COMMUTANTS AND DERIVATION RANGES

YANG HO

(Received August 2, 1974)

Introduction. The inner derivation δ_A induced by an element A of the algebra $\mathscr{B}(\mathscr{H})$ of bounded linear transformations on a separable Hilbert space \mathscr{H} is the map $X \to AX - XA$ for $X \in \mathscr{B}(\mathscr{H})$. Kleinecke [8] and Shirokov [10] showed that if T belongs to the intersection of the range $\mathscr{B}(\delta_A)$ of δ_A and the kernel $\{A\}'$ of δ_A then T is quasinilpotent. The same is true of each compact operator T in the intersection of $\{A\}'$ and the norm closure of $\mathscr{B}(\delta_A)$ [7, 5]. However, Anderson [2] shows that there are operators A for which the algebra $\mathscr{B}(\delta_A)^- \cap \{A\}'$ contains the identity operator.

In this paper we obtain some sufficient conditions for $I \notin \mathcal{R}(\delta_A)^-$ and show that the set of such operators is norm dense in $\mathcal{R}(\mathcal{H})$.

When H is finite dimensional one has $\mathscr{R}(\delta_A) \cap \{A^*\}' = \{0\}$. We show here that this also holds for certain classes of operators when \mathscr{H} is infinite dimensional.

In the finite case $\mathscr{R}(\delta_B) \subset \mathscr{R}(\delta_A)$ is equivalent to the commutativity condition $B \in \{A\}$ ", but this condition is not sufficient in the infinite case [12]. It is necessary if A is normal [6] or isometric [13] but in Section 3 we prove that it is not necessary in general.

1. Derivation ranges and the identity operator. The following lemma is a consequence of Cauchy's theorem and the functional calculus.

LEMMA 1. Let A be an element of $\mathscr{B}(\mathscr{H})$ and f be an analytic function on an open set containing $\sigma(A)$. Then

$$f'(A) = rac{1}{2\pi i} \int_{arGamma} (\lambda I - A)^{-\imath} f(\lambda) d\lambda$$

where Γ is any Jordan system that lies entirely in the domain of regularity of f and encloses $\sigma(A)$.

THEOREM 1. Let $A \in \mathcal{B}(\mathcal{H})$ and suppose that there exists an analytic function f on an open set containing $\sigma(A)$ such that

- (1) $f' \not\equiv 0$
- (2) $\mathscr{R}(\delta_{f(A)})^- \cap \{f(A)\}' = \{0\}.$

Then $I \notin \mathcal{R}(\delta_A)^-$.

PROOF. Suppose $AX_n - X_nA \to I$ for some sequence of operators $\{X_n\}$. If Γ is a Jordan system that lies entirely in the domain of regularity of f and encloses $\sigma(A)$, then $||(\lambda - A)^{-1}X_n - X_n(\lambda - A)^{-1} - (\lambda - A)^{-2}|| = ||(\lambda - A)^{-1}[(A - \lambda)X_n - X_n(A - \lambda) - I](\lambda - A)^{-1}|| \le ||(\lambda - A)^{-1}||^2 ||AX_n - X_nA - I|| \to 0$ uniformly for $\lambda \in \Gamma$ as $n \to \infty$. Hence by Lemma 1

$$f(A)X_{n} - X_{n}f(A) - f'(A)$$

$$= \frac{1}{2\pi i} \int_{\Gamma} f(\lambda)[(\lambda - A)^{-1}X_{n} - X_{n}(\lambda - A)^{-1} - (\lambda - A)^{-2}]d\lambda \to 0$$

as $n \to \infty$. Therefore $f'(A) \in \mathscr{B}(\delta_{f(A)})^-$ and so (2) implies f'(A) = 0. Condition (1) and the spectral mapping theorem guarantee that $\sigma(A)$ is finite. Hence A is similar to an operator of the form $\sum_{i=1}^n \bigoplus A_i$ with $\sigma(A_i) = \{\lambda_i\}$ and $A_i - \lambda_i$ is nilpotent for $1 \le i \le n$.

To complete the proof we may therefore assume that A is nilpotent of index k. Then with $f(z) = z^k$ the above argument gives $0 = A^k X_n - X_n A^k \rightarrow k A^{k-1} \neq 0$.

