)~Te A/Ea. Then we have, for \ μ\ £ δ(a)

II ( i - μg)-1 II. = l im || Λ ; H. = l im || K II. =S l + Σ I I w II: ̂  2 .

LEMMA 9. Let feA and λ o e C Suppose X — f is invertible for
— λ01 < δ, δ > 0. TAew (λ — Z)"1 is continuous with respect to λ.

PROOF. Put (λ0 - f)~ι = sf and μ = λ0 - λ. Then

Then for any α e /, if | μ \ ̂  δ(α),

^ 2 | i" | | |^| |2

α->0 as λ ^ λ 0 , μ->0,

hence (λ — f)'1 is continuous.

LEMMA 10. For any feA, there is a number Xf such that \f — f
is not invertίble.

PROOF. Suppose λ — / were invertible for any XeC. Then (λ — f)~ι
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is continuous with respect to λ. Let L be a continuous linear functional
on A. Then

G(λ) = L((λ - / n

is an entire function. For,

G(λ) - G(λ0) = -(λ - λo)L((λ - /Γ(λ 0 - Z)-1) ,

hence, by Lemma 9, we obtain

Further, by the continuity of L,

I G(λ) I = I L((λ - /Γ1) I <£ J5ΓII (λ, - / Γ ||α

with a n α e / and a constant ίΓ. Thus, by Lemma 8, if | λ | > 2 || / ||α,

as I λ I -» oo. Therefore G(λ) = 0, i.e.,

Z D ^ O for λ e C

for any continuous linear functional L o n i , which is absurd.
As a characterization of closed maximal ideals we have, in analogy

with the well known theorem of Igusa [4], the following

THEOREM 4. Let M be a maximal ideal in F+. The following
conditions for M are equivalent:

( i ) M is closed in the topology of uniform convergence on every
disk I z I ̂  r, r < 1.

(ii) F+/M=C.
(iii) M corresponds to a point zoeD, i.e., M consists of all functions

of F+ which vanish at z0.

PROOF, (i)—• (ii): Obviously, F+/Mz>C. For feF+, we denote

[ / ] = / + I e F+/M.

We introduce the family of semi-norms in F+/M as follows:

[/] | | r = inf (max \f(z) + h(z) |) , 0 <S r < 1 .
heM \z\=r

Then clearly

By Lemma 10, to each [/] e F+/M, there corresponds a number λ e C such
that λ — [/] is not invertible. But, since F+/M is a field by the maxi-
mality of Mf λ — / must belong to M, i.e., λe [/]. Thus we obtain
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(ii)—>(iii): Let z0 be the coset [z]eF+/M. Then z — zoeM, hence
zoeD.

For each f(z) eF+, we have

(5.2) f(z)-f(zo) = A(z)(z-zo).

As easily seen, A(z) e F+, thus f(z) - f(zQ) e M. If f(z) e M, then f(zQ) e M,
whence f(zQ) = 0. Thus M corresponds to the point z0 e D.

(iii) —• (i): This is evident from the theorem of Hurwitz.

6. Maximal ideals in F+. Now we will study some structures of
maximal ideal space of the algebra F+.

The complex w-sphere is denoted by W. Let Q be the set ofjfall
continuous functions ω(r), 0 ^ r < 1, satisfying (3.1).

Taking a function f(z) e F+, we define a topology τQ(f) in W.
For a number ε > 0 and a function ω(r) e Q, we define neighborhood

U(a) of a 6 TΓ as follows:
(A) α ^ °o.
A(i) Suppose there is a point zoe D such that /(20) = α. Then we put

for a number ^ > 0,

U(a) = U(a; ε, ω, z0, ή) = \w; w = /(^), where | z — z01 < and

A(ii) Suppose there is a point ζ0, | ζo | = 1, such that

lim βxp Γ-Sίίψλ.11 /(«) - α I = 0 .
•-co L I — I z IJ

Then we p u t for a number ^ > 0,

U(a) = Ϊ7(α; ε, ω, ζ0,57) = |w; w = a + /oew, 0 ^ ί ^ 2ττ , and

p < ε e x p "~βH' g 1/ for a point zeD such t h a t
L 1 — \z\ J

I * - c i<v, e χ p [ f z 7 7 | ] l ^ - α l < ε } u W

A(iii) Suppose there is neither z0 in A(i) nor ζ0 in A(ii). We put

U(a) = U(a; ε, ω) = {α} .

(B) α = co.
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B(i) Suppose there is a point ζ0, | ζ01 = 1, such that

^4
— \z\

Then we put for a number η > 0,

J7(oo) = U(oo; ε, ω, ζ0, rj) = {w; w = ρeiθ, 0 ^ 0 ^ 2π , and

!θ > (1/ε) expΓ
 ω
^
z
^ 1 for a point ̂ ΰ such that

LI — I z IJ
\z - ζo |< 7, expΓ ^l* ')] |/(*) I > 1/el U {-} .

L 1 — I Z I J t

B(ii) Suppose there is no point ζ0 in B(ii). Then

C7(oo) = Ϊ7(oo;ε, ω) = {oo} .

By this system of neighborhoods, W becomes a Hausdorff space. We
note that the topology depends on the function f(z).

Let f(D) c W be the range of f(z) in D, and (f(D))a be the closure
of f(D) with respect to the topology determined by /. Since f(z) e F+,
(f(D))a does not contain oo. We compactify (f(D))a as follows:

Let Pf be an (abstract) element. Neighborhoods of Pf are defined
to be open sets (in the sense of the usual Riemann sphere topology) con-
taining W - (f(D))a.

