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Introduction. The inner derivation 6, induced by an element A of
“the algebra <#(5#) of bounded linear transformations on a separable
Hilbert space 5% is the map X — AX — XA for Xe & (5#). Kleinecke
[8] and Shirokov [10] showed that if T belongs to the intersection of the
range #Z(0,) of 6, and the kernel {A} of 0, then T is quasinilpotent.
The same is true of each compact operator T in the intersection of {4}
and the norm closure of <2(d,) [7, 5]. However, Anderson [2] shows that
there are operators A for which the algebra .<2(6,)~ N {A} contains the
identity operator.

In this paper we obtain some sufficient conditions for I¢ <#(0,)” and
show that the set of such operators is norm dense in #(5#%).

When H is finite dimensional one has <2(0,) N {4*} = {0}. We show
here that this also holds for certain classes of operators when 57 is
infinite dimensional.

In the finite case <2(dz)  <2(d,) is equivalent to the commutativity
condition Be {A})”’, but this condition is not sufficient in the infinite case
[12]. It is necessary if A is normal [6] or isometric [13] but in Section
3 we prove that it is not necessary in general.

1. Derivation ranges and the identity operator. The following
lemma is a consequence of Cauchy’s theorem and the functional calculus.

LEMMA 1. Let A be an element of F () and f be an analytic
fumnction on an open set containing o(A). Then

£y = 22| o1 - a7 r0an
2me Jr
where I' is any Jordan system that lies entirely in the domain of re-
gularity of f and encloses a(A).

THEOREM 1. Let A€ & (57) and suppose that there exists an analytic
Sfunction f on an open set containing o(A) such that

(1) f7#0

(2) Z0s0) N{FAD} = {0}
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Then I¢ Z(0,) .

ProorF. Suppose AX, — X,A— I for some sequence of operators {X,}.
If I" is a Jordan system that lies entirely in the domain of regularity
of f and encloses o(A4), then ||[(A — 4A)7'X, — X, (A — A — (N — A)%|| =
v — A7 (A - MNX, — X(A-N) = II(v— A7 = [|(v— A7 P AX, —
X,A — I||— 0 uniformly for xe " as n— . Hence by Lemma 1

fAX, — X,f(4) — f'(4)
= o= | SO0~ 7K, — X0 — A7 = (v — A)7dn— 0
2mq Jr

as nm— co. Therefore f'(A)e 2 (0;4)" and so (2) implies f'(4) = 0.
Condition (1) and the spectral mapping theorem guarantee that o(A4) is
finite. Hence A is similar to an operator of the form >, A, with
o(4,) = {\;} and A, — \, is nilpotent for 1 <7 < m.

To complete the proof we may therefore assume that A is nilpotent
of index k. Then with f(z) = z* the above argument gives 0 = A*X, —
X, At —LEA* =+ 0.

COROLLARY (Stampfli [11]). Let A and f be as in the theorem and
f(A) = N where N is a normal operator. Then 1¢ Z(0,) .

ProOF. In [1] Anderson shows that <Z(0y)" N {N} = {0}.

LEMMA 2. Let Ae F (7). If o(A) has an isolated point N\ for
which A — N 18 Fredholm, then I¢ F2(04)".

ProOF. Let I' be the boundary of a disk with center at A\ that
contains no other points of g(4). If E = (1/2m')sr(z — A)™'dz is the corre-

sponding Riesz projection then E? = E # 0 and EA = AE. Suppose Ie
A©0,). Then Ee #£(0,) N{A} and E has finite rank since A — \ is
Fredholm. But then ¢(E) = {0} by [7] and this is a contradiction.

THEOREM 2. Let Ac ' (5#). For each € > 0 there exists an operator
B such that

(1) rank(B)=1

(2) |IBll<e

(8) I¢ AB(0445) -

Proor. A slight modification of the argument in [4] shows that there
exist an operator Bhaving the properties (1) and (2) and a complex number
A which is an isolated point of o(A4 + B) such that A + B — \ is Fredholm.
Therefore I¢ 2(0,.5)~ by Lemma 2.