COROLLARY (Stampfli [11]). Let A and f be as in the theorem and f(A) = N where N is a normal operator. Then $1 \notin \mathcal{R}(\delta_A)^-$.

PROOF. In [1] Anderson shows that $\mathcal{R}(\delta_N)^- \cap \{N\}' = \{0\}$.

LEMMA 2. Let $A \in \mathcal{B}(\mathcal{H})$. If $\sigma(A)$ has an isolated point λ for which $A - \lambda$ is Fredholm, then $I \notin \mathcal{R}(\delta_A)^-$.

PROOF. Let Γ be the boundary of a disk with center at λ that contains no other points of $\sigma(A)$. If $E=(1/2\pi i)\int_{\Gamma}(z-A)^{-1}dz$ is the corresponding Riesz projection then $E^2=E\neq 0$ and EA=AE. Suppose $I\in \mathscr{R}(\delta_A)^-$. Then $E\in \mathscr{R}(\delta_A)^-\cap \{A\}'$ and E has finite rank since $A-\lambda$ is Fredholm. But then $\sigma(E)=\{0\}$ by [7] and this is a contradiction.

THEOREM 2. Let $A \in \mathscr{B}(\mathscr{H})$. For each $\varepsilon > 0$ there exists an operator B such that

- (1) rank(B) = 1
- (2) $||B|| < \varepsilon$
- (3) $I \notin \mathcal{R}(\delta_{A+B})^-$.

PROOF. A slight modification of the argument in [4] shows that there exist an operator B having the properties (1) and (2) and a complex number λ which is an isolated point of $\sigma(A+B)$ such that $A+B-\lambda$ is Fredholm. Therefore $I \notin \mathscr{R}(\delta_{A+B})^-$ by Lemma 2.

COROLLARY. The set $\{A \in \mathcal{B}(\mathcal{H}): I \notin \mathcal{R}(\delta_A)^-\}$ is dense in $\mathcal{B}(\mathcal{H})$ in

the norm topology.

REMARK. (1) Let \mathscr{K} be the ideal of compact operators on \mathscr{H} and let $T \to \hat{T}$ be the natural homomorphism from $\mathscr{B}(\mathscr{H})$ onto the Calkin algebra $\mathscr{B}(\mathscr{H})/\mathscr{K}$. The above theorem assures the existence of an operator $C \in \mathscr{B}(\mathscr{H})$ such that $\hat{I} \in \mathscr{B}(\delta_{\hat{c}})^-$ but $I \notin \mathscr{B}(\delta_c)^-$.

- (2) Each compact operator in the algebra $\mathcal{R}(\delta_A)^- \cap \{A\}'$ must be quasinilpotent [7]. For more information about this algebra see [5].
- 2. The set $\mathscr{R}(\delta_A) \cap \{A^*\}'$. If \mathscr{H} is a finite dimensional Hilbert space $\langle X, Y \rangle = \operatorname{trace} (XY^*)$ is an inner product on $\mathscr{R}(\mathscr{H})$ and we have the orthogonal direct sum decomposition $\mathscr{R}(\mathscr{H}) = \mathscr{R}(\delta_A) \oplus \{A^*\}'$. However when \mathscr{H} is infinite dimensional we do not know whether $\mathscr{R}(\delta_A) \cap \{A^*\}' = \{0\}$ in general. In this section we obtain some sufficient conditions for this intersection to be trivial.

LEMMA 3. Let $A \in \mathcal{B}(\mathcal{H})$. If p(A) is normal for some polynomial p(z) then $\mathcal{B}(\delta_A)^- \cap \{A\}'$ contains no nonzero normal operator.

PROOF. Suppose $AX_n - X_nA \to C$ and that C is a normal operator in $\{A\}'$. If $p^{(k)}(z)$ denotes the k-th derivative of p(z) then

$$p^{(k)}(A)X_n - X_n p^{(k)}(A) \rightarrow p^{(k+1)}(A)C$$
 as $n \rightarrow \infty$.

In particular, $p'(A)C \in \mathscr{R}(\delta_{p(A)})^- \cap \{p(A)\}'$ so that p'(A)C = 0 since p(A) is normal [1]. Also $Cp'(A)X_n - CX_np'(A) \to p''(A)C^2$ and $p'(A)X_nC - X_np'(A)C \to p''(A)C^2$ so that $(p'(A)X_n - X_np'(A))C + \delta_c(X_np'(A)) \to 0$. Therefore $p''(A)C^2 \in \mathscr{R}(\delta_c)^- \cap \{C\}'$. Hence $p''(A)C^2 = 0$. By repeating the same argument it follows that $p^{(m)}(A)C^m = 0$ where m is the degree of p(z). Thus $C^m = 0$ and so C = 0 since it is normal.