Then, Af = (f(D))a (j {Pf} is obviously compact. We note that
Af — {Pf} satisfies the Hausdorff separation axiom, although Af does
not. Af might be considered, in a sense, as an Alexandroff compactifi-
cation of (f(D))a.

Further, let Co be the set of all continuous complex valued functions
with compact supports in D.

Put

(6.1) T = Π Ar Π Wφ (Wφ = W with the usual Riemann
feF+ φeC0

sphere topology)
T is compact with the Tychonoff topology. We denote by πf or πφ the
projection of T on Af or on Wφ, respectively. We write, for z e D,

ψ(z) = {f(z)fφ(z)}feF+tφeCo

ψ is a continuous and one-to-one mapping from D into T. We write the
closure of ψ(D) in Γas D*. Then D* is compact and ψ(D) is dense in D*.

ψ is an open mapping. To see this, for z0 e D, let U be a relatively
compact neighborhood of z0, and φ be a function of CQ with support
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contained in U and φ(z0) Φ 0. Put

V={peD*;πφ(p)Φθ} .

V is a neighborhood of ψ(z0) on D*. V — Ψ(U) is an open set, as we shall
see shortly later. But we have

( F - ψ(U))Πψ(D) = void ,

hence V — ψ(U) is void, for ψ(D) is dense in D*. Therefore we obtain

Fcψ(U) c ψ(D) , 7 c

and ψ is an open mapping.
Now we will show that V — ψ(U) is open, i.e., ψ(O) is closed. Let

qίψ(U). If there is an foeF+ such that πfo(q) Φ P / o, then there is a
neighborhood U(πh{q)) such that U(πfo(q)) Π πfo(ψ(U)) = void. If π7(<?) = P r

for any feF+, then there is, for an foeF+, a neighborhood Ϊ7(P/O) such
that C7(P/o) Π πfQ(ψ(U)) = void, since πfo(ψ(ϋ)) - /0(£7) is compact in /0(D).
Thus, if U{q) is a neighborhood of q such that πfo(U(q)) = U(πfo(q)), then
Ĉ to) Πψ(U) = void, and {ψ(U))G is open, hence ^(0) is closed.

Thus ψ is homeomorphic, and D and 'f (D) may be identified.
πf is the continuous extension of / onto D*. For α, 6eZ)*, a Φ b,

there is an / e F + with

τr/(α)

since for any point peD* — ψ(D) we have φ(p) = 0 for each <f> e Co.
We put

p= π {P/} τιwφ

feF+ φeCQ

and
D** = D* - P .

Let 3ft be the set of all maximal ideals in F+. Then
THEOREM 5. Elements of 3ft and points of the space D** correspond

in a one-to-one way.

PROOF. Let z0 be a point of D. It is easy to see that the set of
all functions f(z) e F+ with f(z0) = 0 forms a maximal ideal in F+.

Let Jbe a maximal ideal in F+. We suppose that there are no common
zeros in D for functions of J.

Let fai,
 m

 ffaN be functions of J. Thus, by Theorem 2, we have for
any ω(r)eQ,

(6.3) inf exp [ω(r)/(l - r)](\faι(z) | + • + |/.„(*) I) - 0
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(r = I z I) for any r0 < 1. Thus, there is a sequence {zw} c D, rn = 1zn | —• 1,
such that

lim inf exp [ω(rk)/(l - n)](|/αi(sΛ) | + . . + \faN(zk) |) = 0 .

We denote by E(au , aN; ω) the set of points of D* such that

ζ* e ϋΌ*!, , aN; ω) if for any neighborhood U(ζ*) ,

^ mf n Λ exp [ω(\ z |)/(1 - | *|)](|/βι(s) | + + \LN{z) |) = 0 .

, α^; α>) is a closed non-void subset of the compact space 2)*, for
every ω(r) e Q, by Theorem 2, since J is a proper ideal. If ω^r), ,
<*Mr) G Q, we have

E{au , α^; ωx) n ΓΊ ̂ (^i, , αv> ω^)

3 £7( î, , aN) ωγ+ + (oM) Φ void .

Hence

E(alf , aN) = Π J&(«i, , α^; Λ>)

is non-void. Since

E(al9 --,aN)f) E(a[, . . , « y =) ̂ (α^ . , aN, a[, -, a'κ) Φ void ,

we have

E= Π ^ ( ^ , . . . , ^ )

is non-void.
Let ζ*e£ r and M(ζ*) be the set of all functions feF+ such that

(6.4) exp Γ M A L Ί I f(z) \~+0 for each ω{r) e Q ,
LI — I z IJ

as z —>ζ* in Z)*,
Λf(ζ*) is obviously a proper ideal. Take a function / e J . For any

ε > 0 and ω(r) e Q, we choose a neighborhood U(ζ*) as

*/(CT(C ) ) = ϋίMC*); e, ω, ζ0, 7)

as defined in A(ii) with suitable ζ0, | ζ01 = 1, and η > 0. Thus, if 2 e Z7(ζ*),

exp [ω(| ̂  |)/(1 - | z | ) ] I/W - MC*) l < β .

But, by the definition of the set E, we have πf(ζ*) = 0, hence / satisfies
(6.4) and J c ikf(ζ*), hence J= M(ζ*).

We have that EaD**. E contains only one point, since the extensions
of functions of F+ separate points of D*. Thus we obtain the proof of
our theorem.
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