COROLLARY. The set {Ae & (57): I1¢ #(0.)7} is dense in B (SF) in



COMMUTANTS AND DERIVATION RANGES 511

the morm topology.

REMARK. (1) Let %% Dbe the ideal of compact operators on 5% and
let T— T be the natural homomorphism from <Z(S5#) onto the Calkin
algebra Z (5#)/25#. The above theorem assures the existence of an
operator Ce <& (5#) such that e <2(0;)" but I¢ F0,).

(2) Each compact operator in the algebra Z(9,)” N {A} must be
quasinilpotent [7]. For more information about this algebra see [5].

2. The set <2(0,) N {A*}. If 5 is a finite dimensional Hilbert space
(X, Y) = trace (XY*) is an inner product on <& (5#) and we have the
orthogonal direct sum decomposition & (5#°) = #(0,) P {4*}. However
when 57 is infinite dimensional we do not know whether <Z(,) N {A*} =
{0} in general. In this section we obtain some sufficient conditions for
this intersection to be trivial.

LEMMA 3. Let Ae & (). If p(A) is normal for some polynomial
»(2) then #(0,)” N {A}Y contains mo nonzero normal operator.

Proor. Suppose 4X, — X,A— C and that C is a normal operator
in {A). If p"(z) denotes the k-th derivative of p(z) then

p*(A)X, — X, p*(4)— p**(A)C as n— oo .

In particular, p'(4)Ce Z(0,)" N {P(4)} so that p'(A)C = 0 since p(A4) is
normal [1]. Also Cp'(4)X, — CX,p'(4)— p"(A)C* and p'(4)X,C —
X,.p'(4)C — p"(A)C* so that (p'(4)X, — X,p'(4)C + 4,(X,p'(4)) — 0.
Therefore p”(4)C*e <2(,)- N {C}. Hence p"”"(4)C? = 0. By repeating the
same argument it follows that p»™(A)C™ = 0 where m is the degree of
p(z). Thus C™ =0 and so C = 0 since it is normal.

THEOREM 3. If A satisfies one of the following conditions then
F04)" N{A*}Y =0:

1) p(A) is normal for some quadratic polynomial p(2).

2) A is subnormal and has a cyclic vector.

ProoF. (1) Suppose that A* — 2a¢A — 8= N is a normal operator.
Let AX, — X,A— B*e #(0,) N{4A*}. Then (N + 2a4)X, — X, (N +
2aA) = A’X, — X,A*— AB* + B*A. This implies that AB* + B*A —
2aB*e Z(0y) N{N} so that AB* + B*A — 2aB* =0 by [l1]. Hence
(B + B*)(A — a) = (A — a)(B — B*) and (A — a)B* = —B*(A — a). The
Putnam-Fuglede theorem then gives (B* + B)(A — a) = (A — a) X (B* — B)
and (4 — a)B= —B(A — a). Combining these equations we get
(A — a)(B* + B) = 0 and (B* + B)(A — @) = 0. Hence B*A = AB*. There-
fore B*Be #(0,)~ N {A) so that B =0 by Lemma 3.
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(2) A is a normal element of <Z(5#)/% by [3]. Hence if B*e
Z04) N{A*} then B* is compact by [1]. Since A has a cyclic vector
B is also subnormal, and therefore normal. Then B*e <2(0,)" N {4} by
the Fuglede theorem. This implies that B* is quasinilpotent [7] and
therefore B = 0.

Stampfli [11] has exhibited a unilateral weighted shift A for which
A*e Z£6,)". We will show however, that <Z(9,) N {4*} = {0} for any
weighted shift with nonzero weights. First we prove two lemmas.

LEMMA 4. Let W be a unilateral weighted shift with nonzero weights
{a,}. If A=Z0and A=WX — XW for some Xe Z () then A is a
trace class operator with trace (4) < lim |, | || X]||.

PROOF. Let {e,}3-, be an orthonormal basis for which We, = a,¢,.,(n =
0). Then 37, (Ae,, €) = Do (WX — XW)e,, e,) = —a,(Xe,., ¢,). Hence
S0 || A%, || < = so that AY% is a Hilbert-Schmidt operator and A =
A2 A" ig a trace class operator.