THEOREM 3. If A satisfies one of the following conditions then $\mathscr{R}(\delta_A)^- \cap \{A^*\}' = 0$:

- 1) p(A) is normal for some quadratic polynomial p(z).
- 2) A is subnormal and has a cyclic vector.

PROOF. (1) Suppose that $A^2-2\alpha A-\beta=N$ is a normal operator. Let $AX_n-X_nA\to B^*\in \mathscr{R}(\delta_A)^-\cap \{A^*\}'$. Then $(N+2\alpha A)X_n-X_n(N+2\alpha A)=A^2X_n-X_nA^2\to AB^*+B^*A$. This implies that $AB^*+B^*A-2\alpha B^*\in \mathscr{R}(\delta_N)\cap \{N\}'$ so that $AB^*+B^*A-2\alpha B^*=0$ by [1]. Hence $(B+B^*)(A-\alpha)=(A-\alpha)(B-B^*)$ and $(A-\alpha)B^*=-B^*(A-\alpha)$. The Putnam-Fuglede theorem then gives $(B^*+B)(A-\alpha)=(A-\alpha)\times (B^*-B)$ and $(A-\alpha)B=-B(A-\alpha)$. Combining these equations we get $(A-\alpha)(B^*+B)=0$ and $(B^*+B)=0$. Hence $(A-\alpha)(B^*+B)=0$ and $(A-\alpha)(B^*+B)=0$ and $(B^*+B)=0$. Therefore $(B^*B)=(B^*A)^*\cap (A^*)$ so that $(A-\alpha)=0$. Hence $(A-\alpha)(B^*+A)=0$. Therefore $(A-\alpha)(B^*+B)=0$ and $(A-\alpha)(B^*+B)=0$ by Lemma 3.

512 У. но

(2) \hat{A} is a normal element of $\mathscr{B}(\mathscr{H})/\mathscr{K}$ by [3]. Hence if $B^* \in \mathscr{B}(\delta_A)^- \cap \{A^*\}'$ then B^* is compact by [1]. Since A has a cyclic vector B is also subnormal, and therefore normal. Then $B^* \in \mathscr{B}(\delta_A)^- \cap \{A\}'$ by the Fuglede theorem. This implies that B^* is quasinilpotent [7] and therefore B=0.

Stampfli [11] has exhibited a unilateral weighted shift A for which $A^* \in \mathcal{B}(\delta_A)^-$. We will show however, that $\mathcal{B}(\delta_A) \cap \{A^*\}' = \{0\}$ for any weighted shift with nonzero weights. First we prove two lemmas.

LEMMA 4. Let W be a unilateral weighted shift with nonzero weights $\{\alpha_n\}$. If $A \geq 0$ and A = WX - XW for some $X \in \mathcal{B}(\mathcal{H})$ then A is a trace class operator with trace $(A) \leq \underline{\lim} |\alpha_n| ||X||$.

PROOF. Let $\{e_n\}_{n=0}^{\infty}$ be an orthonormal basis for which $We_n=\alpha_n e_{n+1} (n\geq 0)$. Then $\sum_{k=0}^n (Ae_k,e_k)=\sum_{k=0}^n ((WX-XW)e_k,e_k)=-\alpha_n (Xe_{n+1},e_n)$. Hence $\sum_{k=0}^{\infty} ||A^{1/2}e_k||^2 < \infty$ so that $A^{1/2}$ is a Hilbert-Schmidt operator and $A=A^{1/2}A^{1/2}$ is a trace class operator.

LEMMA 5. Let W be a unilateral shift as above. If $\lim_{n \to \infty} |\alpha_n| \neq 0$ then there is no nonzero Hilbert-Schmidt operator that commutes with W.