LEMMA 5. Let W be a unilateral shift as above. If lim|a,| =0
then there is no nonzero Hilbert-Schmidt operator that commutes with W.

PROOF. Assume B commutes with W and let Be; = >\5- by e, for
j=0. If B+ 0 then b,, 0 for some & since ¢, is cyclic for W. There-
fore there exists a smallest positive integer m for which b,,,+= 0. Assume
bmo=1. Then

bt Xy = Oy Xjig 2o By gy
m+d, g+ =

Al oo A A, -

m—1

for j large enough. Hence
Z:) ||B6,~“2 g Z:an‘bm+j.i+1 |2 = [aoax e am—1|_2 Z:anlaiﬂ M am+:f—1|2 .
= = =

Now lim;|a;,, -+- @pyjy|* = lim |, |™ = 0 so that B is not a Hilbert-
Schmidt operator.

THEOREM 4. Let W be a unilateral shift with nonzero weights {a,}.
Then #2(0,) N {W*Y = {0}.

Proor. If B*e <#(0,) N {W*} then B*B =WX — XW for some Xe
# (7). Lemma 4 shows that B*B is a trace class operator with trace
(B*B) £ lim |, | || X||. This inequality and Lemma 5 imply that B = 0.

3. Double commutant and derivation range inclusion. When 57
is finite dimensional we have & (5¢°) = <2(0,) @ {A*}. This decomposition
shows that #(d;) c #(0,) if and only if Be {A}’. The condition Be {4}"”
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is not sufficient for .2(d;) C <#(0,) when S# is infinite dimensional [12].
It is necessary if A is a normal operator [6] or if A is an isometry [13].
The main result of this section is that it is not necessary in general,
however.

THEOREM 5. Let U be a nonunitary isometry, let P=1— UU*,
and let A = (g] %v* n 3) and B = (g_-, 8) acting in the usual fashion on
P S Then F(0p) < A(0,) and BA =+ AB.

ProOF. Let X = (X‘ X2> be an element of Z (57 @ 5#°). Then

XX
BX — XB = ;5}:2{’_ x.p ‘},Xz). Since o(U) N o(U* + 8) = @, therefore

there exists Ze & (5#) such that (U* + 3)Z — ZU = PX, — X,P [9].
Because PZ(5#) C H(0,+) and F(57)P C.H#(0,) [12], there exist ¥ and
W such that UY — YU = —X,P and U*W — WU* = PX,. Then

Uu o0 Y O Y 0\/U 0
— = BX — XB
(o U* + 3)(2 W) (z W)(O U* + 3)
which shows that 2(d;) c #(0,). If BA = AB then (U* + 3)P = PU.

But since (U* + 3) and U have disjoint spectra, therefore P = 0 [9]. This

contradicts the choice of U.
The operator A defined above has derivation range <2 (d,) that contains
a nonzero right ideal and a nonzero left ideal of <& (5#°). The following

result explains why this is the case.

THEOREM 6. Let Ae & (57). The following conditions are equiv-
alent:

(1) A0;)c H#0,) implies Be{A)".

(2) #(0,) does not contain both a monzero left ideal and a monzero
right ideal of F(5F).

ProoF. That (2) implies (1) can be found in [12]. Assume (1) holds
and suppose f, g are unit vectors such that (f Q f)Z#(5#) c #(9,) and
ZB(F)N9Q9) < #(0,). Then P(drg,) C H(0,) so that A(fF R 9) =(F &®
g)A. Therefore, (49, 9)f = Af. Moreover, if fQ f = 0,(X) then

O(X)Z (52) = (f ® f)Z (£) < 2 0.) -

An easy calculation shows that X2(6,) c <#(9.), hence (Xf & 9)F(5#) C
#0,) and F () XfRg) < A (0,) so that F(0grg,) C H(04). Therefore
AXf ® 99 = (Xf Qg9)Ag so that AXSf = (Ag, 9)Xf. Therefore, f =
(fR NS = AXSf — XAf = (Ag, 9)Xf — (4g, 9)Xf = 0.
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