PROOF. Assume B commutes with W and let $Be_j = \sum_{k=0}^{\infty} b_{k,j} e_k$ for $j \ge 0$. If $B \ne 0$ then $b_{k,0} \ne 0$ for some k since e_0 is cyclic for W. Therefore there exists a smallest positive integer m for which $b_{m,0} \ne 0$. Assume $b_{m,0} = 1$. Then

$$b_{m+j,j+1} = \frac{\alpha_m \alpha_{m+1} \cdots \alpha_{m+j-1}}{\alpha_0 \alpha_1 \cdots \alpha_j} = \frac{\alpha_{j+1} \cdots \alpha_{m+j-1}}{\alpha_0 \alpha_1 \cdots \alpha_{m-1}}$$

for j large enough. Hence

$$\textstyle \sum\limits_{j=0}^{\infty} ||\, Be_j\,||^2 \geqq \sum\limits_{j=m}^{\infty} |\, b_{m+j,\,j+1}\,|^2 = |\, \alpha_0\alpha_1\,\cdots\,\alpha_{m-1}\,|^{-2} \sum\limits_{j=m}^{\infty} |\, \alpha_{j+1}\,\cdots\,\alpha_{m+j-1}\,|^2 \;.$$

Now $\underline{\lim}_j |\alpha_{j+1} \cdots \alpha_{m+j-1}|^2 \ge \underline{\lim} |\alpha_n|^{2m} \ne 0$ so that B is not a Hilbert-Schmidt operator.

THEOREM 4. Let W be a unilateral shift with nonzero weights $\{\alpha_n\}$. Then $\mathscr{B}(\delta_w) \cap \{W^*\}' = \{0\}$.

PROOF. If $B^* \in \mathscr{R}(\delta_w) \cap \{W^*\}'$ then $B^*B = WX - XW$ for some $X \in \mathscr{R}(\mathscr{H})$. Lemma 4 shows that B^*B is a trace class operator with trace $(B^*B) \leq \underline{\lim} |\alpha_n| ||X||$. This inequality and Lemma 5 imply that B = 0.

3. Double commutant and derivation range inclusion. When \mathcal{H} is finite dimensional we have $\mathscr{B}(\mathcal{H}) = \mathscr{R}(\delta_A) \oplus \{A^*\}'$. This decomposition shows that $\mathscr{R}(\delta_B) \subset \mathscr{R}(\delta_A)$ if and only if $B \in \{A\}''$. The condition $B \in \{A\}''$

is not sufficient for $\mathscr{R}(\delta_B) \subset \mathscr{R}(\delta_A)$ when \mathscr{H} is infinite dimensional [12]. It is necessary if A is a normal operator [6] or if A is an isometry [13]. The main result of this section is that it is not necessary in general, however.

THEOREM 5. Let U be a nonunitary isometry, let $P=I-UU^*$, and let $A=\begin{pmatrix} U&0\\0&U^*+3 \end{pmatrix}$ and $B=\begin{pmatrix} 0&0\\P&0 \end{pmatrix}$ acting in the usual fashion on $\mathscr{H} \oplus \mathscr{H}$. Then $\mathscr{R}(\delta_B) \subset \mathscr{R}(\delta_A)$ and $BA \neq AB$.

PROOF. Let $X=\begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$ be an element of $\mathscr{B}(\mathscr{H}\oplus\mathscr{H})$. Then $BX-XB=\begin{pmatrix} -X_2P & 0 \\ PX_1-X_4P & PX_2 \end{pmatrix}$. Since $\sigma(U)\cap\sigma(U^*+3)=\varnothing$, therefore there exists $Z\in\mathscr{B}(\mathscr{H})$ such that $(U^*+3)Z-ZU=PX_1-X_4P$ [9]. Because $P\mathscr{B}(\mathscr{H})\subset\mathscr{B}(\delta_{v^*})$ and $\mathscr{B}(\mathscr{H})P\subset\mathscr{B}(\delta_v)$ [12], there exist Y and W such that $UY-YU=-X_2P$ and $U^*W-WU^*=PX_2$. Then

$$\begin{pmatrix} U & 0 \\ 0 & U^* + 3 \end{pmatrix} \begin{pmatrix} Y & 0 \\ Z & W \end{pmatrix} - \begin{pmatrix} Y & 0 \\ Z & W \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & U^* + 3 \end{pmatrix} = BX - XB$$

which shows that $\mathscr{R}(\delta_B) \subset \mathscr{R}(\delta_A)$. If BA = AB then $(U^* + 3)P = PU$. But since $(U^* + 3)$ and U have disjoint spectra, therefore P = 0 [9]. This contradicts the choice of U.

The operator A defined above has derivation range $\mathscr{R}(\delta_4)$ that contains a nonzero right ideal and a nonzero left ideal of $\mathscr{B}(\mathscr{H})$. The following result explains why this is the case.

Theorem 6. Let $A \in \mathcal{B}(\mathcal{H})$. The following conditions are equivalent:

- $(1) \quad \mathscr{R}(\delta_{\scriptscriptstyle{B}}) \subset \mathscr{R}(\delta_{\scriptscriptstyle{A}}) \ \ implies \ \ B \in \{A\}''.$
- (2) $\mathcal{R}(\delta_A)$ does not contain both a nonzero left ideal and a nonzero right ideal of $\mathcal{R}(\mathcal{H})$.

PROOF. That (2) implies (1) can be found in [12]. Assume (1) holds and suppose f, g are unit vectors such that $(f \otimes f)\mathscr{R}(\mathscr{H}) \subset \mathscr{R}(\delta_A)$ and $\mathscr{R}(\mathscr{H})(g \otimes g) \subset \mathscr{R}(\delta_A)$. Then $\mathscr{R}(\delta_{f \otimes g}) \subset \mathscr{R}(\delta_A)$ so that $A(f \otimes g) = (f \otimes g)A$. Therefore, (Ag, g)f = Af. Moreover, if $f \otimes f = \delta_A(X)$ then

$$\delta_{A}(X)\mathscr{B}(\mathscr{H}) = (f \otimes f)\mathscr{B}(\mathscr{H}) \subset \mathscr{R}(\delta_{A}).$$

An easy calculation shows that $X\mathscr{R}(\delta_A) \subset \mathscr{R}(\delta_A)$, hence $(Xf \otimes g)\mathscr{R}(\mathscr{H}) \subset \mathscr{R}(\delta_A)$ and $\mathscr{R}(\mathscr{H})(Xf \otimes g) \subset \mathscr{R}(\delta_A)$ so that $\mathscr{R}(\delta_{Xf \otimes g}) \subset \mathscr{R}(\delta_A)$. Therefore $A(Xf \otimes g)g = (Xf \otimes g)Ag$ so that AXf = (Ag, g)Xf. Therefore, $f = (f \otimes f)f = AXf - XAf = (Ag, g)Xf - (Ag, g)Xf = 0$.

REFERENCES

- [1] J. H. ANDERSON, On normal derivations, Proc. Amer. Math. Soc., 38 (1973), 135-140.
- [2] J. H. Anderson, Derivation ranges and the identity, Bull. Amer. Math. Soc., 79 (1973), 705-708.
- [3] C. A. BEGER AND B. I. SHAW, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., 79 (1973), 1193-1199.
- [4] D. HERRERO AND N. SALINAS, Operators with disconnected spectra are dense, Bull. Amer. Math. Soc., 78 (1972), 525-526.
- [5] YANG Ho, Derivations on $\mathscr{A}(\mathscr{H})$, Thesis, Indiana University, 1973.
- [6] B. E. JOHNSON AND J. P. WILLIAMS, The range of a normal derivation, Pacific J. Math., to appear.
- [7] H. W. Kim, On compact operators in the weak closure of the range of a derivation, Proc. Amer. Math. Soc., 40 (1974), 482-487.
- [8] D. C. KLEINECKE, On operator commutators, Proc. Amer. Math. Soc., 8 (1957), 535-536.
- [9] M. ROSENBLUM, On the operator equation BX XA = Q, Duke Math. J., 23 (1956), 263-270.
- [10] F. V. Shirokov, Proof of a conjecture of Kaplansky, Uspekhi Mat. Nauk, 11 (1956), 167-168.
- [11] J. G. STAMPFLI, Derivations on $\mathcal{B}(\mathcal{H})$: The range, Ill. J. Math., 17 (1973), 518-524.
- [12] R. E. Weber, Analytic functions, ideals, and derivation ranges, Proc. Amer. Math. Soc., 40 (1973), 492-497.
- [13] J. P. WILLIAMS, On the range of a derivation II, Proc. Royal Irish Acad., to appear.

INDIANA UNIVERSITY

BLOOMINGTON, INDIANA

AND

TAIWAN NATIONAL NORMAL UNIVERSITY

TAIPEI, TAIWAN, REPUBLIC OF CHINA. (current address)